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FRACTAL LAPLACIANS ON THE UNIT INTERVAL

ERIK J. BIRD, SE-MAN NGAI AND ALEXANDER TEPLYAEV

RESUME. Nouseétudions les valeurs/fonctions propres du laplacienGurj défi-

nies par des mesures positiyeborrées, continues, suppées paf0, 1] et par la
forme de Dirichlet classique si®, 1]. Nous donnons des preuves simples d’exis-
tence, d’'unici€, de concavé ainsi que des prop@tes des @ros de ces fonctions
propres. Par uné&critures degquations dfinissant le laplacien comme uaguation
intégrale de \olterra-Stieltjes, noésudions les comportements asymptotique des
premeres valeurs/fonctions propres de Neumann et de Dirichlet, lorsque la mesure
1 varie. Nousétudions les bornes du domaine des valeurs propkes,qdey
pos®de une structure autosimilaire finie post-critique. Lorsguappartienta la
classe des mesures autosimilaires/8ut], nous é&crivonsa la fois, la néthode des
élements finis et la @thode des approximations par éitnces, afin d'obtenir des
approximations nugriques des valeurs/fonctions propres. Les fonctions propres
en question, peuverdtre consiérees comme des analogues fractals du sinus et
du cosinus de 'analyse de Fourier. Nous notons I'existence d’'une sous-suite de
fonctions proprea cecroissance rapide indess par les nombres de Fibonacci.

ABSTRACT. We study the eigenvalues and eigenfunctions of the Laplaciajts din

which are defined by bounded continuous positive meagusegported or0, 1]

and the usual Dirichlet form of®, 1]. We provide simple proofs of the existence,
uniqueness, concavity, and properties of zeros of the eigenfunctions. By rewriting
the equation defining the Laplacian as a \olterra-Stieltjes integral equation, we
study asymptotic behaviors of the first Neumann and Dirichlet eigenvalues and
eigenfunctions as the measuyrevaries. Foru defined by a class of post critically
finite self-similar structures, we also study asymptotic bounds of the eigenvalues. By
restrictingu to a class of singular self-similar measure$@®r], we describe both the

finite element and the difference approximation methods to approximate numerically
the eigenvalues and eigenfunctions. These eigenfunctions can be considered fractal
analogs of the classical Fourier sine and cosine functions. We note the existence of a
subsequence of rapidly decaying eigenfunctions that are numbered by the Fibonacci
numbers.

1. Introduction. Letu be a continuous positive finite measure with support supp-
[0, 1]. In particular we are interested in the case whea self-similar (fractal) measure.
In this paper we study the eigenvalueand eigenfunctions of the following equation:

1 1
(1.1) / o () (z) do = )\/ u(z)v(z) du(z),
0 0
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2 Fractal Laplacians on the Unit Interval

where the equality holds for all € C3°(0, 1), the space of all infinitely differentiable
functions with support contained ii®, 1). We impose either the Neumann boundary
conditions

(1.2) u'(0)=4/(1) =0
or the Dirichlet boundary conditions
(1.3) u(0) = u(1) = 0.

The left side of (1.1) is the standard Dirichlet form

1
E(u,v) ::/O o ()0 () da.

In the Neumann case, the domain&fDom(&), is the Sobolev spacd’*?(0, 1) of
functionsu whose distributional derivativé’ belongs ta.?((0, 1), dz). Such functions
must be continuous and representable as

u(r) = C+/Omg(y) dy, =z €10,1],

whereg € L?((0,1), dz) andu’ = g. In the Dirichlet case,
Dom(€) = Wy?(0,1) := {u € WY2(0,1) : u(0) = u(1) = 0}.

(See, e.g., [D].)

Throughout this paper we ldt- |2 and|| - ||« denote theL?((0,1), ) and the
pu-essential supremum norms, respectively.

SinceC°(0,1) € Wg? € W2 C L2((0,1), u), Dom(€) is dense inl2((0, 1), ).
Moreover, the embedding¥y® — L2((0,1), ) andW 2 — L2((0, 1), ;) are com-
pact. Therefore, the quadratic foéhis closed. Hence, equation (1.1) defines a Laplacian
A,u as a distribution such that

1 1
/ v dr = / (—A u)vdp
0 0

forall v € C§°(0,1). We can rewrite (1.1) as
A u = Au.

In general, the Laplaciad\, with domain DontA,) is defined as follows: for a
continuousf andu € Dom(A,,) we have

(1.4) Au=f if and only if o' = fdu

in the distributional sense (Theorem 2.1). The domains of the Dirichlet Laplmﬁn
and Neumann Laplaciahi)’ will be characterized in Section 3. We remark that Freiberg
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[F1, F2, F3] has recently developed a theory for a general class of Laplace operators
that includes the Laplaciafy,.

One of the main motivations for studying equation (1.1) comes from the study of
similar problems on the Sierpinski gasket. In [DSV], eigenfunctions are computed
explicitly. However, because of the high multiplicities, no effective algorithm has been
found for the expansion of an arbitrary function in terms of the eigenfunctions. The
equation we consider here provides a simpler model on a self-similar set.

In Section 2 we give a concise summary of the fundamental properties of the eigen-
values and eigenfunctions. We show theand«’ are continuous and they have only
isolated zeros (unlessis constant). Moreover, the Dirichlet and Neumann eigenvalues
are simple. We also study the Sturm-Liouville theory and show thaitiiNeumann
eigenfunction has zeros and its derivative has+ 1 zeros, while theath Dirichlet
eigenfunction has + 1 zeros and its derivative haszeros. Furthermore, for each
eigenfunctionu the zeros ofu and v’ alternate, and the zeros of tm¢h Dirichlet
and Neumann eigenfunctions alternate. By converting equation (1.1) into an integral
equation (see Section 3), results in this section can be derived from classical known re-
sults (see Atkinson [A]). For completeness, we include short proofs of the fundamental
results.

Equation (1.1) can be written as a Volterra-Stieltjes integral equation (see Section 3):

(1.5) u(z) = u(0) +u/(0)x — A /Ox(:p —y)u(y)du(y) forall0 <z <1

We interpret/(0) andu’(1) as the left-hand and right-hand derivatives, respectively. It
is known (see [A]) that a solution of (1.5) is differentiable and the derivative satisfies

(1.6) u'(z) = u'(0) — )\/Ox u(y)du(y) forall0<az <1

Conversely, any solution of (1.6) is also a solution of (1.5) (see Theorem 3.1).
In view of equations (1.5) and (1.6), equation (1.1) is a generalization of the classical
Sturm-Liouville equation

(1.7) v (z) = —Ag(z)u(xr) forall0<x <1,

whereu” is assumed to exist at everyc [0,1] andg € L[0, 1]. If we define, for all
Borel subset& C [0, 1],

W(E) = /E o(x) de,

then, since/ is differentiable at every € [0, 1] andgu € L[0, 1], we have

' (z) — /' (0) :/0 - —A/ = —)\/

Henceyu satisfies (1.6). Conversely,ifis absolutely continuous with Radon-Nikodym
derivativeg € L1[0, 1], then a solution: of (1.6) satisfies
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with gu € L[0,1]. Henceu” (z) = —Ag(x)u(x) for a.e.x € [0, 1]. Thus,u satisfies
(2.7). In the special casgz) = 1 on|0, 1], solutions of (1.7) are the classical Fourier
sine and cosine functions. Thus, fosingular, solutions of (1.1) are the eigenfunctions
of a vibrating string with end-points at D and with a mass distribution given by the
singular measurg.

For the sine and cosine functions, the regions bounded by these functions and the
interval on ther-axis between two successive zeros is convex. By using equations (1.5)
and (1.6) we can easily obtain similar concavity results for the eigenfunctions of (1.1)
(see Propositions 3.3 and 3.4).

We are interested in how eigenvaluesind eigenfunctions in equation (1.1) are
affected by varying the measupe Assume{y,, : 1 < p < 1} is a family of measures
such that for each fixed € (0, 1), 1,[0, c] — 0 asp — 1. A typical example for such
a class is provided by the iterated function system consisting of two similitudes

Si(x) =rix, Sa(z)=rax+(1—r2), O0<ryrm<l,
and withy = 11, defined by
p=puoSyt+(l—puoS;t, 0<p<Ll

Let z1 = z1(p) be the zero of the first Neumann eigenfunctign and let), be the
first eigenvalue. In Section 4 we prove thatp) — 1 asp — 0 and that\, — oo
asp — 0. If we assume in addition that the first Neumann eigenfunctignare
normalized such thafu,|> = 1 for all p € (0, 1), then we show thaffu, || — oo
asp — 0. For the Dirichlet case, we show that the results,ligm), = oo and
lim,, o [|uy]|« = oo also hold for the first eigenvalue and (normalized) eigenfunction.
However, ifzp = 22(p) € (0,1) is such that:,(z2) is the maximum of the first Dirichlet
eigenfunction, we show in Example 4.7 that the analogligw,(22) = 1 need not
hold.

