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Let A be the probabilistic Laplacian (generator of a simple random walk) on the
Sierpinski lattice. If z # -2,-2 -1 and R(z) = z(4z + 5), then

R(z) € 0(A) <= z € o(A)
o(A)=JrUD
where D % ¢ 3}U< U RS )
and Jg is the Julia set of R(z)

N
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There are uncountably many nonisomorphic
Sierpinski lattices.
Theorem (T). The spectrum of A is pure point.
Eigenfunctions with finite support are complete.







Let A(0) be the Laplacian with zero (Dirichlet) boundary condition at &L. Then

the compactly supported eigenfunctions of A0) are not complete (eigenvalues in
&€ is not the whole spectrum).

Let OL(0) be the set of two points adjacent to L and w(AO) be the spectral

measure of A(0) associated with ]IaL(O)' Then Supp(w(AO)) = Jr has Lebesgue
measure zero and

d(w(AO) ®) R1,2)
dw(AO)

(82 +5)(2z + 3)
(224 1)(4z + 5)

(2)
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Fix p, g>0, p+qg=1, and define probabilistic Laplacians A,, on the segments
[0,3™] of Z, inductively as a generator of the random walks:

0 1
*——O
1 1
0 1 3
@ L ® ®

0 3" 2(3") 3ntl
L 4 L _
1 qp P q 1

and let A = lim A, be the corresponding probabilistic Laplacian on Z .

n—oo
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If z #—1+xpand R(2)=2(2%+32+2+pq)/pq, then R(2) € 0(A,) <
z € 0(Ant1)

Theorem(T). o(A) = Jg, the Julia set of R(z).

If p=q, then o(A)=[—2, 0], spectrum is a.c.

If p # q, then o(A) is a Cantor set of Lebesgue measure zero, spectrum is
singularly continuous.

13



There are uncountably many “random” self-similar Laplacians A on Z:
For a sequence K = {k;}32,, k; € {0,1,2}, let
Xn=—> k;j3
j=1
and A, is a probabilistic Laplacian on [X,,, X,,+3"]:

X, X, +371 X, +2(3™1) X,+3"
@——————  eee @ coe @ coe
1 q p P q 1

In the previous example k; = 0 for all j.
Theorem (T).

For any sequence K we have o0(A) = Jgr. The same is true for the Dirichlet
Laplacian on Z (when k; = 0).
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R. Grigorchuk and Z. Sunik, Asymptotic aspects of Schreier graphs and Hanoi
Towers groups, preprint.
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Sierpinski 3-graph
(Hanoi Towers-3 group)
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Sierpinski 4-graph
(standard)
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These three polynomials are conjugate:

Sierpinski 3-graph (Hanoi Towers-3 group): f(x) = x> —x — 3
f3)=3f3)=5

Sierpifiski 4-graph, “adjacency matrix” Laplacian: P(A) = 5\ — \?
P(0)=0,P'(0)=5

Sierpifiski 4-graph, probabilistic Laplacian: R(z) = 422 + 5z
R(0) =0, R'(0) =5

17



Theorem. Eigenvalues and eigenfunctions on the
Sierpinski 3-graphs and Sierpinski 4-graphs are in
one-to-one correspondence, with the exception of the

eigenvalue z = —% for the 4-graphs.
v 422 + 5z W

AVARRED P e

4.2 8
32" T 32

— ~"

222 + 4z

18



IS
VavARRVAY,
Y X

Sierpinski 3-graph ! Sierpinski 4-graph
(Hanoi Towers-3 group) (standard)
R(z) = 22% + 4z R(z) = 32>+ 32
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Let H and JHy be Hilbert spaces, and U : Hy — JH be an isometry.

Definition. We call an operator H spectrally similar to an operator H with
functions ¢y and ¢4 if

U*(H — z)7'U = (po(2)Ho — ¢1(2)) ™"
In particular, if ¢g(2) # 0 and R(z) = ¢1(2)/po(2), then

U*(H — 2)7'U = (H — R(2))".

