Fractal interpolation functions on p.c.f. self-similar sets

Huo-Jun Ruan
Zhejiang University

Partially based on the jointed work with S.-G. Ri
Cornell, September 10-13, 2011
Motivation

- Harmonic functions and piecewise harmonic splines have finite energy, but beyond that it is not easy to verify that explicit functions have finite energy.
- For example, nonconstant linear functions on Sierpinski gasket (SG for short) have infinity energy.
- We introduce a class of fractal interpolation functions (FIFs for short) on p.c.f. fractals, extending the definition of Bransley in 1986 and Çelik, Koçak and Özdemir in 2008.
- We give a sufficient condition for linear FIFs to have finite energy. This shows that the class of FIFs provides a large collections of explicit functions with finite energy.
- We also study other properties of these FIFs:
 - normal derivative
 - Laplacian
 - Min-max property
Motivation

- Harmonic functions and piecewise harmonic splines have finite energy, but beyond that it is not easy to verify that explicit functions have finite energy.
- For example, nonconstant linear functions on Sierpinski gasket (SG for short) have infinity energy.
- We introduce a class of fractal interpolation functions (FIFs for short) on p.c.f. fractals, extending the definition of Bransley in 1986 and Çelik, Koçak and Özdemir in 2008.
- We give a sufficient condition for linear FIFs to have finite energy. This shows that the class of FIFs provides a large collections of explicit functions with finite energy.
- We also study other properties of these FIFs:
 - normal derivative
 - Laplacian
 - Min-max property
Motivation

Harmonic functions and piecewise harmonic splines have finite energy, but beyond that it is not easy to verify that explicit functions have finite energy.

For example, nonconstant linear functions on Sierpinski gasket (SG for short) have infinity energy.

We introduce a class of fractal interpolation functions (FIFs for short) on p.c.f. fractals, extending the definition of Bransley in 1986 and Çelik, Koçak and Özdemir in 2008.

We give a sufficient condition for linear FIFs to have finite energy. This shows that the class of FIFs provides a large collections of explicit functions with finite energy.

We also study other properties of these FIFs:
- normal derivative
- Laplacian
- Min-max property
Motivation

- Harmonic functions and piecewise harmonic splines have finite energy, but beyond that it is not easy to verify that explicit functions have finite energy.
- For example, nonconstant linear functions on Sierpinski gasket (SG for short) have infinity energy.
- We introduce a class of fractal interpolation functions (FIFs for short) on p.c.f. fractals, extending the definition of Bransley in 1986 and Çelik, Koçak and Özdemir in 2008.
- We give a sufficient condition for linear FIFs to have finite energy. This shows that the class of FIFs provides a large collections of explicit functions with finite energy.
- We also study other properties of these FIFs:
 - normal derivative
 - Laplacian
 - Min-max property
Harmonic functions and piecewise harmonic splines have finite energy, but beyond that it is not easy to verify that explicit functions have finite energy.

For example, nonconstant linear functions on Sierpinski gasket (SG for short) have infinity energy.

We introduce a class of fractal interpolation functions (FIFs for short) on p.c.f. fractals, extending the definition of Bransley in 1986 and Çelik, Koçak and Özdemir in 2008.

We give a sufficient condition for linear FIFs to have finite energy. This shows that the class of FIFs provides a large collections of explicit functions with finite energy.

We also study other properties of these FIFs:
- normal derivative
- Laplacian
- Min-max property
Classical fractal interpolation functions

Let \(\{(x_j, y_j)\}_{j=0}^{N} \subset \mathbb{R}^2 \) be a given data set, where \(x_0 < x_1 < \cdots < x_N \). We can construct a fractal function \(f \) satisfying \(f(x_j) = y_j, \forall j \) as follows.

- Let \(L_j(x) \) be a contractive homeomorphism satisfying
 \[
 L_j(x_0) = x_{j-1}, \quad L_j(x_N) = x_j, \quad j = 1, 2, \ldots, N.
 \]

- Denote \(K = [x_0, x_N] \times \mathbb{R} \).