Although many results concerning equations (1.2) and (1.3) have been obtained for
general measures(see [A]), the restriction of: to self-similar measures allows us to
obtain good numerical approximations to the solutions and enables us to observe some
interesting phenomena. To study the asymptotics of the eigenvalues, we restrict
be a self-similar measure defined bpast-critically finite(see [K1, K2]) self-similar
structure. Let

(1.8) Si(x) =rx, Sy(x)=rx+(1-r), O0<r<1

Let i be the self-similar measure satisfying the identity

(1.9) p=puoSit+(L-puoSyt, 0<p<Ll

Thespectral dimensiofsee [K1]),ds, for this i is given by
(pr)®/2+ (1= p)(1 7))

Let R, Q, Z, N denote respectively the sets of reals, rationals, integers, and natural
numbers. Theigenvalue counting function: R — N is defined as

w2,

p(x) =#{\: \is an eigenvalue anl < z}.
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Let )\, be thenth Dirichlet or Neumann eigenvalue. In Section 5 we study some
asymptotic properties gf(\,) and\,,.

In Section 6 we discuss numerical solutions to equation (1.1). To approximate the
eigenvalues and eigenfunctions numerically, we further regirict be a self-similar
measure defined by the iterated function system

(1.10) Si(z) =3z, So(z)=3z+

NI
NI

By making use of the identity

1 1 1
/O f(x)dp = p /O f(S1z) dp+ (1 p) /0 F(Saz) du,

we can solve equation (1.1) far v € .S,,, the space of bounded continuous piecewise
linear functions with knots at/2™, k = 0,1,...,2™, wherem is any positive integer.
This allows us to set up a generalized eigenvalue system

Mpu = AN u,

with the solutionsu approximating the Neumann eigenfunctiandn addition to the

finite element method above, we also describe the difference approximation method
(see Section 6). We show graphs of some approximate eigenfunctions. We observe that
there exists a subsequence of rapidly decaying eigenfunctions that are numbered by the
Fibonacci numbers.

2. Fundamental properties of solutions.In this section we summarize the basic exis-
tence and uniqueness results and study the oscillation properties of the eigenfunctions.

Theorem 2.1. Let u be a positive bounded continuous measure/®@r] such that
supg i) = [0, 1]. Then the following hold.

(&) The initial value problem

—Aju=\u
u(y) = o
u'(y) =P

has a unique solution. In particular, if(y) = «/(y) = 0thenu(xz) = 0.
(b) —A,u = Au ifand only if —u” = Apu in the sense of generalized functions.
(c) uis continuously differentiable;’ is differentiable a.e. ofD, 1].
(d) w andu’ have only isolated zeros (unlegs= constant).

Proof. (a) In Section 3 we will prove that this initial value problem is equivalent to an
integral equation, for which the existence and uniqueness of solutions is known (see,
for example, [A]).

There is a different approach that is more relevant to analysis on fractals (see [K2]
for more details). We define Green'’s function for the intef@al] by

z(l—y) if z<y

9(@y) = { yl—2z) if x>y
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and Green'’s operator by

1
Guf(x) = /O o 9) f (W) du(y).

For any continuous functiorf, we have thatG,, f is Lipschitz continuous, has zero
boundary values and satisfies

-AGLf =T
For any subintervak, ¢ + §] we can define Green’s operatGy, j; ,+5) by

t+
G s f () = 82 / g(Z5t =) F(y)dp(y).

If ¢ is small enough (depending o), thenu has a unique representation ot + ] as

[e.9]

(2.1) u=> (AGys)" b
n=0

whereh(x) is a linear function such that(t) = wu(t), h(t +9) = u(t +9).

Let u1 be the solution with boundary valug®, 1} on[¢,¢ + 4]. If 6 is small enough
(depending om\), thenwj(t) # 0. This implies that(t) = «'(t) = 0 if and only if
u = 0onltt+d]. Hence we have uniqueness of the initial value problerft.ant §].
It is easy to extend it t@0, 1] by dividing into small subintervals.

(b) We have that-A,u = Au if and only if fol wv'dr = Afol wvdy for any test
function, which means-v” = \uu as generalized functions.

(c) The equation/” = zuu implies thatu’ is of bounded variation and heneéis
differentiable a.e. o0, 1].

(d) If ¢ is small enough, then on an interyal s + ] the Dirichlet and the non-zero
Neumann eigenvalues are larger thap(to see this, estimatg, |, ;+5). Henceu and
u’ can have at most one zero eachsns +4]. O

Proposition 2.2. Let —u” = Apu. Then
u N\’ U\ 2
(2.2) (7) —1+)u (J>

u/

()= (2)

as generalized functions.

Proof. Direct computation. [J

Proposition 2.3. (Comparison of solutiond)et —u, = \u;, u; # 0, i = 1,2 and
suppose that, < az, 0 < A1 < Ag,

b = min{1,{s > a; : u;(s) = 0}}
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¢i = min{1, {s > a; : uj(s) = 0}}.

(2

Then
(a) If ul(al) = uz(az) = 0, thency < ¢3.
(b) If u’l(al) = u’z(az) = 0, thenby < b.
(€ fA1=X2>0, a1 =a2 =0, u1(0) =0, uj(0) #0, u5(0) =0, u(0) #0,
thenbs < by, c2 > 3.

Proof. (a) According to (2.2)u;/u} is an increasing function dja;, ¢;) and so

Statements (b) and (c) are proved similarly by (2.2) and (2.8).

Proposition 2.4. Fix the initial conditionsu(0), v’(0) and letu” = —Apu. Then
(a) Zeros ofu andu’ move to the left ag increases.
(b) f(N) = ij((ll)) is an increasing function on each interval bfvhereu’(1) # 0.
u'(1)

© g(\) =

0 is a decreasing function on each interval)ofvhereu(1) # 0.
u
Proof. By Proposition 2.3 (consider the intervals on which neithaor«’ have zeros.
These intervals move to the left asncreases). [

Theorem 2.5. Assuming the same hypotheses as in Theorem 2.1, the following hold:

(a) Thenth Neumann eigenfunction haszeros and its derivative has+ 1 zeros.

(b) Thenth Dirichlet eigenfunction has + 1 zeros and its derivative haszeros.

(c) For each eigenfunction, zeros ofu and«’ alternate.

(d) Zeros ofnth Dirichlet and Neumann eigenfunctions alternate.

(e) There exists acomplete orthonormal basis consisting of the Dirichlet (Neumann)
eigenfunctions. The Dirichlet (Neumann) eigenvaliigare simple. Moreover,
lIM,,— oo A, = 00.

Proof. Parts (a) to (d) follows from Propositions 2.3 and 2.4 (considé&j/«/(1) and
u'(1)/u(1) as) increases).
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(e) The eigenfunctions form a complete orthonormal set because the Laplacian has
a compact resolvent, which is Green’s operator defined in the proof of Theorem 2.1.
The eigenvalues tend to infinity by the same reason. Green’s operator is compact
because its kernel, Green’s functigfi, y) defined in the proof of Theorem 2.1, is
continuous (see also [K2, Theorem B.1.13]). Another approach can be found in [A].
The simplicity of the eigenvalues follows from the uniqueness of the initial value
problem in Theorem 2.1 (a).OJ

Remark.If the support ofu is smaller thar{0, 1], then the results of this section are
still true with the following modification. A problem is thatis linear on the intervals
that does not intersect the supportiof The uniqueness implies thatcannot have
an interval of zero values. Howevef can have an interval of zero values, and in the
results above such an interval should be taken as a single “zero”.

