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Abstract. We study Green’s function and eigenfunctions on random Sierpinski gaskets.
We use a randomized algorithm that can produce all possible Dirichlet forms on the Sier-
pinski gasket. We prove that the limiting local regular Dirichlet form exists, which implies
the existence of a self-adjoint Laplacian. Numerically we demonstrate that for low random-
ness, Green’s function is bounded and continuous, but for high randomness it is unbounded
and discontinuous. We also study localization of eigenfunctions, as well as distribution and
spacing of eigenvalues.
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1. Introduction

This paper analyzes random resistance networks or, equivalently, energy (Dirichlet)
forms, on random Sierpiński gaskets. Such resistance networks can be described as certain
limits of quantum graphs, as demonstrated in [62]. More precisely, we analyze the approxi-
mating sequences of quantum graphs which satisfy appropriate compatibility conditions. We
use a specific algorithm, introduced in [51], that constructs all compatible Dirichlet forms
based on a random choice of parameters. Defining an energy form on the Sierpiński gasket
allows one to introduce such objects as Laplacian, diffusion processes etc.

It was proved in [51] that the harmonic functions are continuous with probability one. We
prove that with probability one the random Sierpiński gasket has a homeomorphic harmonic
embedding into the two dimensional Euclidean space, i.e. one can use a pair of harmonic
functions as coordinates. Then it is possible to write the energy of a smooth function as the
integral, with respect to a reference energy measure, of the norm squared of the gradient.
Then one can represent the energy measure Laplacian as a second derivative in a sense. In
addition, we show that, in harmonic coordinates, the angles of approximating triangles tend
to zero with probability one at every junction point.

A computer program was written that executes the randomization algorithm and cal-
culates resistances which define Dirichlet forms on the Sierpiński gasket. Certain questions
that arise naturally in our examination: Do the calculated resistances form a log normal
distribution? How does the data change when we alter the domain of the parameters? We
demonstrate that individual resistance tend to zero if the disorder is small, but for larger
disorders “most” of the resistances tend to zero, but there are some resistances that approach
infinity. We conjecture that for small disorder, with probability one, the effective resistance
topology coincides with the standard topology on the Sierpiński gasket. However, as the
disorder gets larger, with probability one there are points in the Sierpiński gasket which are
at infinite effective resistance distance from the boundary. Equivalently, for small disorder
the diffusion process is point recurrent on the Sierpiński gasket, and for larger disorder the
diffusion process is point recurrent on a proper subset of the Sierpiński gasket.

The analysis on self-similar fractals was first developed in the physics and engineering
literature, see [2, 19, 28, 55, 56, 58, 14] and references therein. There are three mathemat-
ical books, [4, 37, 60], that provide background to the analysis on self-similar fractals. The
following papers deal with the analysis on the Sierpiński gasket and other fractals which is
relevant to our work: [11, 26, 27, 33, 34, 35, 36, 38, 49, 51, 53, 57, 59, 61, 62, 29, 10].
Also, there are many probabilistic works on the diffusions and random walks on self-similar
fractals and graphs, see for instance [8, 17, 20, 47, 48] and references therein. It was
recently demonstrated by Kigami, using the new theory of heat kernel estimates on met-
ric measure spaces (see [5, 6, 7, 23, 39, 40, 46] and references therein), that the energy
measure diffusion on the standard Sierpiński gasket has Gaussian asymptotics in harmonic
coordinates. Recently there has been renewed interest in studying the Sierpinski Gasket in
Harmonic coordinates [31, 32]. Spectral analysis on (deterministic) non-self similar frac-
tals has garner garnered some attention [16, 3, 9, 30]. Random fractals, primarily various
modifications of random Sierpiński gaskets, were considered in [24, 21, 22], although the
randomization procedure was significantly different from our work.

Acknowledgment. The last author thanks Robert Strichartz, Stanislav Molchanov, and
Ofer Zeitouni for helpful and important discussions.
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Figure 1. Sierpiński gasket with (left) the usual self-similar embedding and
in (right) the standard, nonrandom, harmonic coordinates.

2. Energy forms and effective resistance

In this section we recall some basic facts from [37, 38] about limits of resistance networks.
Although we state the results of this section for the Sierpiński gasket, they can be applied
for general p.c.f. fractals with only minor changes.