IfH:(S X)then

©o(2)

X Q
S — ZI() — X(Q — ZIl)_lX = QOO(Z)HO — QOl(Z)I()

Theorem (Malozemov, Teplyaev). If A is the graph Laplacian on a self-
similar symmetric infinite graph, then

HRQO-(AOO) QHRU:DOO

where D, is a discrete set and Jg is the Julia set of the rational function R.
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LECTURE 2
LAPLACIANS ON SELF-SIMILAR FRACTALS
AND SPECTRAL ZETA FUNCTIONS

Three contractions Fy, Fp, F3 : R' — R, Fj(z) = 3(x+p;), with fixed

points p; = 0, %, 1. The interval I=[0, 1] is a unique compact set such that

1= ] F(D)
j=1,2,3
The boundary of I is 81 = Vy = {0,1} and the discrete approrima-
tions toIare V,, = |J F;(Vp-1) = {3%}2:0

. ) =1,2,3 )
Vi ° A/o | o\‘ °
Vo o—eo ‘Ko l 0% o—eo
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Definition. The discrete Dirichlet (energy) form on V, is

En(f) = D (F)—F(@)

z,ycVn
Yy~

and the Dirichlet (energy) form on I is E(f) = lim 3"E,(f) =
Jo 1f'()|?da

Definition. A function h is harmonic if it minimizes the energy given the
boundary values.

Proposition. 3&,,.1(f) > &,.(f) and 3E,,41(h) = E,.(h) = 37"E(h)

for a harmonic h.

Proposition. The Dirichlet (energy) form on I is self-similar in the sense that

E(f) =3 E(foF)

j:19273

28



Definition. The discrete Laplacians on V,, are

Anf(@) =3 F)—Fx), TEV,\V,

yeVn
y~a

and the Laplacian on I is Af(z) = lim 9"A, f(z) = f"(z)

Gauss—Green (integration by parts) formula:

1 1
e() = — [ rafdz+1f|,

Spectral asymptotics: Let p(\) be the eigenvalue counting function of
the Dirichlet or Neumann Laplacian A:

p(A) = #{7 : A; < A}

p(A) 1

Then

lim =
A—00 Ads/2 oy
where ds = 1 is the spectral dimension.

29



—A'>_8/2

Definition. The spectral zeta function is {A(s) = Z)\ 750( J
J

Its poles are the complex spectral dimensions.

Let R(z) be a polynomial of degree IN such that its Julia set Jp C (—o0, 0],
R(0) =0and ¢ = R'(0) > 1.

2log N -

Definition. The zeta function of R(z) for Re(s) > dr = oec 1S

(3(s) = lim ) (—c"z)"%/% = Z)\;s/z

zeR™"{z0}

Theorem. (*0(s) = 1_‘?7(5_)8/2 + £5°(8), where f1(s) and f,°(s) are ana-

lytic for Re(s)>0. If J g is totally disconnected, then this meromorphic continuation
extends to Re(s)>—e, where €>0.

In the case of polynomials this theorem has been improved by Grabner et al.
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Theorem. (a(s) = ¢} (s) where R(z) = 2(42"+122+9).
The Riemann zeta function {(s) satisfies {(s) = WSC;)%(S) The only complex
spectral dimension is the pole at s = 1.

A sketch of the proof: If 2z — 5, —3 then
R(z) € a'(An) < z € o0(Ani1)

and so {a(s) = C%(s) since the eigenvalues A; of A are limits of the eigenvalues
of 9" A,,.

Also Aj=—m?52 and so
> —S/2
CA(S) — Z (7T2j2) — ﬂ-—SC(S)
j=1
where {(s) is the Riemann zeta function. Q.E.D.