3. Volterra-Stieltjes integral equation and concavity of solutions.Assuming thaj:

is a bounded continuous positive measure with $uppc [0, 1], we will show that
(1.1) is equivalent to the following Volterra-Stieltjes integral equation (see [A, Chapter
11)):

(31) M@=U@+M@W—AA%PWW@MMW7OSmSL

It is known that a solutiom of (3.1) is differentiable and the derivative satisfies

(3.2) o' (z) = 4/(0) — )\/OI u(y)du(y), 0<ax <1

(See [A, Theorem 11.2.2].) The converse is also true. There is also a Green'’s function
representation ai, essentially given in [S2], as follows

1
(33) uMZU@+@m—MWwMAg@wa@@7OSwSL

whereg(z, y) is as defined in Section 2. We summarize these in the following theorem
and give a brief proof for completeness; details in a more general setting can be found
in [F1] and [F2].

Theorem 3.1. Let . be a bounded continuous positive Borel measure sy 1.) C
[0, 1]. Then equation$l.1), (3.1), (3.2) and(3.3) are equivalent.

Proof. Since the implication from (3.1) to (3.2) is known, we will show (3.2) implies
(3.1). Letu be a solution of (3.2). Since is continuous angk is bounded, it follows
from Fubini’s Theorem that’(z) € L[0, 1]. By using Fubini's Theorem again,

uw)-u0) = ["u Ud&—/x@m»—yghwmmw)w
— /(0)z — /'/ o) dsdly) =z =X [ (@ = y)uty) duto)

Henceu satisfies (3.1).
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To see that (1.1) and (3.2) are equivalentuldte a solution of (3.2). Then for any
v e Cg°(0, 1), we have

/ol u'v' dx = /01 (u'(O) - /\/oz u(y) d,u(y))v'(a?) dz
1 1w
—(0) [ Ve A [ [ u)' (@) duty) ds
1o . o Jo
:—/\/0 / u(y)v'(x)drdu(y)  (Fubini's Theorem)

)
1
A /0 u(y)o(y) dyu(y).

Henceu(x) satisfies (1.1). The above also proves the converse.
Lastly, by using the definition af(z, y), we can rewrite equation (3.3) as

1 x
u(z) = u(0) + (u(1) — u(0))x +2 /0 (1 y)uly) du(y) — A /0 (& — y)uly) du(y).

It is easy to see that this is equivalent to (3.1[)]
The following corollary follows from the proof of Theorem 3.1.

Corollary 3.2. Assume the same hypothesespoas in Theorem 3.1, and let €
L?(]0,1], ). Let f be a continuous function o}, 1]. Then the following conditions
are equivalent.

(a) Forall v € C§°(0,1),

1 1
/ w' dr = / vf du.
0 0

() uw) = u(®) +/ Oz + [ (@ =) f ) du(1). 0 < 0 < L

(©) o(x) = ' (0) + /0 @) duly), 0<z<l
1
() u(x) = u(0) + (u(1) — u(0)) — /0 o(e.9)f (W) duly), 0<z <1

LetA” andA[Y denote the Laplaciaf, under the Dirichletand Neumann boundary
conditions respectively. Then their domains can be characterized, using Corollary 3.2,
as follows.u € Dom(A?) (resp.u. € Dom(AlY)) ifand only if u(0) = u(1) = O (resp.

/(0) = /(1) = 0) and there exists a continuous functipn [0, 1] (f = A7 (u) or
f= Ag(u) respectively) satisfying any of the conditions in Corollary 3.2.

We now turn to concavity of the eigenfunctions. Although these results can be proved
using the approach of Section 2, here we present another short proof, which is based in
the use of integral equations.
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Proposition 3.3. Letu be abounded continuous positive Borel measuresupy i) C
[0,1], and letu be annth Neumann eigenfunction of (3.1) satisfyia@) > 0. Let
21 < 29 < --- < z, be the zeros of. and writezg = 0 and z,+1 = 1. Thenv' is
decreasing orjz;, z;+1] for eveni (0 < i < n + 1) andu/’ is increasing oriz;, z;+1] for
oddi (0 < i < n+1). Consequently,
(@) Ifi (0<i < n+1)iseven, then' has a local minimum at; andu is concave
downward onz;, z;+1].
(b) Ifi (0 < i <n+1)isodd, then/ has alocal maximum at, andu is concave
upward on[z;, zj+1].

Proof. Leti (0 <i < n+1)beevenandlet; < x1 < z2 < z+1. Sinceu(xz) > 0 on
(2, zi+1), by using (3.2) we have

1

W) = X [T u) duty) = -3 [ utw)duts) =) [ uty) duty)

Zi

0 0 ;
> A /0 Tl ants) =3 [ uty) duty) = > /O % uly) duly) = ol (z2).

Henceu' is decreasing ofy;, z;+1].

Now leti (0 < i < n+1) be odd and let; < z1 < x2 < z+1. Sinceu(y) < 0on
(2, zi+1), @ similar argument shows that(z1) < u/(z>). Thereforeu’ is increasing on
[zi, zi+1]. Consequences (a) and (b) follow directly from these resulis.

Analogous results hold for Dirichlet eigenfunctions.

Proposition 3.4. Let x be a bounded continuous positive measure witpgu) C
[0,1] and letu be annth Dirichlet eigenfunction of (3.1) satisfying(0") > 0. Let
0=20<21<22< -+ < 2z, = 1be the zeros of. Thenu' is increasing onz;, z;+1]
for eveni (0 < i < n) and’ is decreasing onz;, z;+1] for oddi (0 < i < n).
Consequently,
(@) If i (0 < i < n)is even, then/ has a local maximum at; and u is concave
downward onz;, z;+1].
(b) If i (0 < i < n)is odd, thenu' has a local minimum at; and u is concave
upward on[z;, z;+1].

Proof. Useu/(z) = /(0) — [3 u(y) dy instead ofu'(x) = — [ u(y) dy and use the
same argument as in the proof of Proposition 3.3l

4. The first eigenvalues and eigenfunctionsln this section we study behaviors of the
eigenfunctions and eigenvalues as the measure varies. We will focus on properties of the
first Dirichlet and (non-zero) Neumann eigenvalues and the associated eigenfunctions.

We will restrict our attention to familie§., : 0 < p < 1} of bounded continuous
measures satisfying the condition that for anycfik (0, 1),

ppl0,c] =0 as p—0.
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An example of such a family is provided by self-similar measures defined by an
iterated function system of two similitudes of the form

Si(x) =riz, Sa(z)=rx+(1—rp), O0<ryrm<l
Let i be the self-similar measure satisfying the identity
(4.1) p=puoS;t+(l—-puoS;t, 0<p<l

Note that;, depends omp.

Proposition 4.1. Let 1 = p,, be defined as irf4.1). Then for any fixed € (0, 1),
u[0,c] — Oasp — O.

Proof. Applying (4.1), we get
u[0, ¢ = pp[0,rte] + (1= p)u[—(1 = r2) /2, ¢/ra — (1 —1r2)/r2]
<p+ (1 -pul0,c/r2 — (1 —12)/r2.

Defineco = ¢, c1 = co/r2—(1—12)/r2, andin general defings1 = ¢;/ro—(1—r2) /r2.
Then by applying the above calculations repeatedly, we have

(10,¢] < p+p(l—p)+p(l—p)2+---+p(l—p)+(1—p)*u0, cira.
Itis easy to see that — ;41 = (1 — rz)/rg”l(l — ¢p). In fact,

L CG1— ¢ _co—cl_l—’rzl
CGi—Cpl=———=":"= = —1 (1—co).
T2 T2 T

Consequently there must exist soipeuch that; +1 < 0 and therefore

1— (1 o p)io+l

o5

) =1-(1-p)*,

whichtendstoO0Oag — 0. O

Let A denote the first Dirichlet or nonzero Neumann eigenvalue and detnote a
corresponding eigenfunction. According to Theorem 2.1 X%, a simple eigenvalue
and therefore all associated eigenfunctions are scalar multiples of each other. Moreover,
according to Theorem 2.5 (a), the first Neumann eigenfunctions have a unique common
zero in (0, 1), which we will denote byz1. Figure 1 shows the behavior of the first
Neumann eigenfunctions as the measure varies.