If V is a finite set then an energy form E on V can be defined by

E(f, f) =
∑
x,y∈V

c(x, y)(f(x)− f(y))2

where c(x, y) > 0 is called the conductance between x and y. Then the set V with the energy
form E is often called a finite resistance network where the resistance between x and y is
defined as 1/c(x, y) if c(x, y) > 0 and infinity otherwise. It is assumed that c(x, x) = 0 for
all x ∈ V , and that the network is connected in the sense that any pair of points can be
connected by a sequence of positive conductances.

Suppose V0 ( V1 ( V2 ( ... is an increasing sequence of finite sets, and an energy form
En is defined on each Vn. Then this sequence of resistance networks is called compatible if
for any function fn on Vn there is a function fn+1 on Vn+1 such that

En(fn, fn) = En+1(fn+1, fn+1)

and fn is the restriction of fn+1 to Vn. Then it is easy to see that such fn+1 is unique, and
that

En(f
∣∣
Vn
, f
∣∣
Vn

) 6 En+1(f, f)

for any function f on Vn+1. In this case each one can see that En is equal to the so called
trace on Vn of the energy form En+1. Moreover, En is equal to the so called trace on Vn of
the energy form En+k for any k > 0.

The limiting energy (Dirichlet) form E on V∗ =
⋃∞
n=0 is defined by

E(f, f) = lim
n→∞

En(f
∣∣
Vn
, f
∣∣
Vn

).
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Figure 2. Networks Γ0 and Γ1.

By definition the domain of E, denoted by DomE, consists of all function for which this
increasing limit is finite. It is not hard to see that En is the trace on Vn of E (see [50, 25]
and references therein). It is also easy to see that every point of V∗ =

⋃
n≥0 Vn has positive

capacity, in the sense of [18].

3. Parametrization of energy forms on the Sierpiński gasket

In this section we provide brief background information about the construction of non
self-similar Dirichlet forms on the Sierpiński gasket. More detailed description is given in
[51].

Suppose we start with a triangle with vertices v0, v1, and v2 and some initial resistance
values between these points. In our notation resistance rj connects points vj−1 and vj+1,
where j = 0, 1, 2, considering the indices mod(3), that is v3 is the same as v0 etc. Then this
network is transformed by the ∆− Y transformation into the upside down Y shape, which
is our initial resistance network Γ0. The formulas for ∆− Y and Y −∆ transformations are

Rj =
rj−1rj+1

r0 + r1 + r2

and

(3.1) rj =
R0R1 +R0R2 +R1R2

Rj

respectively.
We choose parameters (α0, α1, α2) ∈ (0, 1) to split the resistances Rj, as in the left hand

side of figure 2. Then create, using the Y−∆ transform (3.1), an inner triangle with new

resistance values R̃0, R̃1, and R̃2, as seen in the right hand side of figure 2. Then we choose

parameters (β0, β1, β2) ∈ (0, 1) to split these new resistances R̃0, R̃1, and R̃2. After that
we have three Y -shaped networks, and we apply these steps to each of them independently.
The effective resistances between vertices v0, v1, and v2 remain the same under all these
transformations. Moreover, the compatibility conditions of Section 2 hold in this case.

Note that it is convenient to label the 3k triangles of depth k by words of length k of
the alphabet 0, 1, 2. For example, the whole Sierpiński gasket has an empty label; it is
subdivided into three triangles with labels 0, 1 and 2. Each of these triangle, say labeled j,
is subdivided into triangles j0, j1 and j2, and so on. The rule is that a depth k triangle
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labeled by word w is subdivided into three depth k + 1 triangles labeled w0, w1 and w2 in
the natural order.

To obtain a parametric description of all compatible Dirichlet forms on Γk we just use
the algorithm iteratively on each of the triangles on each depth up to k. To transform our
networks, for each word w we chose a 6-dimensional vector ξw = (αw0 , α

w
1 , α

w
2 , β

w
0 , β

w
1 , β

w
2 ) ∈

(0, 1)6; the choices of the 6 parameters can be made independently for each w.

Lemma 3.1 ([51]). The space of all Dirichlet forms on Γ1 compatible with a fixed Dirichlet
form on Γ0 is a manifold of dimension 6. More generally, the space of all Dirichlet forms
on Γk compatible with a fixed Dirichlet form on Γ0 is a manifold of dimension 6(1 + 3 + ...+
3k−1) = 3(3k − 1).