- For \(j = 1, 2, \ldots, N \), define a map \(\Psi_j : K \to \mathbb{R} \) be continuous with, for a constant \(0 < \alpha_j < 1 \),
 \[
 \Psi_j(x_0, y_0) = y_{j-1}, \quad \Psi_j(x_N, y_N) = y_j,
 \]
 \[
 |\Psi_j(x, y') - \Psi_j(x, y'')| \leq \alpha_j \cdot |y' - y''|
 \]
 for all \(x \in [x_0, x_N] \) and \(y', y'' \in \mathbb{R} \).

- Define \(W_j : K \to K \) for \(j = 1, 2, \ldots, N \) by
 \[
 W_j(x, y) = (L_j(x), \Psi_j(x, y)).
 \]

\(\{K, W_j : j = 1, 2, \ldots, N\} \) is an IFS.
Let \(\{(x_j, y_j)\}_{j=0}^N \subset \mathbb{R}^2 \) be a given data set, where \(x_0 < x_1 < \cdots < x_N \). We can construct a fractal function \(f \) satisfying \(f(x_j) = y_j, \forall j \) as follows.

- Let \(L_j(x) \) be a contractive homeomorphism satisfying
 \[
 L_j(x_0) = x_{j-1}, \quad L_j(x_N) = x_j, \quad j = 1, 2, \ldots, N.
 \]

- Denote \(K = [x_0, x_N] \times \mathbb{R} \).
- For \(j = 1, 2, \ldots, N \), define a map \(\Psi_j : K \to \mathbb{R} \) be continuous with, for a constant \(0 < \alpha_j < 1 \),
 \[
 \Psi_j(x_0, y_0) = y_{j-1}, \quad \Psi_j(x_N, y_N) = y_j,
 \]
 \[
 |\Psi_j(x, y') - \Psi_j(x, y'')| \leq \alpha_j \cdot |y' - y''|
 \]
 for all \(x \in [x_0, x_N] \) and \(y', y'' \in \mathbb{R} \).
- Define \(W_j : K \to K \) for \(j = 1, 2, \ldots, N \) by
 \[
 W_j(x, y) = (L_j(x), \Psi_j(x, y)).
 \]

- \(\{K, W_j : j = 1, 2, \ldots, N\} \) is an IFS.
Classical fractal interpolation functions

Let \(\{(x_j, y_j)\}_{j=0}^{N} \subset \mathbb{R}^2 \) be a given data set, where \(x_0 < x_1 < \cdots < x_N \). We can construct a fractal function \(f \) satisfying \(f(x_j) = y_j, \ \forall j \) as follows.

- Let \(L_j(x) \) be a contractive homeomorphism satisfying
 \[
 L_j(x_0) = x_{j-1}, \quad L_j(x_N) = x_j, \quad j = 1, 2, \ldots, N.
 \]

- Denote \(K = [x_0, x_N] \times \mathbb{R} \).

- For \(j = 1, 2, \ldots, N \), define a map \(\psi_j : K \to \mathbb{R} \) be continuous with, for a constant \(0 < \alpha_j < 1 \),
 \[
 \psi_j(x_0, y_0) = y_{j-1}, \quad \psi_j(x_N, y_N) = y_j,
 \]
 \[
 |\psi_j(x, y') - \psi_j(x, y'')| \leq \alpha_j \cdot |y' - y''|
 \]
 for all \(x \in [x_0, x_N] \) and \(y', y'' \in \mathbb{R} \).

- Define \(W_j : K \to K \) for \(j = 1, 2, \ldots, N \) by
 \[
 W_j(x, y) = (L_j(x), \psi_j(x, y)).
 \]

- \(\{K, W_j : j = 1, 2, \ldots, N\} \) is an IFS.
Let \(\{(x_j, y_j)\}_{j=0}^{N} \subset \mathbb{R}^2 \) be a given data set, where \(x_0 < x_1 < \cdots < x_N \). We can construct a fractal function \(f \) satisfying \(f(x_j) = y_j \), \(\forall j \) as follows.