Note that equation (3.2) and the boundary condiiitil) = 0 together imply that
fol udp = 0 and consequently

21 1
(4.2) / udp = / |u| d.
0 21



12

Fractal Laplacians on the Unit Interval

0 0.2 0.4 0.6 0.8

(@ p=1/2,\=n%~9.87

(b) p=1/4, A= 115

hd

=4

=
U o g kP o N U W

°

(c) p=1/8, A~ 165

(d) p=1/16,\ =~ 27.2

Figure 1. Approximate firstZ?(;)-normalized Neumann eigenfunctions
and eigenvalues asp varies, where is defined by (4.1) withr = 1/2

Theorem 4.2. Let {y, : 0 < p < 1} be a family of continuous probability measures
with supgz,) C [0, 1] such that for any fixed € (0, 1), 1,[0,c] — Oasp — O. Let
z1 = z1(p) be the common zero of the Neumann eigenfunctions associated to the first

eigenvalue. Thep; — lasp — 0.

Proof. For eachp, we letu = u, be the first eigenfunction satisfying0) = 1 and

hence

(4.3)

u(z)=1- A /0 “(@ — y)uly) du(y).

Supposez;(p) does not tend to 0 gs — 0. Then there would exist & b < 1 and
a sequencdpy} such thatp, — 0 andz1 = z1(px) < b for all k. We notice by

assumptions that

21 b
/0 Upy, diip;, < /0 Ldpp, = pp,[0,b] =0 as k — oo.

Hence by (4.2),

(4.4)

21

1 o
/ |tpy | dpip, :/0 Up, dpip, — 0 as k — oo.
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Sincepy, [21, 1] > pp, [0, 1] — 1 ask — oo, (4.4) implies that for all: € [21, 1],
(4.5) 0> up, () >up, (1) =0 as k— oo,

for otherwise, the concavity af,, on [z, 1] would force the integral on the left-hand
side of (4.4) to be greater than some positive constant independent of
Letc = (b+1)/2. Then the concavity af,, and (4.5) imply that

|tpy, (¢)]

We will show that (4.6) is impossible. By Proposition 3|8, | is increasing on
[0, z1]. By applying the Mean-Value Theorem to this interval, we get

1 1
' ! > >Z )
(4.7) up (22)] = ~=350
Also, by using (4.2),

o) = [ ) iy () = N [ e () i, ()

1

c 1
o [ T )l it @) s [l (0)] i ),
z1 C

with the second term dominating. In fact,

fzcl |upy, (9)| dpipy, (y) < [tp, ()| tpy [21, €]

< —0 as k— oo.
Tt (0) ity ()~ T (), [e 1]

Combining these observations with (4.7) leads to

9

1
. . . 1
ILn ‘u;k(c)‘ = kILn )‘pk/ }upk (y)‘ dek (y) = kllim ‘u;k(zl)‘ > g

k—o0 —00

contradicting (4.6). The first equality is because for any

21

up(c) = =Ap /O Cup(y) dpp(y) = —Ap /0 up(y) dpp(y) — Ap / Cup(y) dpip(y)

z
1

1 c
— / 1 (9) ] dpip() — Ay / up(y) diay () = —p / up (9] iy (3)-

This proves the result.

Theorem 4.3. Assume the same hypotheses as in Theorem 4.2 anddex, be the
first Neumann eigenvalue of the corresponding equation (3.1). Yherc asp — 0.

Proof. We assume, as in the proof of Theorem 4.2, that fop,all, are chosen so that
u,(0) = 1 and (4.3) holds. We will prove the assertion by contradiction. Suppose there
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exists a sequendgy, } with p;, — 0 such that\,, is bounded by somé&/ > 0. Then,
by (3.2), for allz € [0, 1],

(48 ()] < M -1y, [0.2] < M.

(The first inequality is becausgz) < u(0) = 1 on|0, z1].) Now, fix any numbetV
sufficiently large so thav > 2)M and 1— 1/N > 0. Then for anyc € [0,1 — 1/N],

1
‘u;k(x)‘ SM,upk[O,:c] < Mpp, [O,l—ﬁ} —0 as k— oo.

Henceu,, — 1 uniformly on[0,1— 1/N] ask — oo. In particular, there exists some
k., € N such that for alk > k,,

1
Upy, () > 5

> on [O,l—i}.

N

Sinceu(z1) = 0 andz; < 1, the Mean-Value Theorem implies that there exists some
&pe € [1— 1/N, z1] such that

, 12 N

contradicting (4.8). Thug, — ooasp — 0. O

Theorem 4.4. Assume the same hypotheses as in Theorem 4.2 and assume in addition
that||u,|/2 = 1. Then

21 1
et floo = |t (z1)] = A /0 up(y) dia(y) = A / lup()| dpip(y) — 00 @S p— 0.

Proof. We prove by contradiction. Suppose there exists a subseqyence, with
pr — 0 ask — oo, and a positive constartt’ such that|u,, (21)] < C for all k.
Obviously, this can happen onlyif,, (1) — 0 ask — oo. Hence, for alk sufficiently
large we have

1 1
@9 [ P i) < [ )] di ()~ 0 3 k= ox.

21

By assumption,

21 1
(410 /0 iy ()% iy (4) + / e ()2 dpip, () = 1.

21

Therefore by (4.2), (4.9), and (4.10) we have
21
(4.11) /O Up,, (y) dpp, (y) =0 as k — oo

21
(4.12) | i @R i) 1 as ko,
0
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Letz1 = z1(px) € [0, 21] be the unique number such thaf (1) = 1. Such an;
exists; otherwise we would havg, (0) < 1 and therefore

z1 Z1
/0 i (8)2 gy () < /0 tp, (5) i, (5) — O as k — oo,

contradicting (4.12). Consider the following two cases.

Case 1x; — z1 ask — oo. In this case we have lim. . z1(pr) = liMg_o 21 =1

and therefore lim_.. |uj, (21)| = oo, a contradiction.

Case 2x1 /4 z1 ask — oo. By taking a subsequence if necessary we may assume that
z1(px) < ¢ < 1 for somec and for allpy. In this case,

/ RO / Vg () dip (4) = O as koo (by (4.11)).

1 x1

This forces
1
/0 Up, (Y)2 dpy, (y) — 1 as k—oo  (by (4.12)).

But s, [0, 21] < g, [0,c] — 0 ask — oo, and thereforeu,, (0) — oo, forcing
|y, (€p, )] — oo forsomet,, € [0, z1]. Consequently, linp. |uy,, (21)] = oo because
uy, () is decreasing of0, z1]. This again contradicts the assumption and the proof is
complete. O

We now turn to properties of the first Dirichlet eigenvalues and eigenfunctions.
Figure 2 shows rather striking behavior of the first Dirichlet eigenfunctions as the
measure varies.

Theorem 4.5. Let {1, : 0 < p < 1} be a family of continuous probability measures
with supg() C [0, 1] such that for any fixed € (0, 1), 11,[0,c] — 0asp — 0. Let),
be the first Dirichlet eigenvalue. Théim, .o A\, = oc.

Proof. For 0< p < 1, letu, be the first Dirichlet eigenfunction satisfying (0) = 1.
Then the concavity of,, forces

(4.13 up(z) <1 forall 0<az<1

Also, by puttingz = 1 into (3.1), we have

1
(4.14) 5 [ @=uw) d(o) = 1

We prove the assertion by contradiction. Suppose there exists a cafistaftand
a sequencgpy } such that lim_.., pr = 0 but),, < C for all k. By replacing with
a subsequence if necessary, we can assume that there exists a sggpeneath
0 < ¢p, < 1suchthat

(4.15) lim ¢, =1

k—o0
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1.4
1.2 1.5
.1 1.25
0.8 1
0.6 0.75
0.4 0.5
0.2 0.25
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(@) p=1/2,A=7"~ 987 (b) p=1/4,A~ 115
2.5
2
1.5
1
0.5
0
0 0.2 0.4 0.6 0.8 1
() p=1/8,A~ 165 (d) p=1/16,\ ~ 27.2

Figure 2. Approximate firstZ?(y)-normalized Dirichlet eigenfunctions
and eigenvalues asp varies, where. is defined by (4.1) withr = 1/2

and

(4.16) i [0, e, ] < i
2C

Then by (4.13), (4.14) and (4.16),

Cpp. 1
1= [ L= 0 () )+ / (1= )t (1) dpip, ()

Pk

S )‘Pk Hopy, [O’ cpk] + >‘:Dk (1 - Cpk)ﬂpk [Cpkv 1]
1
< é + C(l - cpk)’

which is impossible by (4.15). This contradiction completes the proif.

