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FRACTAL LAPLACIANS ON THE UNIT INTERVAL

ERIK J. BIRD, SZE-MAN NGAI AND ALEXANDER TEPLYAEV

RÉSUMÉ. Nousétudions les valeurs/fonctions propres du laplacien sur[0, 1] défi-
nies par des mesures positivesµ borńees, continues, supportées par[0, 1] et par la
forme de Dirichlet classique sur[0, 1]. Nous donnons des preuves simples d’exis-
tence, d’unicit́e, de concavit́e ainsi que des propriét́es des źeros de ces fonctions
propres. Par une récritures deśequations d́efinissant le laplacien comme uneéquation
intégrale de Volterra-Stieltjes, nousétudions les comportements asymptotique des
premìeres valeurs/fonctions propres de Neumann et de Dirichlet, lorsque la mesure
µ varie. Nousétudions les bornes du domaine des valeurs propres, dès queµ
poss̀ede une structure autosimilaire finie post-critique. Lorsqueµ appartientà la
classe des mesures autosimilaires sur[0, 1], nous d́ecrivonsà la fois, la ḿethode des
éléments finis et la ḿethode des approximations par différences, afin d’obtenir des
approximations nuḿeriques des valeurs/fonctions propres. Les fonctions propres
en question, peuvent̂etre consid́eŕees comme des analogues fractals du sinus et
du cosinus de l’analyse de Fourier. Nous notons l’existence d’une sous-suite de
fonctions propres̀a d́ecroissance rapide indexées par les nombres de Fibonacci.

ABSTRACT. We study the eigenvalues and eigenfunctions of the Laplacians on[0, 1]
which are defined by bounded continuous positive measuresµ supported on[0, 1]
and the usual Dirichlet form on[0, 1]. We provide simple proofs of the existence,
uniqueness, concavity, and properties of zeros of the eigenfunctions. By rewriting
the equation defining the Laplacian as a Volterra-Stieltjes integral equation, we
study asymptotic behaviors of the first Neumann and Dirichlet eigenvalues and
eigenfunctions as the measureµ varies. Forµ defined by a class of post critically
finite self-similar structures, we also study asymptotic bounds of the eigenvalues. By
restrictingµ to a class of singular self-similar measures on[0, 1], we describe both the
finite element and the difference approximation methods to approximate numerically
the eigenvalues and eigenfunctions. These eigenfunctions can be considered fractal
analogs of the classical Fourier sine and cosine functions. We note the existence of a
subsequence of rapidly decaying eigenfunctions that are numbered by the Fibonacci
numbers.

1. Introduction. Letµ be a continuous positive finite measure with support supp(µ) =
[0, 1]. In particular we are interested in the case whenµ is a self-similar (fractal) measure.
In this paper we study the eigenvaluesλ and eigenfunctionsu of the following equation:

(1.1)
∫ 1

0
u′(x)v′(x) dx = λ

∫ 1

0
u(x)v(x) dµ(x),

Reçu le 9 septembre 2003 et, sous forme définitive, le 13 octobre 2003.
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2 Fractal Laplacians on the Unit Interval

where the equality holds for allv ∈ C∞
0 (0, 1), the space of all infinitely differentiable

functions with support contained in(0, 1). We impose either the Neumann boundary
conditions

(1.2) u′(0) = u′(1) = 0

or the Dirichlet boundary conditions

(1.3) u(0) = u(1) = 0.

The left side of (1.1) is the standard Dirichlet form

E(u, v) :=
∫ 1

0
u′(x)v′(x) dx.

In the Neumann case, the domain ofE , Dom(E), is the Sobolev spaceW 1,2(0, 1) of
functionsu whose distributional derivativeu′ belongs toL2((0, 1), dx). Such functions
must be continuous and representable as

u(x) = c +
∫ x

0
g(y) dy, x ∈ [0, 1],

whereg ∈ L2((0, 1), dx) andu′ = g. In the Dirichlet case,

Dom(E) = W 1,2
0 (0, 1) :=

{
u ∈ W 1,2(0, 1) : u(0) = u(1) = 0

}
.

(See, e.g., [D].)
Throughout this paper we let‖ · ‖2 and ‖ · ‖∞ denote theL2((0, 1), µ) and the

µ-essential supremum norms, respectively.
SinceC∞

0 (0, 1) ⊆ W 1,2
0 ⊆ W 1,2 ⊆ L2((0, 1), µ), Dom(E) is dense inL2((0, 1), µ).

Moreover, the embeddingsW 1,2
0 ↪→ L2((0, 1), µ) andW 1,2 ↪→ L2((0, 1), µ) are com-

pact. Therefore, the quadratic formE is closed. Hence, equation (1.1) defines a Laplacian
∆µu as a distribution such that

∫ 1

0
u′v′ dx =

∫ 1

0
(−∆µu)v dµ

for all v ∈ C∞
0 (0, 1). We can rewrite (1.1) as

−∆µu = λu.

In general, the Laplacian∆µ with domain Dom(∆µ) is defined as follows: for a
continuousf andu ∈ Dom(∆µ) we have

(1.4) ∆µu = f if and only if u′′ = fdµ

in the distributional sense (Theorem 2.1). The domains of the Dirichlet Laplacian∆D
µ

and Neumann Laplacian∆N
µ will be characterized in Section 3. We remark that Freiberg
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[F1, F2, F3] has recently developed a theory for a general class of Laplace operators
that includes the Laplacian∆µ.

One of the main motivations for studying equation (1.1) comes from the study of
similar problems on the Sierpinski gasket. In [DSV], eigenfunctions are computed
explicitly. However, because of the high multiplicities, no effective algorithm has been
found for the expansion of an arbitrary function in terms of the eigenfunctions. The
equation we consider here provides a simpler model on a self-similar set.

In Section 2 we give a concise summary of the fundamental properties of the eigen-
values and eigenfunctions. We show thatu andu′ are continuous and they have only
isolated zeros (unlessu is constant). Moreover, the Dirichlet and Neumann eigenvalues
are simple. We also study the Sturm-Liouville theory and show that annth Neumann
eigenfunction hasn zeros and its derivative hasn + 1 zeros, while thenth Dirichlet
eigenfunction hasn + 1 zeros and its derivative hasn zeros. Furthermore, for each
eigenfunctionu the zeros ofu and u′ alternate, and the zeros of thenth Dirichlet
and Neumann eigenfunctions alternate. By converting equation (1.1) into an integral
equation (see Section 3), results in this section can be derived from classical known re-
sults (see Atkinson [A]). For completeness, we include short proofs of the fundamental
results.

Equation (1.1) can be written as a Volterra-Stieltjes integral equation (see Section 3):

(1.5) u(x) = u(0) + u′(0)x− λ

∫ x

0
(x− y)u(y) dµ(y) for all 0≤ x ≤ 1.

We interpretu′(0) andu′(1) as the left-hand and right-hand derivatives, respectively. It
is known (see [A]) that a solutionu of (1.5) is differentiable and the derivative satisfies

(1.6) u′(x) = u′(0)− λ

∫ x

0
u(y) dµ(y) for all 0≤ x ≤ 1.

Conversely, any solution of (1.6) is also a solution of (1.5) (see Theorem 3.1).
In view of equations (1.5) and (1.6), equation (1.1) is a generalization of the classical

Sturm-Liouville equation

(1.7) u′′(x) = −λg(x)u(x) for all 0≤ x ≤ 1,

whereu′′ is assumed to exist at everyx ∈ [0, 1] andg ∈ L1[0, 1]. If we define, for all
Borel subsetsE ⊆ [0, 1],

µ(E) =
∫

E
g(x) dx,

then, sinceu′ is differentiable at everyx ∈ [0, 1] andgu ∈ L1[0, 1], we have

u′(x)− u′(0) =
∫ x

0
u′′(y) dy = −λ

∫ x

0
g(y)u(y) dy = −λ

∫ x

0
u(y) dµ(y).

Hence,u satisfies (1.6). Conversely, ifµ is absolutely continuous with Radon-Nikodym
derivativeg ∈ L1[0, 1], then a solutionu of (1.6) satisfies

u′(x) = u′(0)− λ

∫ x

0
g(y)u(y) dy
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with gu ∈ L1[0, 1]. Henceu′′(x) = −λg(x)u(x) for a.e.x ∈ [0, 1]. Thus,u satisfies
(1.7). In the special caseg(x) = 1 on [0, 1], solutions of (1.7) are the classical Fourier
sine and cosine functions. Thus, forµ singular, solutions of (1.1) are the eigenfunctions
of a vibrating string with end-points at 0, 1 and with a mass distribution given by the
singular measureµ.

For the sine and cosine functions, the regions bounded by these functions and the
interval on thex-axis between two successive zeros is convex. By using equations (1.5)
and (1.6) we can easily obtain similar concavity results for the eigenfunctions of (1.1)
(see Propositions 3.3 and 3.4).

We are interested in how eigenvaluesλ and eigenfunctionsu in equation (1.1) are
affected by varying the measureµ. Assume{µp : 1 < p < 1} is a family of measures
such that for each fixedc ∈ (0, 1), µp[0, c] → 0 asp → 1. A typical example for such
a class is provided by the iterated function system consisting of two similitudes

S1(x) = r1x, S2(x) = r2x + (1− r2), 0 < r1, r2 < 1,

and withµ = µp defined by

µ = pµ ◦ S−1
1 + (1− p)µ ◦ S−1

2 , 0 < p < 1.

