Video Lecture F9: Quadratic Forms & Principal Axes Theorem

Tom Roby

Outline & Objectives

- Quadratic forms generalize taking the inner (dot, scalar) product of a vector with itself. They come up in engineering applications involving optimization and signal processing, utility functions in economics, confidence ellipsoids in statistics, etc.
- Analyze how a symmetric matrix A defines a *quadratic* form $Q(\vec{x}) = \vec{x}^T A \vec{x}$.
- Leverage the orthogonal diagonalization, $A = PDP^T$, to compute a change of basis matrix P so that $\vec{x} = P\vec{y}$ transforms $Q(\vec{x}) = \vec{x}^T A \vec{x}$ to $Q(\vec{y}) = \vec{y}^T D \vec{y}$, with no cross terms.

Definition

A quadratic form \mathcal{Q} on \mathbb{R}^n is a function $\mathcal{Q}: \mathbb{R}^n \to \mathbb{R}$ of the form $\mathcal{Q}(\vec{x}) = \vec{x}^\top A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric and called the matrix of the quadratic form.

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 3 & 0 \\ 0 & -5 \end{bmatrix}, B = \begin{bmatrix} 7 & -3 \\ -3 & 4 \end{bmatrix}, C = \begin{bmatrix} 4 & -3 \\ -5 & 4 \end{bmatrix}.$$

Find A for $Q(\vec{x}) = -4x_1^2 + 7x_2^2 - 5x_3^2 - 6x_1x_2 + 3x_2x_3$.

Any invertible matrix $P \in \mathbb{R}^{n \times n}$ represents a change of basis from \mathcal{E} -coords to \mathcal{B} -coords: $\vec{x} = P\vec{y} \iff \vec{y} = P^{-1}\vec{x} \iff [\vec{y}]_{\mathcal{B}} = [\vec{x}]_{\mathcal{E}}$

KEY IDEA: We can change variables to make QF simpler!

$$\vec{x}^\top A \vec{x} = (P\vec{y})^\top A (P\vec{y}) = \vec{y}^\top P^\top A P \vec{y} = \vec{y}^\top (P^\top A P) \vec{y} = \vec{y}^\top (D) \vec{y}$$

Principal Axes Theorem

Use change of variable to simplify: $Q(\vec{x}) = 2x_1^2 - 4x_1x_2 + 5x_2^2$.

Theorem (Principal Axes Theorem)

Let \mathcal{Q} be a QF on \mathbb{R}^n corr. to (symm) $A \in \mathbb{R}^{n \times n}$. Then we can find an orthogonal $P \in \mathbb{R}^{n \times n}$ such that $\vec{x} = P\vec{y}$, transforming $Q(\vec{x}) = \vec{x}^\top A \vec{x}$ to $Q(\vec{y}) = \vec{y}^\top D \vec{y}$, with no cross term. (D is diag.)

The columns of P are called the *principal axes* of the quadratic form Q.

We'll see soon how this helps us classify QF and handle optimization problems.