Theorem 1 ([51]). All the local regular resistance Dirichlet forms, in the sense of [38], on
the Sierpiński gasket are in one to one correspondence, via the algorithm defined above, with
the set of vectors ξw = (αw0 , α

w
1 , α

w
2 , β

w
0 , β

w
1 , β

w
2 ) ∈ (0, 1)6 where w ∈

⋃∞
k=0{0, 1, 2}k.

Example 3.2. It is an easy exercise to show that if the resistances in the initial network
Γ0 are equal to one, and for all i and w we set αwi = 2

5
, βwi = 1

2
, then in the network Γk all

resistances are equal to
(
3
5

)k
. This corresponds to the so called standard energy form on the

Sierpiński gasket. According to the results of [51, 37, 38] this is the only, up to a constant
multiple, local regular Dirichlet form on the Sierpiński gasket which satisfies the following
two assumptions: points have positive capacity and the effective resistance topology coincides
with the standard topology; locally the Dirichlet form is preserved by the local symmetries
of the Sierpiński gasket. The standard Dirichlet form on the Sierpiński gasket is self-similar
with weights equal to 3

5
. Note that in this case the sub triangles have various energies, and

so one can consider the distribution of energies even though this is a non random case. The
histogram of this distribution can be found in [15]. This distribution is very interesting and
has not been studied theoretically although papers [11, 54] contain some related results.

A computer program was written that executes the randomization of the algorithm of
Section 3, and calculates resistances that define Dirichlet forms on the Sierpiński gasket.
In particular, we are interested in how the data changes when we alter the domain of the
parameters.

In our study we ran the program several times, and within each run the parameters
(α0, α1, α2, β0, β1, β2) were chosen at random uniformly from the following:

Nonrandom self-similar case: α = .4, β = .5
Low randomness case: α, β ∈ (.4, .6)
High randomness case: α, β ∈ (.1, .9)

(∗)

As we increased the domains of random parameters, the resulting resistance networks and
data changed significantly.

Each run of the program was done to a depth of 13, meaning one run consisted of
executing the above three steps 313 times. Thus, the program produced data for the resistance
networks on Γ1, ..., Γ9. In [15] we computed the mean, standard deviation, fourth moment,
and 5th and 95th percentiles for each depth. One can see that individual resistance tend to
zero if the disorder is small, but for larger disorders “most” of the resistances tend to zero,
there are some resistances that approach infinity. The statistical distribution of resistances
resembles log normal in Figure 5.
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Figure 3. Density estimates of the variance of (from top to bottom) eigen-
functions in nonrandom, low randomness and high randomness cases at depth
13.

4. Distribution of eigenvalues and localization of eigenfunctions

When dealing with random media, one of the natural questions is if the is Anderson type
localization. Much work has focused on such localization, for example [52]. Our numerical
results show that there is indeed very strong localization even with low randomness. Figure 4
demonstrates this most clearly by showing density estimates of the variance of eigenfunctions
in nonrandom, low randomness and high randomness cases at depth 13. Figure 4 and Figure 4
also illustrate vividly that eigenfunctions with numbers #50, #51 are localized even in the
low randomness case. The Anderson type localization is further confirmed by Figure 4
which shows Poisson type sample densities of the logarithmic spacing of eigenvalues in low
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Figure 4. Pictures of the random eigenfunctions #1, #5, #50, #51 with low randomness.

Figure 5. Pictures of the random eigenfunctions #1, #5, #50, #51 with high randomness.

randomness and high randomness cases. Figure 4 shows sample densities of eigenvalues in
nonrandom, low randomness and high randomness cases at depths 6, 7, 8.
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Figure 6. Sample densities of the logarithmic spacing of eigenvalues in low
randomness and high randomness cases at depth 8.
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Figure 7. Sample densities of eigenvalues in nonrandom, low randomness
and high randomness cases at depths 6, 7, 8.
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5. Harmonic functions on random Sierpiński gaskets

Harmonic functions play an important role in the analysis on fractals. A function h
defined on a finite set V is said to be harmonic if∑

y∈V

(h(x)− h(y))c(x, y) = 0

for every x ∈ V \∂V , where c(x, y) is the conductance between vertices x and y. Conductance
is the reciprocal of resistance, so for any resistance R, c = 1

R
. If c(x, y) > 0, then x and y are

said to be connected. On a connected resistance network a harmonic function is uniquely
determined by it boundary values. In the case of the Sierpiński gasket it is the most natural
and convienient to choose the boundary ∂V = {v0, v1, v2} to be the three corners of the
largest triangle.