Let z1 = z1(p) be the zero of the first Neumann eigenfunctionup, and letλp be the
first eigenvalue. In Section 4 we prove thatz1(p) → 1 asp → 0 and thatλp → ∞
as p → 0. If we assume in addition that the first Neumann eigenfunctionsup are
normalized such that‖up‖2 = 1 for all p ∈ (0, 1), then we show that‖u′p‖∞ → ∞
as p → 0. For the Dirichlet case, we show that the results limp→0 λp = ∞ and
limp→0 ‖u′p‖∞ = ∞ also hold for the first eigenvalue and (normalized) eigenfunction.
However, ifz2 = z2(p) ∈ (0, 1) is such thatup(z2) is the maximum of the first Dirichlet
eigenfunction, we show in Example 4.7 that the analog limp→0 up(z2) = 1 need not
hold.

Although many results concerning equations (1.2) and (1.3) have been obtained for
general measuresµ (see [A]), the restriction ofµ to self-similar measures allows us to
obtain good numerical approximations to the solutions and enables us to observe some
interesting phenomena. To study the asymptotics of the eigenvalues, we restrictµ to
be a self-similar measure defined by apost-critically finite(see [K1, K2]) self-similar
structure. Let

(1.8) S1(x) = rx, S2(x) = rx + (1− r), 0 < r < 1.

Let µ be the self-similar measure satisfying the identity

(1.9) µ = pµ ◦ S−1
1 + (1− p)µ ◦ S−1

2 , 0 < p < 1.

Thespectral dimension(see [K1]),ds, for thisµ is given by

(pr)ds/2 +
(
(1− p)(1− r)

)ds/2 = 1.

Let R,Q,Z,N denote respectively the sets of reals, rationals, integers, and natural
numbers. Theeigenvalue counting functionρ : R→ N is defined as

ρ(x) = #{λ : λ is an eigenvalue andλ ≤ x}.
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Let λn be thenth Dirichlet or Neumann eigenvalue. In Section 5 we study some
asymptotic properties ofρ(λn) andλn.

In Section 6 we discuss numerical solutions to equation (1.1). To approximate the
eigenvalues and eigenfunctions numerically, we further restrictµ to be a self-similar
measure defined by the iterated function system

(1.10) S1(x) = 1
2 x, S2(x) = 1

2 x + 1
2.

By making use of the identity
∫ 1

0
f(x) dµ = p

∫ 1

0
f(S1x) dµ + (1− p)

∫ 1

0
f(S2x) dµ,

we can solve equation (1.1) foru, v ∈ Sm, the space of bounded continuous piecewise
linear functions with knots atk/2m, k = 0, 1, . . . , 2m, wherem is any positive integer.
This allows us to set up a generalized eigenvalue system

Mmu = λNmu,

with the solutionsu approximating the Neumann eigenfunctionsu. In addition to the
finite element method above, we also describe the difference approximation method
(see Section 6). We show graphs of some approximate eigenfunctions. We observe that
there exists a subsequence of rapidly decaying eigenfunctions that are numbered by the
Fibonacci numbers.

2. Fundamental properties of solutions.In this section we summarize the basic exis-
tence and uniqueness results and study the oscillation properties of the eigenfunctions.

Theorem 2.1. Let µ be a positive bounded continuous measure on[0, 1] such that
supp(µ) = [0, 1]. Then the following hold.

(a) The initial value problem




−∆µu = λu

u(y) = α

u′(y) = β

has a unique solution. In particular, ifu(y) = u′(y) = 0 thenu(x) ≡ 0.
(b) −∆µu = λu if and only if −u′′ = λµu in the sense of generalized functions.
(c) u is continuously differentiable;u′ is differentiable a.e. on[0, 1].
(d) u andu′ have only isolated zeros (unlessu ≡ constant).

Proof. (a) In Section 3 we will prove that this initial value problem is equivalent to an
integral equation, for which the existence and uniqueness of solutions is known (see,
for example, [A]).

There is a different approach that is more relevant to analysis on fractals (see [K2]
for more details). We define Green’s function for the interval[0, 1] by

g(x, y) =
{

x(1− y) if x ≤ y

y(1− x) if x ≥ y
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and Green’s operator by

Gµf(x) =
∫ 1

0
g(x, y)f(y)dµ(y).

For any continuous functionf , we have thatGµf is Lipschitz continuous, has zero
boundary values and satisfies

−∆µGµf = f.

For any subinterval[t, t + δ] we can define Green’s operatorGµ,[t,t+δ] by

Gµ,[t,t+δ]f(x) = δ2
∫ t+δ

t
g(x−t

δ , y−t
δ )f(y)dµ(y).

If δ is small enough (depending onλ), thenu has a unique representation on[t, t + δ] as

(2.1) u =
∞∑

n=0

(
λGµ,[t,t+δ]

)n
h

whereh(x) is a linear function such thath(t) = u(t), h(t + δ) = u(t + δ).
Let u1 be the solution with boundary values{0, 1} on [t, t + δ]. If δ is small enough

(depending onλ), thenu′1(t) 6= 0. This implies thatu(t) = u′(t) = 0 if and only if
u ≡ 0 on[t, t + δ]. Hence we have uniqueness of the initial value problem on[t, t + δ].
It is easy to extend it to[0, 1] by dividing into small subintervals.

(b) We have that−∆µu = λu if and only if
∫ 1

0 u′v′dx = λ
∫ 1

0 uvdµ for any test
function, which means−u′′ = λµu as generalized functions.

(c) The equationu′′ = zµu implies thatu′ is of bounded variation and henceu′ is
differentiable a.e. on[0, 1].

(d) If δ is small enough, then on an interval[s, s + δ] the Dirichlet and the non-zero
Neumann eigenvalues are larger than|λ| (to see this, estimateGµ,[t,t+δ]). Henceu and
u′ can have at most one zero each in[s, s + δ]. ¤
Proposition 2.2. Let−u′′ = λµu. Then

(2.2)
( u

u′
)′

= 1 +λµ
( u

u′
)2

(2.3)
(

u′

u

)′
= −λµ−

(
u′

u

)2

as generalized functions.

Proof. Direct computation. ¤
Proposition 2.3. (Comparison of solutions)Let −u′′i = λiui, ui 6≡ 0, i = 1, 2 and
suppose thata2 ≤ a1, 0≤ λ1 ≤ λ2,

bi = min{1, {s > ai : ui(s) = 0}}
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ci = min{1, {s > ai : u′i(s) = 0}}.
Then

(a) If u1(a1) = u2(a2) = 0, thenc2 ≤ c1.
(b) If u′1(a1) = u′2(a2) = 0, thenb2 ≤ b1.
(c) If λ1 = λ2 > 0, a1 = a2 = 0, u1(0) = 0, u′1(0) 6= 0, u′2(0) = 0, u2(0) 6= 0,

thenb2 ≤ b1, c2 ≥ c1.

Proof. (a) According to (2.2),ui/u′i is an increasing function on[ai, ci) and so

(
u1

u′1

)′
≤

(
u2

u′2

)′

on [a1, c1) ∩ [a2, c2), as on the illustration below.

u2
u′2

u1
u′1

a2 a1 c2 c1

OO

//

Statements (b) and (c) are proved similarly by (2.2) and (2.3).¤
Proposition 2.4. Fix the initial conditionsu(0), u′(0) and letu′′ = −λµu. Then

(a) Zeros ofu andu′ move to the left asλ increases.

(b) f(λ) =
u(1)
u′(1)

is an increasing function on each interval ofλ whereu′(1) 6= 0.

(c) g(λ) =
u′(1)
u(1)

is a decreasing function on each interval ofλ whereu(1) 6= 0.

Proof. By Proposition 2.3 (consider the intervals on which neitheru noru′ have zeros.
These intervals move to the left asλ increases). ¤
Theorem 2.5. Assuming the same hypotheses as in Theorem 2.1, the following hold:

(a) Thenth Neumann eigenfunction hasn zeros and its derivative hasn + 1 zeros.
(b) Thenth Dirichlet eigenfunction hasn + 1 zeros and its derivative hasn zeros.
(c) For each eigenfunctionu, zeros ofu andu′ alternate.
(d) Zeros ofnth Dirichlet and Neumann eigenfunctions alternate.
(e) There exists a complete orthonormal basis consisting of the Dirichlet (Neumann)

eigenfunctions. The Dirichlet (Neumann) eigenvaluesλn are simple. Moreover,
limn→∞ λn = ∞.

Proof. Parts (a) to (d) follows from Propositions 2.3 and 2.4 (consideru(1)/u′(1) and
u′(1)/u(1) asλ increases).
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(e) The eigenfunctions form a complete orthonormal set because the Laplacian has
a compact resolvent, which is Green’s operator defined in the proof of Theorem 2.1.
The eigenvalues tend to infinity by the same reason. Green’s operator is compact
because its kernel, Green’s functiong(x, y) defined in the proof of Theorem 2.1, is
continuous (see also [K2, Theorem B.1.13]). Another approach can be found in [A].
The simplicity of the eigenvalues follows from the uniqueness of the initial value
problem in Theorem 2.1 (a).¤
Remark.If the support ofµ is smaller than[0, 1], then the results of this section are
still true with the following modification. A problem is thatu is linear on the intervals
that does not intersect the support ofµ. The uniqueness implies thatu cannot have
an interval of zero values. Howeveru′ can have an interval of zero values, and in the
results above such an interval should be taken as a single “zero”.