- Let \(L_j(x) \) be a contractive homeomorphism satisfying
 \[
 L_j(x_0) = x_{j-1}, \quad L_j(x_N) = x_j, \quad j = 1, 2, \ldots, N.
 \]

- Denote \(K = [x_0, x_N] \times \mathbb{R} \).

- For \(j = 1, 2, \ldots, N \), define a map \(\Psi_j : K \to \mathbb{R} \) be continuous with, for a constant \(0 < \alpha_j < 1 \),
 \[
 \Psi_j(x_0, y_0) = y_{j-1}, \quad \Psi_j(x_N, y_N) = y_j,
 \]
 \[
 |\Psi_j(x, y') - \Psi_j(x, y'')| \leq \alpha_j \cdot |y' - y''|
 \]
 for all \(x \in [x_0, x_N] \) and \(y', y'' \in \mathbb{R} \).

- Define \(W_j : K \to K \) for \(j = 1, 2, \ldots, N \) by
 \[
 W_j(x, y) = (L_j(x), \Psi_j(x, y)).
 \]

- \(\{K, W_j : j = 1, 2, \ldots, N\} \) is an IFS.
Classical fractal interpolation functions

Let \(\{(x_j, y_j)\}_{j=0}^N \subset \mathbb{R}^2 \) be a given data set, where \(x_0 < x_1 < \cdots < x_N \). We can construct a fractal function \(f \) satisfying \(f(x_j) = y_j, \forall j \) as follows.

- Let \(L_j(x) \) be a contractive homeomorphism satisfying
 \[
 L_j(x_0) = x_{j-1}, \quad L_j(x_N) = x_j, \quad j = 1, 2, \ldots, N.
 \]
- Denote \(K = [x_0, x_N] \times \mathbb{R} \).
- For \(j = 1, 2, \ldots, N \), define a map \(\Psi_j : K \rightarrow \mathbb{R} \) be continuous with, for a constant \(0 < \alpha_j < 1 \),
 \[
 \Psi_j(x_0, y_0) = y_{j-1}, \quad \Psi_j(x_N, y_N) = y_j,
 \]
 \[
 |\Psi_j(x, y') - \Psi_j(x, y'')| \leq \alpha_j \cdot |y' - y''|
 \]
 for all \(x \in [x_0, x_N] \) and \(y', y'' \in \mathbb{R} \).
- Define \(W_j : K \rightarrow K \) for \(j = 1, 2, \ldots, N \) by
 \[
 W_j(x, y) = (L_j(x), \Psi_j(x, y)).
 \]
- \(\{K, W_j : j = 1, 2, \ldots, N\} \) is an IFS.
Let \(\{(x_j, y_j)\}_{j=0}^N \subset \mathbb{R}^2 \) be a given data set, where \(x_0 < x_1 < \cdots < x_N \). We can construct a fractal function \(f \) satisfying \(f(x_j) = y_j \), \(\forall j \) as follows.

- Let \(L_j(x) \) be a contractive homeomorphism satisfying
 \[
 L_j(x_0) = x_{j-1}, \quad L_j(x_N) = x_j, \quad j = 1, 2, \ldots, N.
 \]

- Denote \(K = [x_0, x_N] \times \mathbb{R} \).

- For \(j = 1, 2, \ldots, N \), define a map \(\Psi_j : K \rightarrow \mathbb{R} \) be continuous with, for a constant \(0 < \alpha_j < 1 \),
 \[
 \Psi_j(x_0, y_0) = y_{j-1}, \quad \Psi_j(x_N, y_N) = y_j,
 \]
 \[
 |\Psi_j(x, y') - \Psi_j(x, y'')| \leq \alpha_j \cdot |y' - y''|\]
 for all \(x \in [x_0, x_N] \) and \(y', y'' \in \mathbb{R} \).