Theorem 4.6. Assume the same hypotheses as in Theorem 4.5 and assume in addition
that each eigenfunctiom, satisfies;,(0) > 0 and is normalized, i.ellu, 2 = 1. Then

(4.17) ]I)iLno |u, (1)| = oo.
Proof. Let¢, be the unique zero af, in (0, 1). The normalization conditioffu, |2 = 1
implies that

(4.18) uplloo = up(ép) > 1.
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We suffices to prove that (4.17) holds for each sequepce: 0. We prove this by
contradiction. Suppose there exist a sequdpgé and a positive constant; such that
pr — 0 but

(4.19) |ug, (1] < C1 forall k.

If there exists some subsequenjge,. } such thatgpkj — 1lor ||upkj lloo — o0, then

obviously we would haveu;, (1)] — oo (cf. (4.18)), contradicting (4.19). Hence we
J,

will assume there exist positive constagtsand(C'3 such that

Ep, <C2< 1l and |up,|lec < Cz forallk.

Now, for any fixedc € (C2,1), we have

c 1
1= flup, 12 = /0 e ()2 b, () + / ()2 b, ()

_ 2 ¢ upk(y) 2 2/1 upk(y) 2
=3 [ (“22) )+ 3 [ (“22) de o)
1
u
< C4, [0, ] + C3 / C%“dupk (y) < C3up, [0, ] + Caup, (c).

Consequently, for alt sufficiently large, we have

1
up,(c) > 205"

This obviously implies thafu;, (1)| — oo, contradicting (4.18) again. This completes
the proof. OO

Example 4.7. Assume the same hypotheses of Theorem 4.6 ang tetz;(p) € (0,1)
be such that,,(2,) is the maximum of the first Dirichlet eigenfunction. In this example
we describe two situations such that:

. 1 ,
(A) lim za(p) = = and (B) limz(p) = 1.
p—0 2 p—0
Therefore the analog of Theorem 4.2 does not hold for the first Dirichlet eigenfunction.
In fact, one can construct an example such thag lige,(p) = 0.

(A) To simplify computations, instead of the intenj@l 1] we consider the interval

[0, 1 +p?], and the zero boundary conditions are at 0 and gt €learly, this will not
change the limiting behavior oh(p) asp — 0. Let measurg., have a density with
respect to Lebesgue measure that is equalie[0, 1) and equal to Ap? on[1, 1 +p?].
This ., is not a probability measure, but again it will not change the limiting behavior of
22(p) asp — 0. Equation (1.4) or Theorem 2.1(b) implies thatz) = Cysin(z/Ap)

on the interval0, 1], andu,(z) = C2sin (VA(1+p? —z)/p) on the interva[l, 1 +p?).

The functionu,(z), as well as its derivative, must be continuous at 1, which means

Cisin(v/Ap) = Casin(pVA) and Cipy/pcos(y/Ap) = —Cacos(pVA) .
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Thereforel is the lowest positive solution of the equation

tan(y/Ap) = —pyptan(pva).

If VpA =y, theny is the lowest positive solution of the equation

tan(y) = —p/ptan(yy/p) .

It is easy to see that lign,o /pA = lim,_oy = m. This implies lim),_.0 22(p) = %
In this example we have lign,o u,(xz) = oo uniformly on any compact subset of
(0,1). However, lim,_o (up()/||up|loc) = sin(wz) uniformly on[0, 1].

(B) Here, in order to simplify computations, we consider the intej@dl + p| instead
of the interval[0, 1], and measurg, that has densitp on [0,1) and density 1p
on [1,1 + p|]. The zero boundary conditions are at 0 and at 4 #hen we have
up(x) = Csin(z+/Ap) on the interval0, 1], anduy,(z) = Cosin (VA(1+p? —z)/p)
on the intervall, 1 + p|. Moreover,

Cisin(y/Ap) = Casin(y/pA) and Cipcos(y/Ap) = —Cacos(v/p)).

Thereforey/pA = 7 and lim, 0 22(p) = 1.
In fact, a simple computation shows that Jimy u, () = v/2 sin(3z) uniformly on
any compact subset @, 1). In particular, lim,_o ||up||co = liMy_ou,(22) = V2.

(B") Here we modify example (B) so that lign,o 22(p) = 1 and limy_ou,(z) = V22
uniformly on any compact subset(@f 1). We consider the intervid, 1+, /p] instead of
the interval0, 1], and measurg, with densityp on|0, 1) and density% on[l, 1+,/p|.
The zero boundary conditions are at 0 and at Jp- Then X is the lowest positive

solution of the equation t4y/Ap) = —./p/ptan(y/A/p). It is easy to see that
lim,_o /AP = 5. This implies lim,_o z2(p) = 1, and also lim_qu,(z) = V2z
for0<z < 1.

Example 4.7 shows that under the same hypotheses as in Theorem 4.6, we can have
limsup, o [[upllc = 0o as well as limsup g [|luy o < 0o. The same is true for the
first Neumann eigenfunction.

Conjectures 4.8. We conjecture thdim,,_.q ||u||« = oo if i, andu, are asin Figures

1 and 2. However, the numerical approximations show that the growth rate is very low.
We also conjecture that in the same situation there is a limm},_o u,(x) /| upl o
uniform on any compact subset[6f 1). Moreover, this limit is a convex nonnegative
piecewise linear function (different in Dirichlet and Neumann cases). In addition, we
conjecture thatim,_q 22(p) = 3 in the Dirichlet case, antim,_ou,(1) = 0 in the
Neumann case.

5. Eigenvalues and their asymptotics We begin by recovering two well-known prop-
erties of the eigenvalues for the Laplacians corresponding to general measjigs.on
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Proposition 5.1. Let . be a bounded positive continuous measure witpg;.) =
[0,1]. LetA? and \YY denote thenth Dirichlet and Neumann eigenvalues, respectively.
Then

(@ 0< A1 <A
(b) The Dirichlet and Neumann eigenvalues are discrete.

Proof. Part (a) follows from the variational formula (see e.g., [D, K2]) becaﬁéé -

Wll’z. Part (b) follows from Theorem 2.5 (e). The discreteness of the Dirichlet eigen-
values follows from the inequality

0 1 1 1
;A%S/o /0 g9(z,y) dp(z) du(y) < oo,

a consequence of Bessel's inequality and the Green’s function representation of the
eigenfunctions (Theorem 3.1). The discreteness of the Neumann eigenvalues follows
by combining this with part (a). O

For the rest of this section we restrict our attention to a p.c.f. self-similar structure.
Consider the iterated function system

(5.1) Si(z) =rx, So(zr)=A-r)z+r, 0<r<l,
and letu be the self-similar measure defined by
(5.2) p=ppoSt+(l—puoS;t, 0<p<l

Recall that thespectral dimensiofsee [K1]),d,, for this u is given by

ds/2

(5.3) (pr)®/?+ ((1—p)(1—1)) 1

Letp: R — N be theeigenvalue counting functiafefined as
p(x) =#{\: \is an eigenvalue anl < z}.

Then according to a theorem of Kigami and Lapidus (see [KI, K1, SM})) is related
to d as follows:
() (Non-arithmetic case) If logr)/ log((1—p)(1—r)) € R\Q, then lim p(z)/x%/?
exists and is positive and finite. v
(i) (Arithmetic case) On the other hand, supposegteg/log((1—p)(1—r)) € Q
and supposd’ > 0 is the generator of the groupog(pr)/2)Z + (log((1 —
p)(1—1))/2)Z (i.e. TZ equals the group). Then

plx) = (G('Oggj) + 0(1)) e/

whered is a hon-zero bounded periodic function of perid
Using the above result we can prove
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Proposition 5.2. Fix 0 < p < 1 and letd, be the spectral dimension of the measure
1 in (5.2). Letp be the eigenvalue counting function for the Laplacian defined in (1.1)
with the Dirichlet or Neumann boundary condition. Then

p(prin) _ (pr)ds/z_

@ lim
T p(in) 1—7)A
o tm "0 _%n)— L

Proof. We only prove (a); the proof of (b) is similar. We first consider the non-arithmetic
case. By (i) above and the fact that Jim., A,, = co (Theorem 2.5 (e)), we have

pWrAn) _ plprn) (prin) =%/ (pr)®/?
P(An) Pn) A/
For the arithmetic case, by using (ii) above, we have

porAs) _ (G (3109(prAn) +o(1)) (pran)™/2 _ (G (3109(\n) +o(1)) (prn)™/

p(An) (G (log(An)) +o(1)) A%2 (G (Llog(An))+o(1)) Ad/?
The last equality follows from the periodicity ¢f, because logr)/2 = kT for some
k € Z. Againp(pr,)/p(An) — (pr)%/? asn — co. O

Remark.lim,, o p(prAn)/p(An) (resp. lim,—oo p((1 — p)(1 — r)A\n)/p(An)) is the
asymptotic ratio of the number of zeros of an eigenfunctio®,in] (resp.[r, 1]) to the
number of zeros ifi0, 1]. In the case: = 1/2, it is observed that if this ratio is

equal toa?, wherea = (/5 — 1)/2 be the reciprocal of the golden ratio, then
there exists a subsequence of rapidly decaying Neumann eigenfunctions. To find the
corresponding value of, we set the result in Proposition 5.2 equahfoto get

ds/2

—  (pr) as n — oo.