¢(s) = w°lim Z (—9"z)_8/2
zeR~ {0}
z#0

32



Definition. A, is p—Laplacian if
1 1
e(f) = [ I£@Pde=— | fA.fdu+ F1];,
0 0

Definition. A probability measure i is self-simzilar with weights mq, mo, mg

if u= > mjuokF;.
j=1,2,3

Proposition. A, f(.:v)——— lim (1+l)"An f(z).

k )+qf k+1) _f(gn)
An.f(g_n): k—|—1
where mi=ms, p—mfﬁnz, q—ml’j‘:mz and
m, mo s
1 qp D q 1
O_> @ @ @ @ @ @ @ @ ®
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Spectral asymptotics: If p(\) is the eigenvalue counting function of the Dirichlet
or Neumann Laplacian A, then
pP(A) pP(A)

0 < ll}I‘Ii)glf I < llin_)s;ip I

< o0

where the spectral dimension is

dy=— 5% kiggl < 1.
og(1+7)

All the inequalities are strict if and only if p # q.

Proposition. R(z) € 0(A,) <= z € 0(Ap11)
where z#—14p and R(z)=2(2z2+32+2+pq)/pq.
Note that R'(0)=1 + -, and d;=dp.

Theorem. (a,(s)=¢) (s)
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Three contractions F}, F,, F3 : R? — R?,
F;(x) = %(a:—i—pj), with fixed points p1, p2, D3.

.e!'!!’e. .i!'!!&. v'!'v .ir!i. .e!e.

The Sierpinski gasket is a unique compact set .S such that

S= U Fi(8)

j=1,2,3

35



Definition. The boundary of S is

0S = Vo = {p1, P2, 3}
and discrete approximations to S are

Vi = U Fj(Vn—l)

j=1,2,3

Vo : Vi Vs

36




Definition. The discrete Dirichlet (energy) form on V, is

En(f) = ) (Fy—f)?

z,ycVn
Yy~

and the Dirichlet (energy) form on S is
E(f) = lim (3)"€(f)

Definition. A function h is harmonic if it minimizes the energy given the
boundary values.

Proposition. 2E,.1(f) > &n(f)
ggnﬂ(h)zgn(h):(g) “"&(h) for a harmonic h.

Theorem (Kigami). € is a local regular Dirichlet form on S which is self-similar

in the sense that
E(f)=35 ) E(foF))

j:192’3
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Definition. The discrete Laplacians on V,, are

Anfx)=1> f)—fx), zEV,\V,

IS 2
y~x

and the Laplacian on S'is
A,f(x) = lim 5" A, f(=x)

if this limit exists and A, f is continuous.

Gauss—Green (integration by parts) formula:

&) =~ [ FAufdun+ Y F(P)2uf (D)

peoS
p is the normalized Hausdorff measure, which is self-similar with weights

l’l‘:% Z l,l,OFj.
1=1,2,3

re

»
W=
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Spectral asymptotics: If p(\) is the eigenvalue counting function of the Dirichlet
or Neumann Laplacian A, then
pP(A) p(A)

0< ll}I‘I_l)loglf X < lu;\n_)s;jlp AE

< o0

where the spectral dimension is

___log9
1<d3_10§5<2.

Proposition. R(z) € 0(A,) <= 2z € 0(Api1) where z£ — 1, -3, 5

and R(z) = z(5 + 4z2).

Theorem (Fukushima, Shima). Every eigenvalue of A, has a form
A=5"lim 5" R "(z)

n—00
where R™"™(zg) is a preimage of zy = —%, —% under the n-th iteration power
of the polynomial R(z). The multiplicity of such an eigenvalue is C13™ + C,.
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the Sierpinski gasket is

Can(s) = 3¢a(9) (5555 +550) + 3¢ (2

of the Laplacian on

Theorem. Zeta function
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Definition. If £ is a fractal string, that is, a disjoint collection of intervals of
lengths 1, then its geometric zeta function is (g (s) = ) lf.

Theorem (Lapidus). |If A_—dez is a Neumann or Dirichlet Laplacian on £,

then Ca(s) = 75 (s)Ce(s).

Example: Cantor self-similar fractal string.