3. Volterra-Stieltjes integral equation and concavity of solutions.Assuming thatµ
is a bounded continuous positive measure with supp(µ) ⊆ [0, 1], we will show that
(1.1) is equivalent to the following Volterra-Stieltjes integral equation (see [A, Chapter
11]):

(3.1) u(x) = u(0) + u′(0)x− λ

∫ x

0
(x− y)u(y) dµ(y), 0≤ x ≤ 1.

It is known that a solutionu of (3.1) is differentiable and the derivative satisfies

(3.2) u′(x) = u′(0)− λ

∫ x

0
u(y) dµ(y), 0≤ x ≤ 1.

(See [A, Theorem 11.2.2].) The converse is also true. There is also a Green’s function
representation ofu, essentially given in [S2], as follows

(3.3) u(x) = u(0) +
(
u(1)− u(0)

)
x + λ

∫ 1

0
g(x, y)u(y) dµ(y), 0≤ x ≤ 1,

whereg(x, y) is as defined in Section 2. We summarize these in the following theorem
and give a brief proof for completeness; details in a more general setting can be found
in [F1] and [F2].

Theorem 3.1. Letµ be a bounded continuous positive Borel measure withsupp(µ) ⊆
[0, 1]. Then equations(1.1), (3.1), (3.2) and(3.3) are equivalent.

Proof. Since the implication from (3.1) to (3.2) is known, we will show (3.2) implies
(3.1). Letu be a solution of (3.2). Sinceu is continuous andµ is bounded, it follows
from Fubini’s Theorem thatu′(x) ∈ L1[0, 1]. By using Fubini’s Theorem again,

u(x)−u(0) =
∫ x

0
u′(s) ds =

∫ x

0

(
u′(0)− λ

∫ s

0
u(y) dµ(y)

)
ds

= u′(0)x− λ

∫ x

0

∫ x

y
u(y) dsdµ(y) = u′(0)x− λ

∫ x

0
(x− y)u(y) dµ(y).

Henceu satisfies (3.1).
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To see that (1.1) and (3.2) are equivalent, letu be a solution of (3.2). Then for any
v ∈ C∞

0 (0, 1), we have

∫ 1

0
u′v′ dx =

∫ 1

0

(
u′(0)− λ

∫ x

0
u(y) dµ(y)

)
v′(x) dx

= u′(0)
∫ 1

0
v′(x) dx− λ

∫ 1

0

∫ x

0
u(y)v′(x) dµ(y) dx

= −λ

∫ 1

0

∫ 1

y
u(y)v′(x) dx dµ(y) (Fubini’s Theorem)

= λ

∫ 1

0
u(y)v(y) dµ(y).

Hence,u(x) satisfies (1.1). The above also proves the converse.
Lastly, by using the definition ofg(x, y), we can rewrite equation (3.3) as

u(x) = u(0) +
(
u(1)− u(0)

)
x + x

∫ 1

0
(1− y)u(y) dµ(y)− λ

∫ x

0
(x− y)u(y) dµ(y).

It is easy to see that this is equivalent to (3.1).¤

The following corollary follows from the proof of Theorem 3.1.

Corollary 3.2. Assume the same hypotheses onµ as in Theorem 3.1, and letu ∈
L2([0, 1], µ). Let f be a continuous function on[0, 1]. Then the following conditions
are equivalent.

(a) For all v ∈ C∞
0 (0, 1),

∫ 1

0
u′v′ dx =

∫ 1

0
vf dµ.

(b) u(x) = u(0) + u′(0)x +
∫ x

0
(x− y)f(y) dµ(y), 0≤ x ≤ 1.

(c) u′(x) = u′(0) +
∫ x

0
f(y) dµ(y), 0≤ x ≤ 1.

(d) u(x) = u(0) +
(
u(1)− u(0)

)
x−

∫ 1

0
g(x, y)f(y) dµ(y), 0≤ x ≤ 1.

Let∆D
µ and∆N

µ denote the Laplacian∆µ under the Dirichlet and Neumann boundary
conditions respectively. Then their domains can be characterized, using Corollary 3.2,
as follows.u ∈ Dom(∆D

µ ) (resp.u ∈ Dom(∆N
µ )) if and only ifu(0) = u(1) = 0 (resp.

u′(0) = u′(1) = 0) and there exists a continuous functionf on [0, 1] (f = ∆D
µ (u) or

f = ∆N
µ (u) respectively) satisfying any of the conditions in Corollary 3.2.

We now turn to concavity of the eigenfunctions. Although these results can be proved
using the approach of Section 2, here we present another short proof, which is based in
the use of integral equations.
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Proposition 3.3. Letµ be a bounded continuous positive Borel measure withsupp(µ) ⊆
[0, 1], and letu be annth Neumann eigenfunction of (3.1) satisfyingu(0) > 0. Let
z1 < z2 < · · · < zn be the zeros ofu and writez0 = 0 and zn+1 = 1. Thenu′ is
decreasing on[zi, zi+1] for eveni (0 ≤ i < n + 1) andu′ is increasing on[zi, zi+1] for
oddi (0≤ i < n + 1). Consequently,

(a) If i (0≤ i < n + 1) is even, thenu′ has a local minimum atzi andu is concave
downward on[zi, zi+1].

(b) If i (0 < i < n + 1) is odd, thenu′ has a local maximum atzi andu is concave
upward on[zi, zi+1].

Proof. Let i (0≤ i < n + 1) be even and letzi < x1 < x2 < zi+1. Sinceu(x) > 0 on
(zi, zi+1), by using (3.2) we have

u′(x1) = −λ

∫ x1

0
u(y) dµ(y) = −λ

∫ zi

0
u(y) dµ(y)− λ

∫ x1

zi

u(y) dµ(y)

≥ −λ

∫ zi

0
u(y) dµ(y)− λ

∫ x2

zi

u(y) dµ(y) = −λ

∫ x2

0
u(y) dµ(y) = u′(x2).

Henceu′ is decreasing on[zi, zi+1].
Now let i (0 < i < n + 1) be odd and letzi < x1 < x2 < zi+1. Sinceu(y) < 0 on

(zi, zi+1), a similar argument shows thatu′(x1) ≤ u′(x2). Thereforeu′ is increasing on
[zi, zi+1]. Consequences (a) and (b) follow directly from these results.¤

Analogous results hold for Dirichlet eigenfunctions.

Proposition 3.4. Let µ be a bounded continuous positive measure withsupp(µ) ⊆
[0, 1] and letu be annth Dirichlet eigenfunction of (3.1) satisfyingu′(0+) > 0. Let
0 = z0 < z1 < z2 < · · · < zn = 1 be the zeros ofu. Thenu′ is increasing on[zi, zi+1]
for eveni (0 ≤ i < n) and u′ is decreasing on[zi, zi+1] for odd i (0 ≤ i < n).
Consequently,

(a) If i (0 ≤ i < n) is even, thenu′ has a local maximum atzi andu is concave
downward on[zi, zi+1].

(b) If i (0 < i < n) is odd, thenu′ has a local minimum atzi andu is concave
upward on[zi, zi+1].

Proof. Useu′(x) = u′(0) − ∫ x
0 u(y) dy instead ofu′(x) = − ∫ x

0 u(y) dy and use the
same argument as in the proof of Proposition 3.3.¤

4. The first eigenvalues and eigenfunctions.In this section we study behaviors of the
eigenfunctions and eigenvalues as the measure varies. We will focus on properties of the
first Dirichlet and (non-zero) Neumann eigenvalues and the associated eigenfunctions.

We will restrict our attention to families{µp : 0 < p < 1} of bounded continuous
measures satisfying the condition that for any fixc ∈ (0, 1),

µp[0, c] → 0 as p → 0.
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An example of such a family is provided by self-similar measures defined by an
iterated function system of two similitudes of the form

S1(x) = r1x, S2(x) = r2x + (1− r2), 0 < r1, r2 < 1.

Let µ be the self-similar measure satisfying the identity

(4.1) µ = pµ ◦ S−1
1 + (1− p)µ ◦ S−1

2 , 0 < p < 1.

Note thatµ depends onp.

Proposition 4.1. Let µ = µp be defined as in(4.1). Then for any fixedc ∈ (0, 1),
µ[0, c] → 0 asp → 0.

Proof. Applying (4.1), we get

µ[0, c] = pµ[0, r−1
1 c] + (1− p)µ[−(1− r2)/r2, c/r2 − (1− r2)/r2]

≤ p + (1− p)µ[0, c/r2 − (1− r2)/r2].

Definec0 = c, c1 = c0/r2−(1−r2)/r2, and in general defineci+1 = ci/r2−(1−r2)/r2.
Then by applying the above calculations repeatedly, we have

µ[0, c] ≤ p + p(1− p) + p(1− p)2 + · · · + p(1− p)i + (1− p)i+1µ[0, ci+1].

It is easy to see thatci − ci+1 = (1− r2)/ri+1
2 (1− c0). In fact,

ci − ci+1 =
ci−1 − ci

r2
= · · · = c0 − c1

r2
=

1− r2

ri+1
2

(1− c0).

Consequently there must exist someio such thatcio+1 < 0 and therefore

µ[0, c] ≤ p

(
1− (1− p)io+1

1− (1− p)

)
= 1− (1− p)io+1,

which tends to 0 asp → 0. ¤

Let λ denote the first Dirichlet or nonzero Neumann eigenvalue and letu denote a
corresponding eigenfunction. According to Theorem 2.1 (e),λ is a simple eigenvalue
and therefore all associated eigenfunctions are scalar multiples of each other. Moreover,
according to Theorem 2.5 (a), the first Neumann eigenfunctions have a unique common
zero in (0, 1), which we will denote byz1. Figure 1 shows the behavior of the first
Neumann eigenfunctions as the measure varies.