- Define \(W_j : K \rightarrow K \) for \(j = 1, 2, \ldots, N \) by
 \[
 W_j(x, y) = (L_j(x), \Psi_j(x, y)).
 \]

- \(\{K, W_j : j = 1, 2, \ldots, N\} \) is an IFS.
Classical fractal interpolation functions

- Clearly,

\[(x_0, y_0) \xrightarrow{W_j} (x_{j-1}, y_{j-1}), \quad (x_N, y_N) \xrightarrow{W_j} (x_j, y_j),\]

Theorem (Barnsley’1986)

The IFS \(\{K, W_j : j = 1, 2, \ldots, N\}\) defined above has a unique attractor \(G\), i.e., \(G = \bigcup_{j=1}^{N} W_j(G)\). Furthermore, \(G\) is the graph of a continuous function \(f : [x_0, x_N] \to \mathbb{R}\) which obeys

\[f(x_j) = y_j, \quad j = 0, 1, 2, \ldots, N.\]

We call such a function a fractal interpolation function or FIF for short.

Notice that \((x, f(x)) \xrightarrow{W_j} (L_j(x), \Psi_j(x, f(x))).\) We have

\[f(L_j(x)) = \Psi_j(x, f(x)), \quad \text{for all } x \in [x_0, x_N], \ j = 1, 2, \ldots, N.\]
Classical fractal interpolation functions

Clearly,

\[(x_0, y_0) \xrightarrow{W_j} (x_{j-1}, y_{j-1}), \quad (x_N, y_N) \xrightarrow{W_j} (x_j, y_j),\]

Theorem (Barnsley’1986)

The IFS \(\{K, W_j : j = 1, 2, \ldots, N\} \) defined above has a unique attractor \(G \), i.e., \(G = \bigcup_{j=1}^N W_j(G) \). Furthermore, \(G \) is the graph of a continuous function \(f : [x_0, x_N] \rightarrow \mathbb{R} \) which obeys

\[f(x_j) = y_j, \quad j = 0, 1, 2, \ldots, N.\]

We call such a function a **fractal interpolation function** or FIF for short.

Notice that \((x, f(x)) \xrightarrow{W_j} (L_j(x), \Psi_j(x, f(x)))\). We have

\[f(L_j(x)) = \Psi_j(x, f(x)), \quad \text{for all } x \in [x_0, x_N], \quad j = 1, 2, \ldots, N.\]
Classical fractal interpolation functions

- Clearly,

\[(x_0, y_0) \xrightarrow{W_j} (x_{j-1}, y_{j-1}), \quad (x_N, y_N) \xrightarrow{W_j} (x_j, y_j),\]

Theorem (Barnsley’1986)

The IFS \(\{K, W_j : j = 1, 2, \ldots, N\} \) defined above has a unique attractor \(G \), i.e., \(G = \bigcup_{j=1}^N W_j(G) \). Furthermore, \(G \) is the graph of a continuous function \(f : [x_0, x_N] \to \mathbb{R} \) which obeys

\[f(x_j) = y_j, \quad j = 0, 1, 2, \ldots, N.\]

We call such a function a *fractal interpolation function* or FIF for short.

Notice that \((x, f(x)) \xrightarrow{W_j} (L_j(x), \psi_j(x, f(x)))\). We have

\[f(L_j(x)) = \psi_j(x, f(x)), \quad \text{for all } x \in [x_0, x_N], \quad j = 1, 2, \ldots, N.\]
A typical case is that we choose L_j and Ψ_j to be all linear:
$L_j(x) = a_jx + e_j, \Psi_j(x, y) = c_jx + d_jy + f_j$. Then

$$W_j \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_j & 0 \\ c_j & d_j \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e_j \\ f_j \end{pmatrix}, \quad j = 1, 2, \ldots, N.$$

- We call such an FIF to be an **affine FIF**. In this case,
 $$f(L_j(x)) = d_jf(x) + c_jx + f_j.$$
- a_j and e_j are determined by $\{x_j\}_{j=0}^N$.
- Given $\{x_j, y_j\}_{j=0}^N$. $\{d_j\}$ can be freely chosen in $(-1, 1)$. And all c_j and f_j are determined by $\{x_j, y_j\}_{j=0}^N$ and $\{d_j\}_{j=1}^N$.
- d_j are called **vertical scaling factors**.
A typical case is that we choose \(L_j \) and \(\Psi_j \) to be all linear:
\[
L_j(x) = a_j x + e_j, \quad \Psi_j(x, y) = c_j x + d_j y + f_j.
\]
Then
\[
W_j \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{cc} a_j & 0 \\ c_j & d_j \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) + \left(\begin{array}{c} e_j \\ f_j \end{array} \right), \quad j = 1, 2, \ldots, N.
\]