If £ is the complement of the middle third Cantor set in [0, 1], then the complex

log 2—|—2zn7r EZ}

spectral dimensions are 1 and { log 3

Ce(s) = g, Ca(s) = C(8) g

41
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log 3

42

0]

0]

Y



Definition. A post critically finite (p.c.f.) self-similar set F' is a compact con-
nected metric space with a finite boundary OF C F' and contractive injections
Y; : F — F such that

k
F=W(F) = | Jyi(F)
and i=1
Yo (F) [ %w(F) C ¥u(F) () 9w(dF),
for any two different words v and w of the same length. Here for a finite word

w € {1,...,k}™ we define Yy = 1y, O+« O Yy,
We assume that OF is a minimal such subset of F'. We call 1, (F') an m-cell.
The p.c.f. assumption is that every boundary point is contained

in a single 1-cell.

Theorem (Kigami, Lapidus). The spectral dimension of the Laplacian A, is
the unique solution of the equation

k
> (rip)®? =1
=1

43



Conjecture. On every p.c.f. fractal F there exists a local regular Dirichlet form &
which gives positive capacity to the boundary points and is self-similar in the sense
that

k
E(f) = Z piE(for;)

for a set of positive refinement weights p = {p; ?:1-

Definition. The group GG of acts on a finitely ramified fractal F' if each g € G is
a homeomorphism of F' such that g(V;,) = V,, for all n > 0.

Proposition. Suppose a group GG of acts on a self-similar finitely ramified fractal
F' and G restricted to Vj is the whole permutation group of V. Then there exists
a unique, up to a constant, G-invariant self-similar resistance form £ with equal
energy renormalization weights p; and

Elfs )= Y (fl)—fly)™

Moreover, for any G-invariant self-similar measure p the Laplacian A, has the

spectral self-similarity property (a.k.a. spectral decimation).
44
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LECTURE 3
KIGAMI’S RESISTANCE FORMS ON FRACTALS
AND RELATION TO QUANTUM GRAPHS

Definition. A compact connected metric space F' is called a finitely ramaified
self-stmzilar set if there are injective contraction maps 14 eeey ¥y, : F — F
and a finite set Vi C F’ such that

F=U¢i(F)=‘I’(F)

and
FoNFy=V,NV,

for any two distinct words w, w’ € W,, = {1,..., m}", where F, = 1, (F),
Vi = (Vo) and ¥y, = Py, 0 oo 0 Py,

The vertices of generation n are defined by V,, = ¥(V,,_;) = ¥ (V).

The fractal F' can be uniquely reconstructed from its “combinatorial skeleton” or
“ancestor”: {OF = Vp, Vi, Y|y} [Kigami, 1993, Appendix A].
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A symmetric vanishing on the diagonal function ¢ : V(')2 — Ry (set of conduc-
tances) defines a discrete Dirichlet form

Eo(f) = > (fly) — f(@))’co(z,y).

z,yeV
Its refinement by W is

E1(F) = ¥,(&o0)(f) = sz’ - Eo(f o).

and the trace map is
Tr(€1)(f) = inf{&€1(g)lg : Vi — R, glv, = f}-
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Theorem (Kigami). For given a set of positive refinement weights p = {p; }*_,
self-similar local regular Dirichlet forms & which gives positive capacity to the
boundary points are in one-to-one correspondence with the fixed points € of the
renormalization map

A, =Tro V¥,.

Definition. A resistance form & is self-similar if

E(fs F) =) pi&(f o i, f o ).
=1

Conjecture. Any finitely ramified self-similar set has a self-similar resistance form.
Any p.c.f. self-similar set has a regular self-similar resistance form.
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Thus we are looking for nonlinear eigenvectors €y € D N P°

Ay(Eo) =&

where DD is the cone of Dirichlet forms on V;y with and P is the cone of nonnegative
quadratic forms. lts interior IP° consists of positive forms.

Proposition.
(1)A,:D—D, P—P, P°— P°.
(2) A, is continuous on D U P°
(3) Ap(a€) = aA,(E) foralla > 0
(4) Ap(E +TF) 2 Ap(E) 4 Ay(F)

Hilbert's projective metric (a pseudo distance on P°) is
M(E/F)
m(E/F)
where E,FEP° is the biggest lower bound of £/F,

m(E/F) = sup{a > 0|laF < E} >0

h(E/F) = In

and M(E/F) = m(F/€)~".
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Proposition.