Note that equation (3.2) and the boundary conditionu′(1) = 0 together imply that∫ 1
0 u dµ = 0 and consequently

(4.2)
∫ z1

0
u dµ =

∫ 1

z1

|u| dµ.
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Figure 1. Approximate firstL2(µ)-normalized Neumann eigenfunctionsu
and eigenvaluesλ asp varies, whereµ is defined by (4.1) withr = 1/2

Theorem 4.2. Let {µp : 0 < p < 1} be a family of continuous probability measures
with supp(µp) ⊆ [0, 1] such that for any fixedc ∈ (0, 1), µp[0, c] → 0 asp → 0. Let
z1 = z1(p) be the common zero of the Neumann eigenfunctions associated to the first
eigenvalue. Thenz1 → 1 asp → 0.

Proof. For eachp, we letu = up be the first eigenfunction satisfyingu(0) = 1 and
hence

(4.3) u(x) = 1− λ

∫ x

0
(x− y)u(y) dµ(y).

Supposez1(p) does not tend to 0 asp → 0. Then there would exist 0< b < 1 and
a sequence{pk} such thatpk → 0 andz1 = z1(pk) ≤ b for all k. We notice by
assumptions that

∫ z1

0
upk

dµpk
≤

∫ b

0
1dµpk

= µpk
[0, b] → 0 as k →∞.

Hence by (4.2),

(4.4)
∫ 1

z1

|upk
| dµpk

=
∫ z1

0
upk

dµpk
→ 0 as k →∞.
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Sinceµpk
[z1, 1] ≥ µpk

[b, 1] → 1 ask →∞, (4.4) implies that for allx ∈ [z1, 1],

(4.5) 0≥ upk
(x) ≥ upk

(1) → 0 as k →∞,

for otherwise, the concavity ofupk
on [z1, 1] would force the integral on the left-hand

side of (4.4) to be greater than some positive constant independent ofk.
Let c = (b + 1)/2. Then the concavity ofupk

and (4.5) imply that

(4.6) |u′pk
(c)| ≤ |upk

(c)|
c− z1

→ 0 as k →∞.

We will show that (4.6) is impossible. By Proposition 3.3,|u′pk
| is increasing on

[0, z1]. By applying the Mean-Value Theorem to this interval, we get

(4.7)
∣∣∣u′pk

(z1)
∣∣∣ ≥ 1

z1
≥ 1

b
> 0.

Also, by using (4.2),

∣∣∣u′pk
(z1)

∣∣∣ = λpk

∫ z1

0
upk

(y) dµpk
(y) = λpk

∫ 1

z1

|upk
(y)| dµpk

(y)

= λpk

∫ c

z1

|upk
(y)| dµpk

(y) + λpk

∫ 1

c
|upk

(y)| dµpk
(y),

with the second term dominating. In fact,
∫ c
z1
|upk

(y)| dµpk
(y)

∫ 1
c |upk

(y)| dµpk
(y)

≤ |upk
(c)|µpk

[z1, c]
|upk

(c)|µpk
[c, 1]

→ 0 as k →∞.

Combining these observations with (4.7) leads to

lim
k→∞

∣∣u′pk
(c)

∣∣ = lim
k→∞

λpk

∫ 1

c

∣∣upk
(y)

∣∣ dµpk
(y) = lim

k→∞

∣∣∣u′pk
(z1)

∣∣∣ ≥ 1
b
,

contradicting (4.6). The first equality is because for anyp

u′p(c) = −λp

∫ c

0
up(y) dµp(y) = −λp

∫ z1

0
up(y) dµp(y)− λp

∫ c

z1

up(y) dµp(y)

= −λp

∫ 1

z1

|up(y)| dµp(y)− λp

∫ c

z1

up(y) dµp(y) = −λp

∫ 1

c
|up(y)| dµp(y).

This proves the result.¤
Theorem 4.3. Assume the same hypotheses as in Theorem 4.2 and letλ = λp be the
first Neumann eigenvalue of the corresponding equation (3.1). Thenλ →∞ asp → 0.

Proof. We assume, as in the proof of Theorem 4.2, that for allp, up are chosen so that
up(0) = 1 and (4.3) holds. We will prove the assertion by contradiction. Suppose there
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exists a sequence{pk} with pk → 0 such thatλpk
is bounded by someM > 0. Then,

by (3.2), for allx ∈ [0, z1],

(4.8) |u′pk
(x)| ≤ M · 1 · µpk

[0, x] ≤ M.

(The first inequality is becauseu(x) ≤ u(0) = 1 on [0, z1].) Now, fix any numberN
sufficiently large so thatN > 2M and 1− 1/N > 0. Then for anyx ∈ [0, 1− 1/N ],

∣∣u′pk
(x)

∣∣ ≤ Mµpk
[0, x] ≤ Mµpk

[
0, 1− 1

N

]
→ 0 as k →∞.

Hence,upk
→ 1 uniformly on[0, 1− 1/N ] ask →∞. In particular, there exists some

ko ∈ N such that for allk ≥ ko,

upk
(x) >

1
2

on
[
0, 1− 1

N

]
.

Sinceu(z1) = 0 andz1 < 1, the Mean-Value Theorem implies that there exists some
ξpk

∈ [1− 1/N, z1] such that

∣∣u′(ξpk
)
∣∣ ≥ 1/2

1/N
=

N

2
> M,

contradicting (4.8). Thusλp →∞ asp → 0. ¤
Theorem 4.4. Assume the same hypotheses as in Theorem 4.2 and assume in addition
that‖up‖2 = 1. Then

‖u′p‖∞ =
∣∣u′p(z1)

∣∣ = λ

∫ z1

0
up(y) dµ(y) = λ

∫ 1

z1

∣∣up(y)
∣∣ dµp(y) →∞ as p → 0.

Proof. We prove by contradiction. Suppose there exists a subsequence{upk
}, with

pk → 0 ask → ∞, and a positive constantC such that|u′pk
(z1)| ≤ C for all k.

Obviously, this can happen only ifupk
(1) → 0 ask →∞. Hence, for allk sufficiently

large we have

(4.9)
∫ 1

z1

upk
(y)2 dµpk

(y) ≤
∫ 1

z1

∣∣upk
(y)

∣∣ dµpk
(y) → 0 as k →∞.

By assumption,

(4.10)
∫ z1

0
upk

(y)2 dµpk
(y) +

∫ 1

z1

upk
(y)2 dµpk

(y) = 1.

Therefore by (4.2), (4.9), and (4.10) we have
∫ z1

0
upk

(y) dµpk
(y) →0 as k →∞(4.11)

∫ z1

0
upk

(y)2 dµpk
(y) →1 as k →∞.(4.12)
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Let x1 = x1(pk) ∈ [0, z1] be the unique number such thatupk
(x1) = 1. Such anx1

exists; otherwise we would haveupk
(0) ≤ 1 and therefore

∫ z1

0
upk

(y)2 dµpk
(y) ≤

∫ z1

0
upk

(y) dµpk
(y) → 0 as k →∞,

contradicting (4.12). Consider the following two cases.
Case 1.x1 → z1 ask → ∞. In this case we have limk→∞ x1(pk) = limk→∞ z1 = 1
and therefore limk→∞ |u′pk

(z1)| = ∞, a contradiction.
Case 2.x1 6→ z1 ask →∞. By taking a subsequence if necessary we may assume that
x1(pk) ≤ c < 1 for somec and for allpk. In this case,

∫ z1

x1

upk
(y)2 dµpk

(y) ≤
∫ z1

x1

upk
(y) dµpk

(y) → 0 as k →∞ (by (4.11)).

This forces
∫ x1

0
upk

(y)2 dµpk
(y) → 1 as k →∞ (by (4.12)).

But µpk
[0, x1] ≤ µpk

[0, c] → 0 ask → ∞, and thereforeupk
(0) → ∞, forcing

|u′pk
(ξpk

)| → ∞ for someξpk
∈ [0, x1]. Consequently, limk→∞ |u′pk

(z1)| = ∞ because
u′pk

(x) is decreasing on[0, z1]. This again contradicts the assumption and the proof is
complete. ¤

We now turn to properties of the first Dirichlet eigenvalues and eigenfunctions.
Figure 2 shows rather striking behavior of the first Dirichlet eigenfunctions as the
measure varies.

Theorem 4.5. Let {µp : 0 < p < 1} be a family of continuous probability measures
with supp(µ) ⊆ [0, 1] such that for any fixedc ∈ (0, 1), µp[0, c] → 0 asp → 0. Letλp

be the first Dirichlet eigenvalue. Thenlimp→0 λp = ∞.

Proof. For 0< p < 1, letup be the first Dirichlet eigenfunction satisfyingu′p(0) = 1.
Then the concavity ofup forces

(4.13) up(x) ≤ 1 for all 0≤ x ≤ 1.

Also, by puttingx = 1 into (3.1), we have

(4.14) λp

∫ 1

0
(1− y)up(y) dµp(y) = 1.

We prove the assertion by contradiction. Suppose there exists a constantC > 0 and
a sequence{pk} such that limk→∞ pk = 0 butλpk

≤ C for all k. By replacing with
a subsequence if necessary, we can assume that there exists a sequence{cpk

} with
0 < cpk

< 1 such that

(4.15) lim
k→∞

cpk
= 1
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Figure 2. Approximate firstL2(µ)-normalized Dirichlet eigenfunctionsu
and eigenvaluesλ asp varies, whereµ is defined by (4.1) withr = 1/2

and

(4.16) µpk
[0, cpk

] ≤ 1
2C

.