The next proposition is a consequence of general results on traces of resistance forms, see
for instance [13, 51, 37, 38] and Section 2.

Proposition 5.1. Suppose x is a vertex of a triangle of depth k and h is a harmonic
function in the network Γm. Then h(x) is uniquely determined by the boundary values of h
on ∂V = {v0, v1, v2}, and is independent of m provided m > k.

Theorem 2 ([51]). (1) Suppose that ξw = (αw0 , α
w
1 , α

w
2 , β

w
0 , β

w
1 , β

w
2 ) ∈ (0, 1)6 are independent

identically distributed random 6-dimensional vectors indexed by the words w of finite length.
Then with probability one harmonic functions are continuous.
(2) Suppose that there is ε > 0 such that αwj , β

w
j ∈ [ε, 1 − ε] for all w, j. Then harmonic

functions are Hölder continuous with Hölder exponent 1− ε2.

To define harmonic coordinates on the Sierpiński gasket S, we fix two harmonic functions
h1 and h2, which are linearly independent over constants. Then for each point x ∈ S we
define

ψ : S → R2,
ψ(x) = (h1(x), h2(x)).

For convenience we choose the harmonic functions h1 and h2 in such way that the boundary
points of the Sierpiński gasket in harmonic coordinates are vertices of an isosceles triangle,
that is h1(v0) = −1, h2(v0) = 0, h1(v1) = 0, h2(v1) =

√
3, h1(v2) = 1, h2(v2) = 0.

In [35] ψ is proved to be a homeomorphism in the case of the standard Dirichlet form on
the Sierpiński gasket (see Example 3.2). This Kigami’s result can be generalized as follows

Theorem 3. Suppose that ξw = (αw0 , α
w
1 , α

w
2 , β

w
0 , β

w
1 , β

w
2 ) ∈ (0, 1)6 are independent identically

distributed random 6-dimensional vectors indexed by the words w of finite length. Then with
probability one the coordinate map ψ : S → Sψ := ψ(S) is a homeomorphism.

Proof. By Theorem 2 harmonic functions are continuous with probability one, and they
separate points by [51, Lemma 5.3 and Proposition 6.1]. �

The next theorem says, essentially, that the angles of the curvilinear triangles that made
the Sierpiński gasket in harmonic coordinates are zero.

Theorem 4. Suppose that ξw = (αw0 , α
w
1 , α

w
2 , β

w
0 , β

w
1 , β

w
2 ) ∈ (0, 1)6 are independent identically

distributed random 6-dimensional vectors indexed by the words w of finite length. Then with
probability one the following is true. Let {Tk}∞k=0 be a sequence of triangles in approximation
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Figure 8. Samples of the random gaskets with low randomness (top) and
with high randomness (bottom).

Figure 9. Green’s functions of the nonrandom gasket.

to the harmonic gasket with Tk+1 ( Tk for all k and which all share a corner. Then the the
angle of the shared corner tends to zero as k tend to infinity.

Proof. The result follows from [51, Lemma 4.1, Theorem 4.3 and Theorem 5.5]. �

We conjecture that some of the results of Kusuoka proved in [47, 48, 11] and recent
results by Hino [47, 48] hold also with probability one for our random Sierpiński gaskets.
In particular, we conjecture that the energy measures are singular with probability one with
respect to all the product (Bernoulli) measures, and that the random Sierpiński gasket is
one dimensional in any generic point. The latter means that the matrix Z (in Theorem 6
below) has rank one ν-almost everywhere.
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Figure 10. Samples of Green’s functions with low randomness (top) and with
high randomness (bottom).

Figure 11. Density plot of resistances in low randomness (narrow curve) and
with high randomness (wide curve) gaskets for depth 13.

6. Green’s function and its local computation

Many questions related to such sequences of Dirichlet forms En are studied in [37, 38]
in detail. An important tool in this study is the so called effective resistance R, which is
defined for any x, y ∈ V∗ by

R(x, y) =
(

min
u
{E(u, u)|u(x) = 1, u(y) = 0}

)−1
.