(1) h(ax&,BF) = h(E,F) forall a, 3 > 0.

(2) Let H={E€B|trace(€)=1} (an affine hyperplane). Then (H N P°, h)
is a complete metric space.

(3) The h- and the || - ||-topology coincide on H N P°.

(4) h(E,F) = 0if and only if € = aF.

(5) limg_, 5p h(g 3:) 00

(6) A, is h-nonexpansive on IP°, that is, lower g,-level sets are A ,-invariant.

let H=H NDNP°and g, : H — R,

C.Ip(g) — h(Ap(S)a €).

Proposition.

(1) A, has a unique eigenvector F € H if and only if g,|m vanishes only at F.

(2) A, has multiple eigenvectors in H if and only if g, vanishes on a connected
set which accumulates at OP.

(3) When a A ,-forward orbit started in H is contained in B,.(€) for some » > 0
and € € H, then there exists a A -eigenvector in Bs,.(€) N H.
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Proposition. Let {p,} be such that A, converges to A in (C(H), || - ||cc). If
q = h(A(-),:) : H — R, vanishes only at a single point, then there exists an
m € N such that A,, has a unique eigenvector in H, for n > m.

Definition. A collection of refinement weights p is admissible if and only if

Ap(€o) =&
has a solution €y € D N P°.
Proposition. The set of admissible weights is open.

Theorem. (Hambly, Metz, T.) Let p,  poo € (0,00]% and A, has a
unique eigenvector in H. Then there exist finite admissible refinement weights.

This result can be summarized as follows: [f, by collapsing a subset of cells of F’,

one can obtain a structure which has admissible weights, then F' also has admissible
finite weights.
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Proposition. If #Vy = 3 then admissible weights exist.

Definition. The group G of acts on a finitely ramified fractal F' if each g € G is
a homeomorphism of F' such that g(V;,) = V,, for all m > 0.

Proposition. Suppose a group GG of acts on a self-similar finitely ramified fractal
F' and G restricted to V) is the whole permutation group of V. Then there exists
a unique, up to a constant, G-invariant self-similar resistance form & with equal

energy renormalization weights p; and Eo(f, f) = >, ,cv; (f(z) — f(y))2

Theorem (Hambly, Metz, T.) Suppose a self-similar finitely ramified fractal
F’' has connected interior and a group GG acts on F' such that its action on Vj is
transitive. Then there exists a G-invariant self-similar resistance form € on F'.

Theorem (Hambly, Metz, T.) Suppose a self-similar finitely ramified fractal F

has connected interior and a symmetric boundary. Then there exists a G-invariant
self-similar resistance form € on F'.
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Examples.

Generalized non-symmetric Sierpinski gaskets in R?:
p2—1 + pgl > pl—l
pil Pyt > Py
P+ o3t > p;

“Cut” Sierpinski gasket:

p1+p2=1

p3s+ p2 =1
Unit interval:

p1+p2=1
Vicsek set:

p1+ps+ps=1
P2+ p4s+ ps =

|
|
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A generalized Vicsek set
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A generalized Sierpinski gasket
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GRAPH-DIRECTED FRACTALS
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Definition. A pair (€, Dom ) is a resistance form on a countable set V if

e Dom € is a linear subspace of £(V,) containing constants, € is a nonnegative
symmetric quadratic form on Dom &, and E(u,u) = 0 if and only if u is
constant.

® Let ~ be an equivalence relation on Dom & defined by u ~ v if and only if
u — v is constant on V. Then (€/~,Dom &) is a Hilbert space.

@ For any finite subset V' C V, and for any v € £(V') there exists
u € Dom & such that u‘v = .

e For any p, g € V, there exists the effective resistance between metric

2
R(p,q) = sup { <u(1;)(:;()q)> : u€Dom 8} < o0

Hence any u € Dom &€ has a unique R-Holder continuous extension to (2,
the R-completion of V.

e Markov property: for any u € Dom E we have that E(u, ) < E(u,u),

where
1 if u(p) > 1,

a(p) = ¢ u(p) if 0 < u(p) <1,
0 if u(p) < 1.