Then by (4.13), (4.14) and (4.16),

1 = λpk

∫ cpk

0
(1− y)upk

(y) dµpk
(y) + λpk

∫ 1

cpk

(1− y)upk
(y) dµpk

(y)

≤ λpk
µpk

[0, cpk
] + λpk

(1− cpk
)µpk

[cpk
, 1]

≤ 1
2

+ C(1− cpk
),

which is impossible by (4.15). This contradiction completes the proof.¤
Theorem 4.6. Assume the same hypotheses as in Theorem 4.5 and assume in addition
that each eigenfunctionup satisfiesu′p(0) > 0 and is normalized, i.e.,‖up‖2 = 1. Then

(4.17) lim
p→0

|u′p(1)| = ∞.

Proof. Let ξp be the unique zero ofu′p in (0, 1). The normalization condition‖up‖2 = 1
implies that

(4.18) ‖up‖∞ = up(ξp) ≥ 1.
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We suffices to prove that (4.17) holds for each sequencepk → 0. We prove this by
contradiction. Suppose there exist a sequence{pk} and a positive constantC1 such that
pk → 0 but

(4.19) |u′pk
(1)| ≤ C1 for all k.

If there exists some subsequence{pkj} such thatξpkj
→ 1 or ‖upkj

‖∞ → ∞, then

obviously we would have|u′pkj
(1)| → ∞ (cf. (4.18)), contradicting (4.19). Hence we

will assume there exist positive constantsC2 andC3 such that

ξpk
≤ C2 < 1 and ‖upk

‖∞ ≤ C3 for all k.

Now, for any fixedc ∈ (C2, 1), we have

1 = ‖upk
‖2

2 =
∫ c

0
upk

(y)2 dµpk
(y) +

∫ 1

c
upk

(y)2 dµpk
(y)

= C2
3

∫ c

0

(upk
(y)

C3

)2
dµpk

(y) + C2
3

∫ 1

c

(upk
(y)

C3

)2
dµpk

(y)

≤ C2
3µpk

[0, c] + C2
3

∫ 1

c

upk

C3
dµpk

(y) ≤ C2
3µpk

[0, c] + C3upk
(c).

Consequently, for allk sufficiently large, we have

upk
(c) ≥ 1

2C3
.

This obviously implies that|u′pk
(1)| → ∞, contradicting (4.18) again. This completes

the proof. ¤
Example 4.7. Assume the same hypotheses of Theorem 4.6 and letz2 = z2(p) ∈ (0, 1)
be such thatup(z2) is the maximum of the first Dirichlet eigenfunction. In this example
we describe two situations such that:

(A) lim
p→0

z2(p) =
1
2

and (B) lim
p→0

z2(p) = 1.

Therefore the analog of Theorem 4.2 does not hold for the first Dirichlet eigenfunction.
In fact, one can construct an example such that limp→0 z2(p) = 0.

(A) To simplify computations, instead of the interval[0, 1] we consider the interval
[0, 1 +p2], and the zero boundary conditions are at 0 and at 1 +p2. Clearly, this will not
change the limiting behavior ofz2(p) asp → 0. Let measureµp have a density with
respect to Lebesgue measure that is equal top on [0, 1) and equal to 1/p2 on [1, 1 +p2].
Thisµp is not a probability measure, but again it will not change the limiting behavior of
z2(p) asp → 0. Equation (1.4) or Theorem 2.1(b) implies thatup(x) = C1 sin

(
x
√

λp
)

on the interval[0, 1], andup(x) = C2 sin
(√

λ(1 +p2−x)/p
)

on the interval[1, 1 +p2].
The functionup(x), as well as its derivative, must be continuous atx = 1, which means

C1 sin
(√

λp
)

= C2 sin
(
p
√

λ
)

and C1 p
√

p cos
(√

λp
)

= −C2 cos
(
p
√

λ
)
.
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Thereforeλ is the lowest positive solution of the equation

tan
(√

λp
)

= −p
√

p tan
(
p
√

λ
)
.

If
√

pλ = y, theny is the lowest positive solution of the equation

tan(y) = −p
√

p tan
(
y
√

p
)
.

It is easy to see that limp→0
√

pλ = limp→0 y = π. This implies limp→0 z2(p) = 1
2.

In this example we have limp→0 up(x) = ∞ uniformly on any compact subset of
(0, 1). However, limp→0

(
up(x)/‖up‖∞

)
= sin(πx) uniformly on[0, 1].

(B) Here, in order to simplify computations, we consider the interval[0, 1 + p] instead
of the interval[0, 1], and measureµp that has densityp on [0, 1) and density 1/p
on [1, 1 + p]. The zero boundary conditions are at 0 and at 1 +p. Then we have
up(x) = C1 sin

(
x
√

λp
)

on the interval[0, 1], andup(x) = C2 sin
(√

λ(1+p2−x)/p
)

on the interval[1, 1 +p]. Moreover,

C1 sin
(√

λp
)

= C2 sin
(√

pλ
)

and C1 p cos
(√

λp
)

= −C2 cos
(√

pλ
)
.

Therefore
√

pλ = π
2 and limp→0 z2(p) = 1.

In fact, a simple computation shows that limp→0 up(x) =
√

2 sin(π
2x) uniformly on

any compact subset of[0, 1). In particular, limp→0 ‖up‖∞ = limp→0 up(z2) =
√

2.

(B’) Here we modify example (B) so that limp→0 z2(p) = 1 and limp→0 up(x) =
√

2x
uniformly on any compact subset of[0, 1). We consider the interval[0, 1+

√
p] instead of

the interval[0, 1], and measureµp with densityp on [0, 1) and density 1√
p on [1, 1+

√
p].

The zero boundary conditions are at 0 and at 1 +
√

p. Thenλ is the lowest positive
solution of the equation tan(

√
λp) = −√

p
√

p tan
(√

λ
√

p
)
. It is easy to see that

limp→0
√

λ
√

p = π
2 . This implies limp→0 z2(p) = 1, and also limp→0 up(x) =

√
2x

for 0≤ x < 1.

Example 4.7 shows that under the same hypotheses as in Theorem 4.6, we can have
lim supp→0 ‖up‖∞ = ∞ as well as lim supp→0 ‖up‖∞ < ∞. The same is true for the
first Neumann eigenfunction.

Conjectures 4.8. We conjecture thatlimp→0 ‖up‖∞ = ∞ if µp andup are as in Figures
1 and 2. However, the numerical approximations show that the growth rate is very low.
We also conjecture that in the same situation there is a limitlimp→0 up(x)/‖up‖∞
uniform on any compact subset of[0, 1). Moreover, this limit is a convex nonnegative
piecewise linear function (different in Dirichlet and Neumann cases). In addition, we
conjecture thatlimp→0 z2(p) = 1

2 in the Dirichlet case, andlimp→0 up(1) = 0 in the
Neumann case.

5. Eigenvalues and their asymptotics.We begin by recovering two well-known prop-
erties of the eigenvalues for the Laplacians corresponding to general measures on[0, 1].
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Proposition 5.1. Let µ be a bounded positive continuous measure withsupp(µ) =
[0, 1]. LetλD

n andλN
n denote thenth Dirichlet and Neumann eigenvalues, respectively.

Then

(a) 0≤ λN
n−1 ≤ λD

n ;
(b) The Dirichlet and Neumann eigenvalues are discrete.

Proof. Part (a) follows from the variational formula (see e.g., [D, K2]) becauseW 1,2
0 ⊆

W 1,2
1 . Part (b) follows from Theorem 2.5 (e). The discreteness of the Dirichlet eigen-

values follows from the inequality

∞∑

n=1

1
λ2

n

≤
∫ 1

0

∫ 1

0
g(x, y) dµ(x) dµ(y) < ∞,

a consequence of Bessel’s inequality and the Green’s function representation of the
eigenfunctions (Theorem 3.1). The discreteness of the Neumann eigenvalues follows
by combining this with part (a). ¤

For the rest of this section we restrict our attention to a p.c.f. self-similar structure.
Consider the iterated function system

(5.1) S1(x) = rx, S2(x) = (1− r)x + r, 0 < r < 1,

and letµ be the self-similar measure defined by

(5.2) µ = pµ ◦ S−1
1 + (1− p)µ ◦ S−1

2 , 0 < p < 1.

Recall that thespectral dimension(see [K1]),ds, for thisµ is given by

(5.3) (pr)ds/2 +
(
(1− p)(1− r)

)ds/2 = 1.

Let ρ : R→ N be theeigenvalue counting functiondefined as

ρ(x) = #{λ : λ is an eigenvalue andλ ≤ x}.

Then according to a theorem of Kigami and Lapidus (see [Kl, K1, SV]),ρ(x) is related
to ds as follows:

(i) (Non-arithmetic case) If log(pr)/ log((1−p)(1−r)) ∈ R\Q, then lim
x→∞ρ(x)/xds/2

exists and is positive and finite.
(ii) (Arithmetic case) On the other hand, suppose log(pr)/ log((1−p)(1−r)) ∈ Q

and supposeT > 0 is the generator of the group(log(pr)/2)Z + (log((1−
p)(1− r))/2)Z (i.e.TZ equals the group). Then

ρ(x) =
(

G
( logx

2

)
+ o(1)

)
xds/2,

whereG is a non-zero bounded periodic function of periodT .