P ds/2
(5.4) (E) _
(5.3) then implies that
1—p\ds/2 2
(5.5) (T) —1-a?=a.
Taking logarithms on both sides of (5.4) and (5.5) and dividing, we get
log(p/2)

oo(1-p2) 2 T PTETVe

The graphs in Section 6 are plotted with this valug.dbee Figures 3 and 4.
Notation. Given two real functiong andg, we denote by
f(x) ~g(x) as x — oo

if there exist two constant§';, C> > 0 such thatCig(z) < f(z) < Cag(x) for all
sufficiently largex. Similarly, if {a,}, {b,,} are two sequences, then

ap ~b, as n— oo

means that there exist two positive constaritsC, such thaiC1b,, < a, < Cb,, for
all sufficiently largen.
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Proposition 5.3. Fix 0 < p < 1and lety = p,, be a self-similar measure defined by
(5.2), letd, denote the spectral dimensionafand let),, denote thesth Dirichlet or
Neumann eigenvalue. Then

An ~ n?/ds,

Proof. First, consider the non-arithmetic case. From the result in [KL] again,

im p(z)

y =L forsome O0< L < oco.
T—00 ¢ s/2

In particular, for allz sufficiently large, we have

L—e<

< L+te,

wheree > 0 is small enough so thdt — ¢ > 0. This implies that for alh sufficiently
large,

)
~—

(An < L+e.

(5.6) L—e< <
Ads/2

We consider the Neumann case\,,) = n + 1; the Dirichlet cas@(\,,) = n is similar.
For alln sufficiently large,

L_e< ™ 14,

1 1\ 2/ , 1 1\ %/ds
- - /ds - - 2/ds
L+ )2/ <1+n> n < A < (L= o2/: <1+n> n

1 2/ds 1 2/ds. 2/ds

This proves the assertion for the non-arithmetic case. For the arithmetic case,

plz) = (G ('Og”““) + 0(1)> 2%:/2,

Sinced is a bounded non-zero periodic function ar{d) — 0 asz — oo, there exist
constantg™;, C, > 0 such that for all sufficiently large, we haveC; < p(x)/xds/z <
C>. In particular, for alln sufficiently large,C; < p()\n)/Aff % < (5. We are back to
(5.6) and the assertion follows from the same argumeht.

6. Numerical Approximations. Let {S1, 52} be defined as in (1.10) and Igtbe the
corresponding self-similar measure as defined in (1.9). Then fof any.*(]0, 1], 1),

(6.1) [ t@du=p [ 1S au+@-p) [ F(Sex)d
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All integrals in this section are over the intery@l 1]. The following identities can be
derived by using (6.1) (see [S1]):

(a) /wduzl—p

3
© [@-okdi=gp1ea)

(b) /wzdu — 1 p-2)

@ [ alt-o)di=Zp(1-p)

For a multi-indexJ = (j1,...,jm), ji = 1 or 2, we let|.J| denote the length of
and define
SJ:Sjlo"'OSjm and mJ:mJ(m) :#{Z 1§Z§m,]221}

(i.e.,m is the number of5¢’s in the compositiors;, o --- 0 S;,..) By iterating (6.1),
we get the following useful identity

©3  [rda= 3 p@epn T [ Smdn m=1

|J|=m

where the summation runs over all indicés= (j1,. .., jm) With j; = 1 or 2. Identities
(6.2) and (6.3) are useful in the finite element method, one of the methods we use to
obtain approximate eigenvalues and eigenfunctions.

6.1. The finite element method.To numerically approximate the solutions of (1.1), we
first solve it foru, v € S,,, the space of bounded continuous piecewise linear functions
with knots at pointg: /2™, k = 0,1,...,2™. Suppose:, v € S, satisfy

u( k):ak, v( K ) — by, k=01, 2"

om om
Thatis, for allx € [(k —1)/2™,k/2™], k =0,1,...,2™,
k-1
u(z) =2™(ap, — ak—1) (m - ZT) +ag_1
m k-1
U(l’) =2 (bk - bk—l) (l‘ - 27) +bp_1.
Then
2771
/u'v’ de =2 Z(ak — ak,]_)(bk — bk,]_)
k=1
27” 27VL
(64) =27 (ar — ap-1)bp — 2™ Y (ar — ap—1)br—1
k=1 k=1

2m—1
= Zm(ao—al)bo + 2" Z (-ak_l + 2a;, — ak+1)bk + 2m(-a2m_1 + azm)bzm.
k=1
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On the other hand, by using identity (6.3) we can express the right-hand side of (1.1) as

)\/uvd,u A Z p"(L—p)mTm /u(SJx)v(SJx)d,u

| T|=m
=) mek(l —p)" T / (ar-1(1—2z) + apx) (bp—2(1—2) + brx) dp,
k=1
wheremy, = my(m) := my, andJ is the unique index such that;[0,1] = [(k —

1)/2™ k/2™]. The second equality in (6.5) follows from the definitions:andv and
the formulaS;(z) = z/2™ + (k — 1) /2™.
Substituting the identities in (6.2) into (6.5) and regrouping terms, we get
2771

/UU dp = me’“ (1—p)™~ mk( (1+2p)ag—1bp1
+2p(1 — p)(ap—1by + axbr—1) + (L —p)(3 — Zp)akbk)

2m—1
((1+2p) m+1a0+ 2(1 p b0+ Z { 1+mk )m+17mkak_1
+ (1 +2p)p™r3(1 = p)™ TR+ (3 — 2p)p F(L—p)™ ) ap +
Zpl-i*rnk+1<1_p)m+1 Mk, 1}bk +<2p(1 p) a2m 1+(38=2p)(1-p)™ azm) bom.

Comparing coefficients of thg, in this equation and in (6.4) leads to the following
system of linear equations

A
2"(ap — a1) = 3 <(1 + 2p)pm+1a0 +2(1— p)pm+1a1>
A
Zm(—ak—l + 2a; — ak:+1) = § (Zp“’mk‘(l _ p)m+1—mkak_l
(6.6) + (L4 20)pM ™1 (1= p)™ 7R+ (3 2p)p™ (1= )T ay

+ 2pl+'mk+1(1 _ p)m+1_mkak‘+l> , k= 17 RN 2m -1

A
2" (—agm_1+agm) = 3(2 (1—p)™*tagn_1+(3-2p)(1—p)™* azm)-

By writing w = [uo, u1, . .., uzn|’, we can express these equations in matrix form as
(6.7) Mu = AN,u.
For example,

-1 0 O

1
1 -1 0 -1 2 -1 0 ©
My=2|-1 2 -1, My=2>| 0 -1 2 -1 0},
0 -1 1 0 0 -1 2 -1
0 0 0 -1 1
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and N1, N, are respectively

1 [P+ 2) 2%(1-p) 0

3|2 (&=p) HQ-p)  2(1-p? |,
0 2p(1-p)* (3—2p)(1-p)?

P}(1+2p)  2p3(1-p) 0 0 0

1| 2°1-p)  H*(1-p) 2p%(1-p)? 0 0

3 0 20?(1-p)? p(1—p)(3—4p+4p?) 2p*(1-p)? 0
0 0 2*(1-p)? 4p(1-p)*  2p(1-p)®
0 0 0 2(1-p)°® (38-2p)(1-p)®

We remark that botd/,,, and N,,, are symmetric, tridiagonal, and of ordéet 2 1.
Moreover, they satisfy the recursive relations in the following proposition.

Proposition 6.1.

M,, O 0 o0
Mm”_z[o* 0]+2[o* Mm]

0 0 0

where0, 0,, and0* are zero matrices of ordel@™ x 2™, 2™ x 2m*1 gnd2m*l x 2m
respectively.