Here minimum is taken over all functions on V∗. Note that x, y ∈ Vn for large enough n
and R(x, y) does not change if E is replaced by En because of the compatibility condition.
By [37, Theorem 2.1.14], R(x, y) is a metric on V∗. To avoid ambiguity, we may write, for
example, R-continuity for continuity with respect to the effective resistance metric R. If
E(u, u) <∞ then u is R-continuous by [37, Theorem 2.2.6(1)]. The main ingredient of the
proof of this fact is the following inequality, which follows directly from the definition of R,

|u(x)− u(y)|2 ≤ R(x, y)E(u, u).
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Figure 12. Samples of the logarithm of the maximum of Green’s functions
with low randomness (top) and with high randomness (bottom) for depths
1–13.

Figure 13. Median of the logarithm of the maximum of Green’s functions
with low randomness (bottom curve) and with high randomness (top curve)
over 50 runs for depths 1–13.

It implies, in particular, that any function of finite energy is R–Hölder continuous with
respect to the effective resistance metric.

If Ω is the R–completion of V∗, then any function in DomE is a restriction of an R–
continuous function on Ω. In other words, if u is a function on V∗ such that E(u, u) < ∞



GREEN’S FUNCTION AND EIGENFUNCTIONS ON RANDOM SIERPINSKI GASKETS 15

then u has a unique continuation to Ω that is R–continuous. We will denote this continuation
by the same symbol u and the set of such functions by DomE.

An important question is whether Ω is equal to the Sierpiński gasket S. The answer is
positive if all the conductances tend to infinity. This happens, for example, in the case of
a so called regular self-similar harmonic structure (see [34, 37]). Thus it is natural to say
that a harmonic structure is regular if Ω = S and nonregular otherwise. It is easy to see
that a harmonic structure is regular if all the conductances tend to infinity, but the converse
is not true. It is proved in [37, Proposition 3.3.2] that if harmonic functions are continuous
then there is a continuous injective map θ : Ω→ S which is the identity on V∗. Therefore in
this case we can (and will) consider Ω as a subset of S. Then Ω is the R-closure of V∗. In a
sense, Ω is the set where the energy form E “lives”. If Ω is not just an abstract completion
then the name “energy form on the Sierpiński gasket S” is more justified. Strictly speaking
[37, Proposition 3.3.2] is formulated for self-similar harmonic structures, but self-similarity
is not used in the proof.

It is proved in [37, Theorem 3.5.6] that if x ∈ Ω then {x} has positive capacity. The
converse of this statement is proved in [37] for any self-similar harmonic structure.

To define the Green’s function we use the construction invented by Kigami for the self-
similar harmonic structures. Let Green’s function on Vn\∂V be defined as Gn = (Xn)−1

where Xn is the matrix of the energy form En, and the inverse defined only for functions
with zero boundary conditions. Then the compatibility condition implies that the restriction
of Green’s function on Vn+1 to Vn is Green’s function on Vn. Naturally, this allows to define
Green’s function on V∗, which is denoted by g(·, ·).

Theorem 5 ([37, 38]).

(1) g(x, y) = g(y, x) for all x, y ∈ V∗;
(2) g(x, y) > 0 for all x, y ∈ V∗\∂V ;
(3) g(x, y) = 0 for all x ∈ ∂V ;
(4) g(x, ·) ∈ DomE, in particular it is R–continuous;
(5) E(g(x, ·), h) = 0 for any harmonic function h;
(6) E(g(x, ·), f) = f(x) for any f ∈ DomE which vanishes on the boundary;
(7) g(·, ·) has a continuation from V∗×V∗ to Ω×Ω, in particular if x ∈ Ω then g(x, x) <
∞.

(8) For any probability measure µ on Ω, which is non zero on any nonempty open set,
the energy form E is a local regular Dirichlet form on L2

µ.

Note, again, that if harmonic functions are continuous then the this theorem holds for Ω
which is the R-closure of V∗ in S. For discussion related to the last item of this theorem see
also [62].

7. Energy measure, eigenfunctions and approximation by quantum graphs

In this section we assume that a random Sierpiński gasket is homeomorphically embedded
into R2 using harmonic coordinates, which is possible by Theorem 5. In our exposition we
follow [62]. For the background on quantum graphs and the interest they hold to physics
see [44, 45, 1] and references therein.

We start with defining a different sequence of approximating energy forms. In various
situations these forms are associated with so called quantum graphs, photonic crystals and
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Figure 14. Pictures of the non-random energy measure eigenfunctions #1,
#5, #50, #51.