Using the above result we can prove
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Proposition 5.2. Fix 0 < p < 1 and letds be the spectral dimension of the measure
µ in (5.2). Letρ be the eigenvalue counting function for the Laplacian defined in (1.1)
with the Dirichlet or Neumann boundary condition. Then

(a) lim
n→∞

ρ(prλn)
ρ(λn)

= (pr)ds/2.

(b) lim
n→∞

ρ
(
(1− p)(1− r)λn

)

ρ(λn)
=

(
(1− p)(1− r)

)ds/2
.

Proof. We only prove (a); the proof of (b) is similar. We first consider the non-arithmetic
case. By (i) above and the fact that limn→∞ λn = ∞ (Theorem 2.5 (e)), we have

ρ(prλn)
ρ(λn)

=
ρ(prλn)(prλn)−ds/2(pr)ds/2

ρ(λn)λ−ds/2
n

→ (pr)ds/2 as n →∞.

For the arithmetic case, by using (ii) above, we have

ρ(prλn)
ρ(λn)

=

(
G

(
1
2 log(prλn)

)
+o(1)

)
(prλn)ds/2

(
G

(
1
2 log(λn)

)
+o(1)

)
λ

ds/2
n

=

(
G

(
1
2 log(λn)

)
+o(1)

)
(prλn)ds/2

(
G

(
1
2 log(λn)

)
+o(1)

)
λ

ds/2
n

.

The last equality follows from the periodicity ofG, because log(pr)/2 = kT for some
k ∈ Z. Againρ(prλn)/ρ(λn) → (pr)ds/2 asn →∞. ¤
Remark. limn→∞ ρ(prλn)/ρ(λn) (resp. limn→∞ ρ((1− p)(1− r)λn)/ρ(λn)) is the
asymptotic ratio of the number of zeros of an eigenfunction in[0, r] (resp.[r, 1]) to the
number of zeros in[0, 1]. In the caser = 1/2, it is observed that if this ratio is

equal toα2, whereα = (
√

5 − 1)/2 be the reciprocal of the golden ratio, then
there exists a subsequence of rapidly decaying Neumann eigenfunctions. To find the
corresponding value ofp, we set the result in Proposition 5.2 equal toα2 to get

(5.4)
(p

2

)ds/2
= α2.

(5.3) then implies that

(5.5)
(1− p

2

)ds/2
= 1− α2 = α.

Taking logarithms on both sides of (5.4) and (5.5) and dividing, we get

log(p/2)
log((1− p)/2)

= 2 ⇒ p = 2−
√

3.

The graphs in Section 6 are plotted with this value ofp. See Figures 3 and 4.

Notation. Given two real functionsf andg, we denote by

f(x) ∼ g(x) as x →∞
if there exist two constantsC1, C2 > 0 such thatC1g(x) ≤ f(x) ≤ C2g(x) for all
sufficiently largex. Similarly, if {an}, {bn} are two sequences, then

an ∼ bn as n →∞
means that there exist two positive constantsC1, C2 such thatC1bn ≤ an ≤ C2bn for
all sufficiently largen.
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Proposition 5.3. Fix 0 < p < 1 and letµ = µp be a self-similar measure defined by
(5.2), let ds denote the spectral dimension ofµ, and letλn denote thenth Dirichlet or
Neumann eigenvalue. Then

λn ∼ n2/ds .

Proof. First, consider the non-arithmetic case. From the result in [KL] again,

lim
x→∞

ρ(x)
xds/2

= L for some 0< L < ∞.

In particular, for allx sufficiently large, we have

L− ε ≤ ρ(x)
xds/2

≤ L + ε,

whereε > 0 is small enough so thatL− ε > 0. This implies that for alln sufficiently
large,

(5.6) L− ε ≤ ρ(λn)

λ
ds/2
n

≤ L + ε.

We consider the Neumann caseρ(λn) = n + 1; the Dirichlet caseρ(λn) = n is similar.
For alln sufficiently large,

L− ε ≤ n + 1

λ
ds/2
n

≤ L + ε

1

(L + ε)2/ds

(
1 +

1
n

)2/ds

n2/ds ≤ λn ≤ 1

(L− ε)2/ds

(
1 +

1
n

)2/ds

n2/ds

1

(L + ε)2/ds
n2/ds ≤ λn ≤ 1

(L− ε)2/ds
22/dsn2/ds .

This proves the assertion for the non-arithmetic case. For the arithmetic case,

ρ(x) =
(

G
( logx

2

)
+ o(1)

)
xds/2.

SinceG is a bounded non-zero periodic function ando(1) → 0 asx →∞, there exist
constantsC1, C2 > 0 such that for all sufficiently largex, we haveC1 ≤ ρ(x)/xds/2 ≤
C2. In particular, for alln sufficiently large,C1 ≤ ρ(λn)/λ

ds/2
n ≤ C2. We are back to

(5.6) and the assertion follows from the same argument.¤

6. Numerical Approximations. Let {S1, S2} be defined as in (1.10) and letµ be the
corresponding self-similar measure as defined in (1.9). Then for anyf ∈ L1([0, 1], µ),

(6.1)
∫

f(x) dµ = p

∫
f(S1x) dµ + (1− p)

∫
f(S2x) dµ.
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All integrals in this section are over the interval[0, 1]. The following identities can be
derived by using (6.1) (see [S1]):

(6.2)

(a)
∫

x dµ = 1− p

(b)
∫

x2 dµ =
1
3
(1− p)(3− 2p)

(c)
∫

(1− x)2 dµ =
1
3
p(1 + 2p)

(d)
∫

x(1− x) dµ =
2
3
p(1− p).

For a multi-indexJ = (j1, . . . , jm), ji = 1 or 2, we let|J | denote the length ofJ
and define

SJ = Sj1 ◦ · · · ◦ Sjm and mJ = mJ(m) := #{i : 1≤ i ≤ m, ji = 1}.
(i.e.,mJ is the number ofS1’s in the compositionSj1 ◦ · · · ◦ Sjm .) By iterating (6.1),
we get the following useful identity

(6.3)
∫

f dµ =
∑

|J |=m

pmJ (1− p)m−mJ

∫
f(SJx) dµ, m ≥ 1,

where the summation runs over all indicesJ = (j1, . . . , jm) with ji = 1 or 2. Identities
(6.2) and (6.3) are useful in the finite element method, one of the methods we use to
obtain approximate eigenvalues and eigenfunctions.

6.1. The finite element method.To numerically approximate the solutions of (1.1), we
first solve it foru, v ∈ Sm, the space of bounded continuous piecewise linear functions
with knots at pointsk/2m, k = 0, 1, . . . , 2m. Supposeu, v ∈ Sm satisfy

u
( k

2m

)
= ak, v

( k

2m

)
= bk, k = 0, 1, . . . , 2m.

That is, for allx ∈ [(k − 1)/2m, k/2m], k = 0, 1, . . . , 2m,

u(x) = 2m(ak − ak−1)
(
x− k − 1

2m

)
+ ak−1

v(x) = 2m(bk − bk−1)
(
x− k − 1

2m

)
+ bk−1.

Then

(6.4)

∫
u′v′ dx = 2m

2m∑

k=1

(ak − ak−1)(bk − bk−1)

= 2m
2m∑

k=1

(ak − ak−1)bk − 2m
2m∑

k=1

(ak − ak−1)bk−1

= 2m(a0−a1)b0 + 2m
2m−1∑

k=1

(-ak−1 + 2ak − ak+1)bk + 2m(-a2m−1 + a2m)b2m .
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On the other hand, by using identity (6.3) we can express the right-hand side of (1.1) as

(6.5)

λ

∫
uv dµ = λ

∑

|J |=m

pmJ (1− p)m−mJ

∫
u(SJx)v(SJx) dµ

= λ
2m∑

k=1

pmk(1− p)m−mk

∫ (
ak−1(1−x) + akx

)(
bk−1(1−x) + bkx

)
dµ,

wheremk = mk(m) := mJ , andJ is the unique index such thatSJ [0, 1] = [(k −
1)/2m, k/2m]. The second equality in (6.5) follows from the definitions ofu andv and
the formulaSJ(x) = x/2m + (k − 1)/2m.

Substituting the identities in (6.2) into (6.5) and regrouping terms, we get

3
∫

uv dµ =
2m∑

k=1

pmk(1− p)m−mk

(
p(1 + 2p)ak−1bk−1

+ 2p(1− p)(ak−1bk + akbk−1) + (1− p)(3− 2p)akbk

)

=
(
(1 + 2p)pm+1a0 + 2(1− p)pm+1a1

)
b0 +

2m−1∑

k=1

{
2p1+mk(1− p)m+1−mkak−1

+
(
(1 + 2p)p1+mk+1(1− p)m−mk+1 + (3− 2p)pmk(1− p)m+1−mk

)
ak +

2p1+mk+1(1−p)m+1−mk+1ak+1

}
bk +

(
2p(1−p)m+1a2m−1 + (3−2p)(1−p)m+1a2m

)
b2m .

Comparing coefficients of thebk in this equation and in (6.4) leads to the following
system of linear equations

(6.6)

2m(a0 − a1) =
λ

3

(
(1 + 2p)pm+1a0 + 2(1− p)pm+1a1

)

2m(−ak−1 + 2ak − ak+1) =
λ

3

(
2p1+mk(1− p)m+1−mkak−1

+
(
(1 + 2p)p1+mk+1(1− p)m−mk+1 + (3− 2p)pmk(1− p)m+1−mk

)
ak

+ 2p1+mk+1(1− p)m+1−mkak+1

)
, k = 1, . . . , 2m − 1

2m(−a2m−1 + a2m) =
λ

3

(
2p(1− p)m+1a2m−1 + (3− 2p)(1− p)m+1a2m

)
.