Proof. The first identity is quite obvious. The second one follows by using induction
and applying the following simple relation to (6.6):

mp(m) +1 fork=1,...,2™
my(m) fork=2m+1... 2"7% O

mg(m+1) = {

6.2. Difference approximation method. There is an alternative way to approximate
the solutions of (1.1) by making use of the discrete Laplacian on the set of knots. Define

k T
V) = {me k=012 } m=12....
For any functionu : V,,, — R, the discrete Laplacian af, denoted byH,,u, is
defined as

Hypu(0) = —u(0) + u<2im)

(6.8) Hmu(zﬁm) ZU<%> —ZU(Z%) +u(k2tnl), 1<k<2™"-1

Hopu(1) = u<1 - 2%) —u(1).
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Let \Iﬂ,j;zm, k=0,1,...,2™, be a sequence of triangular piecewise linear functions
defined as

m =2 +1, 0<z<1/2™
o' (z) = .
0, otherwise
2"y — (k—1), (k—1)/2™ <x < k/2™
fyam(T) = —2"z+k+1, kj2n <z <(k+1)/2™ k=1,...2"-1
0, otherwise

2"y — 2"+ 1 1-1/2"<zx<1
0, otherwise

g (0) = {
Then, solutions of (1.1) can also be approximated by using the formula (see [K2]):

(6.9) (Hmu)(zﬁm) - A(/qf’,y/zm(x) du)u(iﬂ), k=01,...,2m

The left-hand side of (6.9) is determined by (6.8); the right-hand side is determined
by the following proposition.

Proposition 6.2. Letm > landfork =1,...,2™ —1, letJy, J> be the unique indices
such that
k—1 k

Si0.9 = [ 5

} and SJZ[O,l]:[k k+1}

om’ m |’
Then

@ [ ¥ du=pm
(b) / U om dp = p™1 (L=p) ™ 4 p 2t (1—p) ™2, k=1, 2"~ 1.

© [ dn=(1-p

Proof. We will prove (b); the proofs of (a) and (c) are similar and easier. Using (6.3)

and the fact tha'lf}j/zm is supported of(k — 1)/2™, (k + 1)/2™], we have

/\11272”1 dﬂ — Z pm.](l . p)m*mJ / lllz;zm (SJ:E) d,u,

|J[=m

= p™ (1 — p)m / \IIZL/zm (Spx)du
+p"™2(1 — )™M / ‘Ifz;zm (Spz)du

m m—m m L k-1
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mj _ py\m—my. m i i
+pmel-p) 2/ b (g * )

== [y
+ (1~ pymemay / (—z+1)dp (by definition of¥y,,.)

— pmJl(l _ p)m+1—mJl +pm‘72+1(l _ p)m—mJ2 (by (62)) O

By combining (6.8) and Proposition 6.2 we can express (6.9) in a matrix form as
(6.10) Myt = AN, @i,

whereM,,, = M,,, and, for example,

3 [ p? 0 0
Ni= |0 2p(1-p) 0
| 0 0 (1-p)?
- 0 0 0 0
0 2p%(1-p) 0 0 0
Np= |0 0 p(1—p)?>+p*(1-p) 0 0
0 0 0 »(1-p?2 0
) 0 0 0 (1-p)?

We remark thatV,, is a diagonal matrix of order2+ 1.
As in the finite element method, there is a recursive relation goverNipgWe

justify this in the following

Proposition 6.3. Form = 1,2,..., we have

p S Vo dp, if k=0,...,2" -1
/‘I’Zﬁwdﬂ— p VT dp+(1—p) [V dy, i k=27
(1_p>f\:[l?’]i,27n)/27n d//Ly If k = 2m+17 .,2m+1.

Proof. If k£ = 0, then it follows easily from Proposition 6.1 (a) that
/ gt dp = p™? =p / vy’ dp.

Fork =1,...,2™ — 1, Proposition 6.2 (b) gives

(6.11) /\IIZL/E}NH du — pmjl(l _ p)m+2—mj1 +pmJ2+l(1 _ p)m+1—m(72’
where P .
— +
Sp0,1] = {27 271] and S,,(0,1] = [271 27}
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Since S, [0, 1] and S, [0, 1] are on the left-hand side of the unit interv@l 1], J1, J>
can be expressed ds = (1, J;) and.J; = (1, J3), where

k-1 k

e k k+1}

Sy00,1) = [ om om |

] and sjz[o,l]:[

Hence (6.11) becomes

/ W dp = p (L - ) R T
=p(p" )" L))

With a few moadifications, equalities for the other cases can also be established
similarly. O

By using Proposition 6.3, we obtain the following recursive relation¥gy:

. N, O 0 0
where0, 0,, 0* are defined as in Proposition 6.1.

6.3. Normalization. There are several different ways that we have used to normalize
the eigenvectors numerically. We summarize these methods below.
(N1) Supposea., is an eigenvector (not yet normalized). Since

Jtigrds = [ @2 dn.

/(cun)zdu =1 < c¢= (I(u/:\)zdx)l/z.

cu,, NOW is normalized by taking the above valuecoT his method has the advantage
that integration is with respect to Lebesgue measure.

(N2) Note that
-1/2
l:/(cun)zdu — c= (/u%du) .

Another method we use is to create a lispagheasures on the dyadic intervals and find
the approximate normalization factor directly by

we have

m

[~ (i pelin, [ )

k=0

(N3) Here we proceed as in (N2) but integrdte? du exactly using the fact that? is
a piecewise quadratic function. This can be done sinces piecewise linear and we
know the integral of all quadratic functions from the identities in (6.2).
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6.4. Rapidly decaying eigenfunctions Figure 3 shows the numerical solutions for the
first 18 approximate normalized Neumann eigenfunctions:fdefined by equations
(1.9) and (1.10) angp = 2 — /3 (see the remark following Proposition 5.2). It is
observed that for this particular valuemgtthere exists a distinct subsequence of rapidly
decaying eigenfunctions,, wheren,, satisfies the recursive Fibonacci type relation

ni=1 no=2, ... ,ngs1=np+ni_1 fork>2
Alternatively, one can say that these eigenfunctions are strongly localized. The same
phenomenon occurs for Dirichlet eigenfunctions (we do not include the pictures for this

case because of space limitations). Figure 4 shows the first ten Neumann eigenfunctions
in this subsequence.

Conjectures 6.4. We conjecture that, as the graphs sugggst, || — oo ask — oo
for the normalized eigenfunctions. We also conjecture tat, <. 1 [uy, (v)] — 0 as
k — oo for anye > 0, which means a strong localization.

6.5. Error estimates. We finish this section by discussing the error estimates of the
finite element method. For anye Dom(£), andz, y € [0, 1],

1/2
/ dt‘ < |y — z|Y? (/ |/ 2dt>

and so for allz, y € [0, 1] we have
2
(6.14) |uly) — u(@)|” < |y — 2|€(u, u)

In particular, for eachh € Dom(€) that has a zero if0, 1] (including all Dirichlet and
Neumann eigenfunctions), we have

(6.13) |uly) —u(z)| =

(6.15) oo < €(u,u)Y/?

(6.16) ull2 < E(u, u)Y/2.
Moreover, by using the proof of [SU, Lemma 4.6], we have
(6.17) E(u,u)? < || Ayull2.

Using equations (6.13)—(6.17) and the proof of [SU, Theorem 4.8 and Corollary 4.9]
with j = 0 (see also [GRS]), we have

Theorem 6.5. Letu be anL?(u)-normalized Dirichlet or Neumann eigenfunction of
(1.1) with eigenvalue\. Then there exists € S,,, such that

(@) E(u— @, u— )12 < X\p™/?,

(0) [lu —@floo < Ajuflocp™,

(©) [lu—af2 < xp™?,
wherep = max{p/2, (1 — p)/2}. Moreover,i. may be taken to be the spline that
interpolatesu onV,, := {k/2" : k =0,1,...,2"}.