66



For any finite subset U C Vi, the finite dimensional Dirichlet form €y on U is
Eu(f, f) = inf{E(g,9) : g € Dom &, g|, = f}

and is called the trace of € on U.
It Uy C Uy then &y, is the trace of Ey, on Uj.

Theorem (Kigami). Suppose that V,, are finite subsets of V; and that | J- , V,,
is R-dense in V. Then

E(f, ) = lim Ev, (£, 1)

for any f € Dom &, where the limit is non-decreasing.

Theorem (Kigami). Suppose that V;, are finite sets, and the finite dimensional
resistance forms Ey;, on V;, are compatible: each Ey;, is the trace of Ey;,, on V,,.
Then there exists a resistance form € on V,, = [ J>7 , V,, such that

S(faf) :n!l_)r{.logVn(faf)

for any f € Dom &, and the limit is non-decreasing.
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Definition. A finitely ramaified fractal F' is a compact metric space with
a cell structure F = {Fy}aca and a boundary (vertex) structure
V = {V,}aca such that the following conditions hold.
e A is a countable index set;
® cach F, is a distinct compact connected subsets of F’;
e cach V,, is a finite subset of F,, with at least two elements;
oif Fy = U?:l Fi; then V,, C U?zl Vo,
® there exists a filtration { A}, such that
(1) A,, are finite subsets of A, Ag = {0}, Fy = F;
(2) A, N A, = T ifn # m;
(3) for any a€A,, there are ay, ..., EA 11 such that F,= U§:1 Fo
o Fy()Fy = Vy[) Va for any two distinct a, &’ € Ay;
e for any strictly decreasing infinite sequence of cells there exists * € F' such
that (,,>1 Fa, = {x}.
If these conditions are satisfied, then

(Fa F, V) — (F? {Fa}aEA’ {Va}aeﬂ)

is called a finitely ramafied cell structure.
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Definition. A function is harmonic if it minimizes the energy for the given set of
boundary values. A function is m-harmonic if it minimizes the energy for the given
set of values on V,.

Theorem. Suppose that all n-harmonic functions are continuous. Then any con-
tinuous function is R-continuous, and any R-Cauchy sequence converges in the
topology of F'. Also, there is a continuous injective map 0 : {2 — F' which is the
identity on V.

Then we can (and will) consider €2 as a subset of F'. Then €2 is the R-closure of
V.. In a sense, €2 is the set where the Dirichlet form &€ “lives”.

Theorem. Suppose that all n-harmonic functions are continuous. Then & is a
local regular Dirichlet form on € (with respect to any measure that charges every
nonempty open set).
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Definition. We fix a complete, up to constant functions, energy orthonormal set
of harmonic functions hq, ..., hy, where k = |V3| — 1, and define the Kusuoka
energy measure by

V =Upy + «e. + Vp,.

If F,, C F,, then
Moo £(Vy) — £(Vy)
is the linear map which is defined as follows. If f, is a function on Vj, then let Ay,
be the unique harmonic function on F, that coincides with f, on V. Then we
define

Ma,a f — h'fa’V ,*
Proposition. If F, = |J Fy; then D, = M ajDa.Ma .. and
’ J )

v(F,)=TrM D M,
where M = MO,a and D, is the matrix of the Dirichlet form €, on V.
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M*D M _ . .
=== if v(F,) # 0. Then we define matrix valued
v(F,)

functions Z,,(z) = Z, if v(F,) # 0, a € A,, and x € F,\V,. Note that
Tr Z,,(x) = 1 by definition.

We denote Za =

Theorem. For v-almost all x there is a limit Z(z) = lim,,_,o Z ().