By writing u = [u0, u1, . . . , u2m ]T , we can express these equations in matrix form as

(6.7) Mmu = λNmu.

For example,

M1 = 2




1 −1 0
−1 2 −1

0 −1 1


 , M2 = 22




1 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1


 ,
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andN1, N2 are respectively

1
3




p2(1 + 2p) 2p2(1−p) 0
2p2(1−p) 4p(1−p) 2p(1−p)2

0 2p(1−p)2 (3−2p)(1−p)2


 ,

1
3




p3(1+ 2p) 2p3(1−p) 0 0 0
2p3(1−p) 4p2(1−p) 2p2(1−p)2 0 0

0 2p2(1−p)2 p(1−p)(3−4p +4p2) 2p2(1−p)2 0
0 0 2p2(1−p)2 4p(1−p)2 2p(1−p)3

0 0 0 2p(1−p)3 (3−2p)(1−p)3


 .

We remark that bothMm andNm are symmetric, tridiagonal, and of order 2m + 1.
Moreover, they satisfy the recursive relations in the following proposition.

Proposition 6.1.

Mm+1 = 2

[
Mm 0
0∗ 0

]
+ 2

[
0 0
0∗ Mm

]

Nm+1 = p

[
Nm 0
0∗ 0

]
+ (1− p)

[
0 0
0∗ Nm

]
,

where0, 0∗, and0∗ are zero matrices of orders2m × 2m, 2m × 2m+1, and2m+1× 2m

respectively.

Proof. The first identity is quite obvious. The second one follows by using induction
and applying the following simple relation to (6.6):

mk(m + 1) =
{

mk(m) + 1 for k = 1, . . . , 2m

mk(m) for k = 2m + 1, . . . , 2m+1. ¤

6.2. Difference approximation method.There is an alternative way to approximate
the solutions of (1.1) by making use of the discrete Laplacian on the set of knots. Define

Vm =
{ k

2m
: k = 0, 1, . . . , 2m

}
, m = 1, 2, . . . .

For any functionu : Vm → R, the discrete Laplacian ofu, denoted byHmu, is
defined as

(6.8)

Hmu(0) = −u(0) + u
( 1

2m

)

Hmu
( k

2m

)
= u

(k − 1
2m

)
− 2u

( k

2m

)
+ u

(k + 1
2m

)
, 1≤ k ≤ 2m − 1

Hmu(1) = u
(

1− 1
2m

)
− u(1).
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Let Ψm
k/2m , k = 0, 1, . . . , 2m, be a sequence of triangular piecewise linear functions

defined as

Ψm
0 (x) =

{ −2mx + 1, 0≤ x ≤ 1/2m

0, otherwise,

Ψm
k/2m(x) =





2mx− (k − 1), (k − 1)/2m ≤ x ≤ k/2m

−2mx + k + 1, k/2m ≤ x ≤ (k + 1)/2m

0, otherwise,

k = 1, . . . , 2m − 1

Ψm
2m(x) =

{
2mx− 2m + 1, 1− 1/2m ≤ x ≤ 1

0, otherwise.

Then, solutions of (1.1) can also be approximated by using the formula (see [K2]):

(6.9) (Hmu)
( k

2m

)
= λ

(∫
Ψm

k/2m(x) dµ
)
u
( k

2m

)
, k = 0, 1, . . . , 2m.

The left-hand side of (6.9) is determined by (6.8); the right-hand side is determined
by the following proposition.

Proposition 6.2. Letm ≥ 1 and fork = 1, . . . , 2m−1, letJ1, J2 be the unique indices
such that

SJ1[0, 1] =
[k − 1

2m
,

k

2m

]
and SJ2[0, 1] =

[ k

2m
,
k + 1
2m

]
.

Then

(a)
∫

Ψm
0 dµ = pm+1.

(b)
∫

Ψm
k/2m dµ = pmJ1(1−p)m+1−mJ1 + pmJ2+1(1−p)m−mJ2 , k = 1, . . . , 2m−1.

(c)
∫

Ψm
1 dµ = (1−p)m+1.

Proof. We will prove (b); the proofs of (a) and (c) are similar and easier. Using (6.3)
and the fact thatΨm

k/2m is supported on[(k − 1)/2m, (k + 1)/2m], we have

∫
Ψm

k/2m dµ =
∑

|J |=m

pmJ (1− p)m−mJ

∫
Ψm

k/2m(SJx) dµ

= pmJ1(1− p)m−mJ1

∫
Ψm

k/2m(SJ1x) dµ

+ pmJ2(1− p)m−mJ2

∫
Ψm

k/2m(SJ2x) dµ

= pmJ1(1− p)m−mJ1

∫
Ψm

k/2m

( x

2m
+

k − 1
2m

)
dµ
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+ pmJ2(1− p)m−mJ2

∫
Ψm

k/2m

( x

2m
+

k

2m

)
dµ

= pmJ1(1− p)m−mJ1

∫
x dµ

+ pmJ2(1− p)m−mJ2

∫
(−x + 1) dµ (by definition ofΨm

k/2m)

= pmJ1(1− p)m+1−mJ1 + pmJ2+1(1− p)m−mJ2 (by (6.2)). ¤

By combining (6.8) and Proposition 6.2 we can express (6.9) in a matrix form as

(6.10) M̃mũ = λ̃Ñmũ,

whereM̃m = Mm and, for example,

Ñ1 =




p2 0 0
0 2p(1− p) 0
0 0 (1− p)2




Ñ2 =




p3 0 0 0 0
0 2p2(1− p) 0 0 0
0 0 p(1− p)2 + p2(1− p) 0 0
0 0 0 2p(1− p)2 0
0 0 0 0 (1− p)3


 .

We remark thatÑm is a diagonal matrix of order 2m + 1.
As in the finite element method, there is a recursive relation governingÑm. We

justify this in the following

Proposition 6.3. For m = 1, 2, . . . , we have

∫
Ψm+1

k/2m+1 dµ =





p
∫

Ψm
k/2m dµ, if k = 0, . . . , 2m − 1

p
∫

Ψm
1 dµ + (1− p)

∫
Ψm

0 dµ, if k = 2m

(1− p)
∫

Ψm
(k−2m)/2m dµ, if k = 2m + 1, . . . , 2m+1.

Proof. If k = 0, then it follows easily from Proposition 6.1 (a) that

∫
Ψm+1

0 dµ = pm+2 = p

∫
Ψm

0 dµ.

Fork = 1, . . . , 2m − 1, Proposition 6.2 (b) gives

(6.11)
∫

Ψm+1
k/2m+1 dµ = pmJ1(1− p)m+2−mJ1 + pmJ2+1(1− p)m+1−mJ2 ,

where

SJ1[0, 1] =
[k − 1

2m
,

k

2m

]
and SJ2[0, 1] =

[ k

2m
,
k + 1
2m

]
.
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SinceSJ1[0, 1] andSJ2[0, 1] are on the left-hand side of the unit interval[0, 1], J1, J2

can be expressed asJ1 = (1, J ′1) andJ2 = (1, J ′2), where

SJ ′1[0, 1] =
[k − 1

2m
,

k

2m

]
and SJ2[0, 1] =

[ k

2m
,
k + 1
2m

]
.

Hence (6.11) becomes
∫

Ψm+1
k/2m+1 dµ = p

mJ′
1
+1

(1− p)
m+2−(mJ′

1
+1)

+ p
mJ′

2
+2

(1− p)
m+1−(mJ′

2
+1)

= p
(
p

mJ′
1(1− p)

m+1−mJ′
1 + p

mJ′
2
+1

(1− p)
m−mJ′

2

)

= p

∫
Ψm

k/2m dµ.

With a few modifications, equalities for the other cases can also be established
similarly. ¤

By using Proposition 6.3, we obtain the following recursive relation forÑm:

(6.12) Ñm+1 = p

[
Ñm 0
0∗ 0

]
+ (1− p)

[
0 0
0∗ Ñm

]
,

where0, 0∗, 0∗ are defined as in Proposition 6.1.

6.3. Normalization. There are several different ways that we have used to normalize
the eigenvectors numerically. We summarize these methods below.
(N1) Supposeun is an eigenvector (not yet normalized). Since

∫
(u′n)2 dx = λn

∫
(un)2 dµ,

we have ∫
(cun)2 dµ = 1 ⇐⇒ c =

( λ∫
(u′n)2 dx

)1/2
.

cun now is normalized by taking the above value ofc. This method has the advantage
that integration is with respect to Lebesgue measure.
(N2) Note that

1 =
∫

(cun)2 dµ ⇐⇒ c =
(∫

u2
n dµ

)−1/2
.

Another method we use is to create a list ofµ measures on the dyadic intervals and find
the approximate normalization factor directly by

∫
u2

n dµ ≈
2m−1∑

k=0

(un(k) + un(k + 1)
2

)
µ
[ k

2m
,
k + 1
2m

]
.

(N3) Here we proceed as in (N2) but integrate
∫

u2
n dµ exactly using the fact thatu2

n is
a piecewise quadratic function. This can be done sinceun is piecewise linear and we
know the integral of all quadratic functions from the identities in (6.2).
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6.4. Rapidly decaying eigenfunctions.Figure 3 shows the numerical solutions for the
first 18 approximate normalized Neumann eigenfunctions forµ defined by equations
(1.9) and (1.10) andp = 2 − √

3 (see the remark following Proposition 5.2). It is
observed that for this particular value ofp, there exists a distinct subsequence of rapidly
decaying eigenfunctionsunk

wherenk satisfies the recursive Fibonacci type relation

n1 = 1, n2 = 2, . . . , nk+1 = nk + nk−1 for k ≥ 2.

