MATH 3160 - Probability - Fall 2017 Quiz 7, Wednesday October 25

(1) Suppose a random variable X has the p.d.f. f(x), which is defined as f(x) = ax(1-x) when 0 < x < 1, and f(x) = 0 when x is negative or larger than 1. Find a and $\mathbb{E}X$.

Solution:
$$\int_0^1 x(1-x) \, dx = \frac{x^2}{2} - \frac{x^3}{3} \Big|_{x=0}^{x=1} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$
. Hence $a = 6$.
 $6 \int_0^1 x^2(1-x) \, dx = 2x^3 - 3\frac{x^4}{2} \Big|_{x=0}^{x=1} = 2 - \frac{3}{2} = \frac{1}{2}$

Answer: a = 6, $\mathbb{E}X = \frac{1}{2}$ Note that $\mathbb{E}X = \frac{1}{2}$ can be obtained by just looking at the picture because this is the center of the parabola.

(2) Suppose a different random variable X has the p.d.f. f(x), which is defined as f(x) = ax(1-x) when $0 < x < \frac{1}{2}$, and f(x) = 0 when x is negative or larger than $\frac{1}{2}$. Find a and $\mathbb{E}X$.

Solution:
$$\int_0^{\frac{1}{2}} x(1-x) \, dx = \frac{x^2}{2} - \frac{x^3}{3} \Big|_{x=0}^{x=\frac{1}{2}} = \frac{1}{8} - \frac{1}{24} = \frac{1}{12}$$
. Hence $a = 12$.
 $12 \int_0^{\frac{1}{2}} x^2(1-x) \, dx = 4x^3 - 3x^4 \Big|_{x=0}^{x=\frac{1}{2}} = \frac{1}{2} - \frac{3}{16} = \frac{5}{16}$

Answer: a = 12, $\mathbb{E}X = \frac{5}{16}$ Note that a = 12 can be obtained by just looking at the picture because $\frac{1}{2}$ this is the center of the parabola and so the answer for *a* should be $2 \cdot 6$, where 6 comes from the previous question.

(3) Suppose another random variable X has the p.d.f. f(x), which is defined as $f(x) = \frac{1}{x}$ when 1 < x < b, and f(x) = 0 when x is smaller than 1 or larger than b. Here b is a certain number, which can appear in your answer. Find formulas for $\mathbb{E}X$ and $\mathbb{V}ar(X)$. Do not simplify.

Solution:
$$\mathbb{E}X = \int_{1}^{b} \frac{x}{x} dx = b - 1$$
. $\mathbb{E}X^{2} = \int_{1}^{b} x dx = (b^{2} - 1)/2$.
Answer: $\mathbb{E}X = b - 1$, $\mathbb{Var}(X) = \mathbb{E}X^{2} - (\mathbb{E}X)^{2} = (b^{2} - 1)/2 - (b - 1)^{2}$

Bonus question 1: What is **b** in the previous question? Solution: $\int_1^b \frac{1}{x} dx = \log(b) - \log(1) = \log(b) =$ 1. We know $\log(e) = 1$ because $e^1 = e$. Answer: b = e

Bonus question 2: Can you find a number c such that $f(x) = \frac{c}{x}$ is a p.d.f. on the half-infinite interval $[1,\infty)$? Solution: $\int_{1}^{\infty} \frac{1}{x} dx = \log(x) \Big|_{1}^{\infty} = +\infty$. Answer: *not possible, d.n.e.*

Bonus question 3: Suppose c and p are numbers such that $f(x) = \frac{c}{x^p}$ is a p.d.f. on the half-infinite interval $[1,\infty)$. Can you find a relation between p and c? Solution: $\int_1^\infty \frac{1}{x^p} dx = \frac{1}{1-p} x^{1-p} \Big|_1^\infty = p-1$ if p > 1, and is not defined if $p \leq 1$. Answer: c = 1 - p if p > 1, and is not defined if $p \leq 1$