Proof. One can see, following Kusuoka's idea, that Z,, is a bounded v-martingale.
]

The energy measures v, are the same as the energy measures in the general theory
of Dirichlet forms. The matrix Z is the matrix whose entries are the densities

dv

Zij =

It has been recently proved by Hino that v is singular with respect to any product
measure u for a large class of fractals.
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Theorem. If the space of piecewise harmonic functions is dense in Dom & then
any f € Dom &€ has a weak gradient V f such that

e(.0) = [(V$,29)dv

Conjecture. For any finitely ramified fractal
rankZ (z) = 1

for v-almost all «.
This has been recently proved by Hino for a large class of p.c.f. fractals.

72



GRADIENT IN HARMONIC COORDINATED

Let Vo = {v1, ..., U} and let h; be the unique harmonic function with boundary
values hj(’l)i) = 52',]'.
Kigami's harmonic coordinate map ¢ : F' — R™ is

(@) =(h1(x), ..os hin(@)).

In what follows we assume that ¢ : F — Fgy = ¥ (F') is a homeomorphism,
F = Fy, ¢¥(z) = x and identify £(Vy) with R™ in the natural way.

Theorem. If f is the restriction to F' of a C1(R™) function then f € Dom &,
and such functions are dense in Dom &. Moreover,

E(f, f) = /F (V§, ZV f)dv

for any f € C*(R™).
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We have the analog of the Gauss-Green formula:

E(fg) = — /F gA, fdv,

for any function g € Dom &, vanishing on the boundary Vj, and any function
f € Dom A,, where A, is the energy Laplacian.

Theorem. If f is the restriction to F' of a C?(R™) function then f € Dom A,
and such functions are dense in Dom A,,. Moreover, v-almost everywhere

A,f = Tr (ZD?f)

where D? f is the matrix of the second derivatives of f.

Conjecture. On the Sierpinski gasket, if f € Dom A, then f is the restriction
to F of a C1(R™) function.
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We also can define a different sequence of approximating energy forms. In various
situations these forms are associated with so called quantum graphs, photonic
crystals and cable systems. If f € C1(R™) then

9= > cnwybo, (f>F)
z,yeVn

where
Q vy 2
Sw,y(fa .f) = /0 (af(il?(l — t) + ty)) dt
is the integral of the square of the derivative
9 f(a(l—t) + ty) = (VF(z(1 — t) + ty),y — z)

of f along the straight line segment connecting « and y. Thus 82 y(f, f) is the
usual one dimensional energy of a function on a straight line segment.

If f is linear then Si’y(f, f) = (f(z) — f(y))z. Therefore if f is piecewise

harmonic then Si(f, f) = EL(f, f) for all large enough n.
Therefore for any C*(R™)-function we have

lim €.(f, ) = €(f, f)



It is easy to see that if g is a C'(R™)-function vanishing on V; and f is a
C?(R™)-function then

E(f9) = Y. Cuu / (@1 — 1) + ty) (L f (1 — ) + ty) )t

7y€VTL
because after integration by parts all the boundary terms are canceled. Then if

o € A,, then
Z cn,w,yj—;f(w(l —t) +ty) =

T,y Vy
Z Cn,xz,y Z D w(l — t) + ty) (y’t wl)(yj T wj) —
T,YyEVy 2,7=1

Tr (M;DaMa (DQf(CUa) + R, (z,y,t, f,a, wa)))
where , € V, and
lim |Ru(z,y,1, f, @, xa)| = 0

uniformly.
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Let ;. be the space of harmonic functions on F' that vanishes at x.

Definition. If h € 3, then the intrinsic derivative %(az) € R exists if

F(y) = f(x) + h(y) 5 (2) + o|h(y)],_ -
The intrinsic gradient Grad,f € I, exists if for any non constant h € I3,

f(y) = f(x) + Grad,(y) + o|h(y)|,_,-

Theorem (Pelander, T). Let p be a self-similar measure on a p.c.f. s-s set with
weights p;. Let 4T and 4~ be the upper and lower Lyapunov exponents of the
matrices M with respect to the measure pt and log~y = Z;":l pilog(rip;).

If vT > ~ then ;l_{;,(w) exists for any f € Dom A, any non constant h € H
and p-almost all .

If v~ > ~ then Grad, f exists for any f € Dom A, any non constant h € H

and p-almost all . .
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