Alternatively, one can say that these eigenfunctions are strongly localized. The same
phenomenon occurs for Dirichlet eigenfunctions (we do not include the pictures for this
case because of space limitations). Figure 4 shows the first ten Neumann eigenfunctions
in this subsequence.

Conjectures 6.4. We conjecture that, as the graphs suggest,‖unk
‖∞ →∞ ask →∞

for the normalized eigenfunctions. We also conjecture thatmaxx∈[ε,1] |unk
(x)| → 0 as

k →∞ for anyε > 0, which means a strong localization.

6.5. Error estimates. We finish this section by discussing the error estimates of the
finite element method. For anyu ∈ Dom(E), andx, y ∈ [0, 1],

(6.13)
∣∣u(y)− u(x)

∣∣ =
∣∣∣∣
∫ y

x
u′(t) dt

∣∣∣∣ ≤ |y − x|1/2
(∫ y

x
|u′|2 dt

)1/2

and so for allx, y ∈ [0, 1] we have

(6.14)
∣∣u(y)− u(x)

∣∣2 ≤ |y − x|E(u, u)

In particular, for eachu ∈ Dom(E) that has a zero in[0, 1] (including all Dirichlet and
Neumann eigenfunctions), we have

‖u‖∞ ≤ E(u, u)1/2(6.15)

‖u‖2 ≤ E(u, u)1/2.(6.16)

Moreover, by using the proof of [SU, Lemma 4.6], we have

(6.17) E(u, u)1/2 ≤ ‖∆µu‖2.

Using equations (6.13)–(6.17) and the proof of [SU, Theorem 4.8 and Corollary 4.9]
with j = 0 (see also [GRS]), we have

Theorem 6.5. Let u be anL2(µ)-normalized Dirichlet or Neumann eigenfunction of
(1.1) with eigenvalueλ. Then there exists̃u ∈ Sm such that

(a) E(u− ũ, u− ũ)1/2 ≤ λρm/2,
(b) ‖u− ũ‖∞ ≤ λ‖u‖∞ρm,
(c) ‖u− ũ‖2 ≤ λρm/2,

whereρ = max{p/2, (1 − p)/2}. Moreover,ũ may be taken to be the spline that
interpolatesu onVm := {k/2m : k = 0, 1, . . . , 2m}.
Proof. Part (a) follows from the proof of [SU, Theorem 4.8] by using (6.17) and
observing that for each multi-indexJ with |J | = m, (u − ũ) ◦ SJ vanishes on the
boundary{0, 1}. Part (b) follows from (a) and the same proof as [SU, Corollary 4.9].
Part (c) follows by combining (6.16) and (a).¤
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Figure 3. Approximatenth Neumann eigenfunctions of equation (1.1) forµ
defined by equations (1.9) and (1.10) withp = 2−√3, plotted withm = 10.
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Figure 4. The sequence of rapidly decaying Neumann eigenfunctions.
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Résuḿe substantiel en français.Soitµ une mesure finie continue et positiveà support
supp(µ) = [0, 1]. Typiquement,µ est une mesure auto-similaire. Nousétudions les
valeurs propresλ et les fonctions propresu de l’équation (1.1), c’est-à-dire

∫ 1

0
u′(x)v′(x) dx = λ

∫ 1

0
u(x)v(x) dµ(x),

pourv ∈ C∞
0 (0, 1), l’espace des fonctions infiniement différentiables̀a support dans

(0, 1). Nous imposons soit la condition de Neumannu′(0) = u′(1) = 0 à la frontìere,
soit celle de Dirichletu(0) = u(1) = 0. L’équation (1.1) d́efinie comme distribution
un laplacien∆µu pour lequel

∫ 1

0
u′v′ dx =

∫ 1

0

(−∆µu
)
v dµ

lorsquev ∈ C∞
0 (0, 1). Les fonctions propres sont les analogues (fractals) des fonctions

sinus et cosinus classiques de Fourier.
Pour unéetude compl̀ete, nous d́emontrons aiśement, en plus des résultats suivants

essentiellement connus (voir, par exemple, [A]), l’existence d’une solution unique et
lisse de l’́equation pŕećedente. Lan-ième fonction propre de Neumann admetn zéros
et sa d́erivéen+ 1 źeros. Lan-ième fonction propre de Dirichlet admetn+ 1 źeros et sa
dérivéen zéros. Pour une fonction propre quelconqueu, les źeros deu et deu′ alternent
entre eux et pareillement pour les zéros de lan-ième fonction propre de Dirichlet et de
Neumann. Il existe une base orthonormale complète compośee des fonctions propres
de Dirichlet (Neumann). Les valeurs propresλn de Dirichlet (Neumann) sont simples.
De plus, on a limn→∞ λn = ∞.

L’ équation (1.1) est́equivalentèa l’équation int́egrale de Volterra-Steiltjes (voir [A,
Chapitre 11]):

u(x) = u(0) + u′(0)x− λ

∫ x

0
(x− y)u(y) dµ(y), 0≤ x ≤ 1.

Il est connu qu’une solution quelconqueu est diff́erentiable et que la dérivée satisfait

u′(x) = u′(0)− λ

∫ x

0
u(y) dµ(y), 0≤ x ≤ 1.
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(Voir [A, Théor̀eme 11.2.2]). L’inverse est aussi vrai. De plus, il existe une fonction de
Green pour représenteru, qui est essentiellement celle que l’on trouve dans [S2, K2] et
donńee par

u(x) = u(0) +
(
u(1)− u(0)

)
x + λ

∫ 1

0
g(x, y)u(y) dµ(y), 0≤ x ≤ 1.

où g(x, y) est telle que d́efinie dans Section 2. On utilise ces formeséquivalentes de
l’ équation pour obtenir des résultats de concavité pour les fonctions propres (Propo-
sitions 3.3 et 3.4) et d’autres résultats sur les propriét́es des valeurs propres et des
fonctions propres.

Onétudie la premìere valeur propre et la première fonction propre lorsque la mesure
varie. Soit{µp : 0 < p < 1} une famille de mesures de probabilités continues avec
supp

(
µp

) ⊆ [0, 1] et telles que, pourc ∈ (0, 1) fixé quelconque,µp[0, c] → 0 lorsque
p → 0. Dans le cas Neumann, soitz1 = z1(p) le zéro communà toutes fonctions
propres de Neumann associéesà la premìere valeur propre. Alorsz1 → 1 lorsque
p → 0 (Théor̀eme 4.2). Soitλ = λp la premìere valeure propre de Neumann. Alors
λ →∞ lorsquep → 0 (Théor̀eme 4.3). On montre (Théor̀eme 4.4) que

∥∥u′p
∥∥
∞ =

∣∣u′p (z1)
∣∣ = λ

∫ z1

0
up(y) dµ(y) = λ

∫ 1

z1

|up(y)| dµp(y) →∞ lorsquep → 0.

Si les fonctions propres sont normalisées, alors‖up‖2 = 1.
Soitλp la premìere valeur propre de Dirichlet. Nous montrons que limp→0 λp = ∞

(Théor̀eme 4.5). Pour la fonction propre de Dirichlet normaliséeup, nous montrons que
limp→0

∣∣u′p(1)
∣∣ = ∞ (Théor̀eme 4.6).

Nous donnons aussi un exemple qui montre que l’analogue du Théor̀eme 4.2 est faux
pour la premìere fonction propre de Dirichlet (Exemple 4.7).

Nousétudions aussi le comportement asymptotique des valeurs propres. Nous nous
restreignons̀a une structure p.c.f. auto-similaire définie par le syst̀eme it́eratif

S1(x) = rx, S2(x) = (1− r)x + r, 0 < r < 1,

et on prend pourµ la mesure auto-similaire définie par

µ = pµ ◦ S−1
1 + (1− p)µ ◦ S−1

2 , 0 < p < 1.

Utilisant un ŕesultat de Kigami et Lapidus [KL], on obtient des bornes asymptotiques
pour les valeurs propres définies par cette classe de mesures auto-similaires.

Nous faisons la description des solutions numériques de l’́equation (1.1). Pour estimer
les valeurs propres et fonctions propres numériquement, nous restreignonsµ davantage
au cas d’une mesure auto-similaire définie par le syst̀eme it́eratif

S1(x) = 1
2 x, S2(x) = 1

2 x + 1
2.

Moyennant l’identit́e
∫ 1

0
f(x) dµ = p

∫ 1

0
f (S1x) dµ + (1− p)

∫ 1

0
f (S2x) dµ,
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on peut ŕesoudre l’́equation (1.1) pouru, v ∈ Sm, l’espace des fonctions continues
linéaires par morceau avec noeudsà k � 2m, k = 0, 1, . . . , 2m, où m est un entier
positif quelconque. Ceci nous permet d’établir un syst̀eme ǵeńeraliśe pour les valeurs
propres

Mmu = λNmu,

avec solutionsu qui approximent les fonctions propres de Neumann. Les résultats
numériques semblent indiquer que, pour certaines valeurs dep, il existe une sous-suite
distincte de fonctions propres de Neumann associée aux nombres de Fibonacci età
décroissance rapide (localement). Nous obtenons des estimés d’erreur (Th́eor̀eme 6.5)
et faisons les Conjectures 4.8 et 6.4.
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