Proof. Part (a) follows from the proof of [SU, Theorem 4.8] by using (6.17) and
observing that for each multi-index with |.J| = m, (u — @) o S vanishes on the
boundary{0, 1}. Part (b) follows from (a) and the same proof as [SU, Corollary 4.9].
Part (c) follows by combining (6.16) and (a)[J
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Résune substantiel en francais. Soit une mesure finie continue et posit&support
supgu) = [0,1]. Typiquement, est une mesure auto-similaire. Noésidions les
valeurs propres et les fonctions propres de I'équation (1.1), c’es&-dire

1 1
/0 u'(z)v' (z) de = )\/0 u(x)v(x) du(z),

pourv € C§°(0,1), 'espace des fonctions infiniement dfentiablesx support dans
(0,1). Nous imposons soit la condition de Neumani(0) = «/(1) = 0 a la frontere,
soit celle de Dirichlet.(0) = u(1) = 0. L'équation (1.1) dfinie comme distribution
un laplacienA ,u pour lequel

1 1
/ uv de = / (—Auu) vdu
0 0

lorsquev € C§°(0,1). Les fonctions propres sont les analogues (fractals) des fonctions
sinus et cosinus classiques de Fourier.

Pour unettude compite, nous @montrons aisment, en plus de€sultats suivants
essentiellement connus (voir, par exemple, [A]), I'existence d’'une solution unique et
lisse de léquation pecedente. Lar-ieme fonction propre de Neumann admetéros
et sa @riveen + 1 zéros. Lan-ieme fonction propre de Dirichlet admet 1 zéros et sa
deriveen zéros. Pour une fonction propre quelcongutes £ros de: et deu’ alternent
entre eux et pareillement pour lesras de lan-ieme fonction propre de Dirichlet et de
Neumann. Il existe une base orthonormale catgtompose des fonctions propres
de Dirichlet (Neumann). Les valeurs propresde Dirichlet (Neumann) sont simples.
De plus, onalim_.. A\, = cc.

L’ équation (1.1) estquivalentex I'équation inégrale de Volterra-Steiltjes (voir [A,
Chapitre 11]):

u(x) = u(0) + /' (Q)z — A /0 Y@ —puly)duly), 0<z<i

Il est connu qu’une solution quelconquest differentiable et que laétivee satisfait

W(@) =0 =2 [Cudut).  0<a<1
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(Voir [A, Théoeme 11.2.2]). L'inverse est aussi vrai. De plus, il existe une fonction de
Green pour ref@sentel:, qui est essentiellement celle que I'on trouve dans [S2, K2] et
donree par

1
u() = u(0) + (u(1) — u(0)) & + A /O g(e.y)uly)duly), 0<z <1

ou g(x,y) est telle que éfinie dans Section 2. On utilise ces forn@giivalentes de
I’ équation pour obtenir degsultats de concaetpour les fonctions propres (Propo-
sitions 3.3 et 3.4) et d'autregsultats sur les proftes des valeurs propres et des
fonctions propres.

Onétudie la prengre valeur propre et la preare fonction propre lorsque la mesure
varie. Soit{y, : 0 < p < 1} une famille de mesures de probalgitcontinues avec
supp(up) € [0, 1] et telles que, pour € (0, 1) fixé quelconquey,[0, ¢] — O lorsque
p — 0. Dans le cas Neumann, sait = z1(p) le zéro communa toutes fonctions
propres de Neumann asseesa la premere valeur propre. Alors; — 1 lorsque
p — 0 (Théorme 4.2). Soit\ = ), la premere valeure propre de Neumann. Alors
A — oo lorsquep — 0 (Theoreme 4.3). On montre (Boeme 4.4) que

21 1
i = iy Gl =2 [ ) dt) = 3 [ Tan)] iy (0) — o lorscuep —
21

Si les fonctions propres sont norméks, alorgju, ||, = 1.

Soit A, la premére valeur propre de Dirichlet. Nous montrons que,lig), = oo
(Théoreme 4.5). Pour la fonction propre de Dirichlet normidis,,, nous montrons que
lim,_o |u},(1)| = co (Theo’me 4.6).

Nous donnons aussi un exemple qui montre que I'analogue @oidine 4.2 est faux
pour la premére fonction propre de Dirichlet (Exemple 4.7).

Nousétudions aussi le comportement asymptotique des valeurs propres. Nous nous
restreignons une structure p.c.f. auto-similairéféhie par le systme iératif

Si(z) = ra, So(x) = (1 —r)z+r, O<r<l,
et on prend pour la mesure auto-similaireéinie par
p=puoS;t+(l—puosS,t, 0<p<Ll

Utilisant un Esultat de Kigami et Lapidus [KL], on obtient des bornes asymptotiques
pour les valeurs propretinies par cette classe de mesures auto-similaires.

Nous faisons la description des solutions iuigues de Bquation (1.1). Pour estimer
les valeurs propres et fonctions propres guiguement, nous restreignomslavantage
au cas d'une mesure auto-similairgfidie par le systme iératif

Si(z) =3z, So(z)=3z+3

Moyennant I'identié

1 1 1
[ s@an=p [ 1) dura-p) [ £520) di
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on peut esoudre kquation (1.1) poun,v € S,,, 'espace des fonctions continues

linéaires par morceau avec noedds / 2™, k = 0,1,...,2™, ou m est un entier
positif quelconque. Ceci nous permeétiblir un systme @rérali€ pour les valeurs
propres

Myu = ANpu,

avec solutions: qui approximent les fonctions propres de Neumann. lessiltats
numérigues semblent indiquer que, pour certaines valeuys itlexiste une sous-suite
distincte de fonctions propres de Neumann agsaux nombres de Fibonaccizt
décroissance rapide (localement). Nous obtenons desésstifarreur (TRoeme 6.5)
et faisons les Conjectures 4.8 et 6.4.

(Al
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(D]
[F1]
[F2]

[F3]

REFERENCES

F. V. Atkinson, Discrete and continuous boundary problervathematics in Science
and Engineering, voB, Academic Presd\lew York-London,1964.

K. Dalrymple, R. S. Strichartz and J. P. Vinsdfractal differential equations on the
Sierpinski gasketl. Fourier Anal. Appl5 (1999),203-284.

E. B. DaviesSpectral theory and differential operatof3ambridge Studies in Advanced
Mathematics, vol42, Cambridge University Pres€ambridge1995.

U. Freiberg,MalRgeometrische Laplaceoperatorém fraktale Teilmengen der reellen
AchsePh.D. Thesis, Jena, Friedrich-Shiller University, 2000.

U. Freiberg,Analytical properties of measure geometric Krein-Feller-operators on the
real line, Math. Nachr260(2003),34-47.

U. Freiberg,Spectral asymptotics of generalized measure geometric Laplacians on
Cantor like setsForum Math. {o appeatr).

[GRS] M. Gibbons, A. Raj and R. S. Strichartkhe finite element method on the Sierpinski

gasketConstr. Approx17(2001),561-588.

[K1] J.Kigami,Laplacians on self-similar sets and their spectral distributions, Fractal geom-
etry and stochasti¢cEinsterbergenl(994),221-238Progr. Probab, vol. 37,Birkhauser,
Basel,1995.

[K2] J. Kigami,Analysis on fractalsCambridge Tracts in Mathematics, vai3,Cambridge
University PressCambridge2001.

[KL] J. Kigamiand M. L. Lapidusyeyl's problem for the spectral distribution of Laplacians
on p.c.f. self-similar fractalgComm. Math. Phys158(1993),93-125.

[SV] M. Solomyak and E. Verbitsky®n a spectral problem related to self-similar measures
Bull. London Math. Soc27 (1995),242—-248.

[S1] R. S. StrichartzEvaluating integrals using self-similaritAmer. Math. Monthly107
(2000),316—326.

[S2] R.S. StrichartzTaylor approximations on Sierpinski gasket type fragthl§unct. Anal.
174(2000),76-127.

[S3] R.S. Strichartz and M. UsheBplines on fractalsMath. Proc. Cambridge Philos. Soc.
129(2000),331-360.

E. J. BrRD

DEPARTMENT OFMATHEMATICS
UNIVERSITY OF MICHIGAN
ANN ARBOR, MI 48109-1109, U.S.A.

EMAIL:

ebird@math.lsa.umich.edu



34 Fractal Laplacians on the Unit Interval

S.-M. NGAI

DEPARTMENT OFMATHEMATICAL SCIENCES
GEORGIA SOUTHERN UNIVERSITY

STATESBORQ GA 30460-8093, U.S.A.

EMAIL: ngai@gsu.mat.georgiasouthern.edu

A. TEPLYAEV

DEPARTMENT OFMATHEMATICS
UNIVERSITY OF CONNECTICUT
STORRSCT 06269 U.S.A.

EMAIL: teplyaev@math.uconn.edu