Figure 15. Pictures of the random energy measure eigenfunctions #1, #5,
#50, #51 with low randomness.

cable systems. If f ∈ C1(R2) then we define

E
Q

n(f, g) =
∑
x,y∈Vn

cn,x,yE
Q

x,y(f, f)

where

E
Q

x,y(f, f) =

∫ 1

0

(
d
dt
f
(
x(1− t) + ty

))2
dt

is the integral of the square of the derivative

d
dt
f
(
x(1− t) + ty

)
= 〈∇f

(
x(1− t) + ty

)
, y − x〉
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Figure 16. Pictures of the random energy measure eigenfunctions #1, #5,
#50, #51 with high randomness.

of f along the straight line segment connecting x and y. Thus E
Q

x,y(f, f) is the usual one

dimensional energy of a function on a straight line segment. If f is linear then E
Q

x,y(f, f) =(
f(x) − f(y)

)2
. Therefore if f is piecewise harmonic then E

Q

n(f, f) = En(f, f) for all large

enough n. Also E
Q

n satisfies estimate

(7.1) En(f, f) 6 ‖f‖2C1(Rm)ν(S).

Therefore for any C1(R2)-function we have

lim
n→∞

E
Q

n(f, f) = E(f, f)

by [62, Theorem 5].

Theorem 6 ([62]). If f is the restriction to S of a C1(Rm) function then f ∈ DomE, and
such functions are dense in DomE. In particular we have the Kigami formula

E(f, f) =

∫
S

〈∇f, Z∇f〉dν

for any f ∈ C1(Rm), where Z is a positive trace one matrix defined ν-almost everywhere.

It is easy to see that if g is a C1(R2)-function vanishing on V0 and f is a C2(R2)-function
then

E
Q

n(f, g) =
∑
x,y∈Vn

cn,x,y

∫ 1

0

g
(
x(1− t) + ty

)(
d2

dt2
f
(
x(1− t) + ty

))
dt

because after integration by parts all the boundary terms are canceled.
By [38] there is a densely defined operator ∆ν , called the energy Laplacian (which is

self-adjoint with Dirichlet or Neumann boundary conditions), such that for any function
g ∈ DomE, vanishing on the boundary V0, and any function f ∈ Dom ∆ν , we have the
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analog of the Gauss-Green formula:

E(f, g) = −
∫
S

g∆νfdν,

see [12, 18].

Lemma 7.1 ([62]). If f is the restriction to S of a C2(R2) function, and g is the restriction
to S of a C1(R2) function, then

|En(f, g)| 6 const‖g‖C1(R2)‖f‖C2(R2)ν(S).

Theorem 7 ([62]). If f is the restriction to S of a C2(R2) function then f ∈ Dom ∆ν, and
such functions are dense in Dom ∆ν. Moreover, ν-almost everywhere

∆νf = Tr (ZD2f)

where D2f is the matrix of the second derivatives of f .

Corollary 7.2. If f(x) = ‖x‖2 then ∆νf = 1. Moreover, ∆νf ∈ L∞(S) for any f ∈ C2(R2).

One can also obtain Theorem 7 using the general theory of Dirichlet forms in [12, 18].
However there is a different constructive proof using the approximation by quantum graphs
(see [62]).
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Sierpiński gasket type fractals. J. Funct. Anal. 166 (1999), 197–217.

[12] N. Bouleau and F. Hirsch, Dirichlet forms and analysis on Wiener space. de Gruyter Studies in Math.
14, 1991.

[13] B. Boyle, D. Ferrone, N. Rifkin, K. Savage and A. Teplyaev, Electrical Resistance of N -gasket Fractal
Networks, preprint.

[14] T. Reese, D. Yott, A. Brzoska, and D. Kelleher, Analysing self-similar and fractal properties of the C.
Elegans neural network. PLoS ONE 7(10) (2012). doi:10.1371/journal.pone.0040483



GREEN’S FUNCTION AND EIGENFUNCTIONS ON RANDOM SIERPINSKI GASKETS 19

[15] D. Fontaine, T. Smith and A. Teplyaev, Random Sierpiński gasket, to appear in the Proceedings of
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[20] R. Grigorchuk and A. Żuk, On the asymptotic spectrum of random walks on infinite families of graphs.
Random walks and discrete potential theory (Cortona, 1997), 188–204, Sympos. Math., XXXIX,
Cambridge Univ. Press, Cambridge, 1999.

[21] B. M. Hambly, Heat kernels and spectral asymptotics for some random Sierpiński gaskets. Fractal
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