We call such an FIF to be an affine FIF. In this case,
\[
f(L_j(x)) = d_j f(x) + c_j x + f_j.
\]

- \(a_j \) and \(e_j \) are determined by \(\{x_j\}_{j=0}^N \).
- Given \(\{x_j, y_j\}_{j=0}^N \). \(\{d_j\} \) can be freely chosen in \((-1, 1)\). And all \(c_j \) and \(f_j \) are determined by \(\{x_j, y_j\}_{j=0}^N \) and \(\{d_j\}_{j=1}^N \).
- \(d_j \) are called vertical scaling factors.
A typical case is that we choose L_j and Ψ_j to be all linear: $L_j(x) = a_jx + e_j$, $\Psi_j(x, y) = c_jx + d_jy + f_j$. Then

$$W_j\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{cc} a_j & 0 \\ c_j & d_j \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} e_j \\ f_j \end{array}\right), \quad j = 1, 2, \ldots, N.$$

We call such an FIF to be an affine FIF. In this case,

$$f(L_j(x)) = d_jf(x) + c_jx + f_j.$$

- a_j and e_j are determined by $\{x_j\}_{j=0}^N$.
- Given $\{x_j, y_j\}_{j=0}^N$. $\{d_j\}$ can be freely chosen in $(-1, 1)$. And all c_j and f_j are determined by $\{x_j, y_j\}_{j=0}^N$ and $\{d_j\}_{j=1}^N$.
- d_j are called vertical scaling factors.
A typical case is that we choose L_j and ψ_j to be all linear: $L_j(x) = a_jx + e_j$, $\psi_j(x, y) = c_jx + d_jy + f_j$. Then

$$W_j \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_j & 0 \\ c_j & d_j \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e_j \\ f_j \end{pmatrix}, \quad j = 1, 2, \ldots, N.$$

We call such an FIF to be an affine FIF. In this case,

$$f(L_j(x)) = d_jf(x) + c_jx + f_j.$$

a_j and e_j are determined by $\{x_j\}_{j=0}^N$.

Given $\{x_j, y_j\}_{j=0}^N$. $\{d_j\}$ can be freely chosen in $(-1, 1)$. And all c_j and f_j are determined by $\{x_j, y_j\}_{j=0}^N$ and $\{d_j\}_{j=1}^N$.

d_j are called vertical scaling factors.
A typical case is that we choose L_j and Ψ_j to be all linear: $L_j(x) = a_j x + e_j$, $\Psi_j(x, y) = c_j x + d_j y + f_j$. Then

$$W_j \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{cc} a_j & 0 \\ c_j & d_j \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) + \left(\begin{array}{c} e_j \\ f_j \end{array} \right), \quad j = 1, 2, \ldots, N.$$

- We call such an FIF to be an affine FIF. In this case,

$$f(L_j(x)) = d_j f(x) + c_j x + f_j.$$

- a_j and e_j are determined by $\{x_j\}_{j=0}^N$.

- Given $\{x_j, y_j\}_{j=0}^N$. $\{d_j\}$ can be freely chosen in $(-1, 1)$. And all c_j and f_j are determined by $\{x_j, y_j\}_{j=0}^N$ and $\{d_j\}_{j=1}^N$.

- d_j are called vertical scaling factors.
Classical fractal interpolation functions

Figure: vertical scaling factor d_j
Example

\[W_1 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & 0 \\ 1 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \]

\[W_2 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \frac{1}{3} \\ 1 \end{pmatrix}, \]

\[W_3 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & 0 \\ -1 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \frac{2}{3} \\ 1 \end{pmatrix}. \]
Figure: An FIF with $d_1 = d_2 = d_3 = \frac{1}{3}$.
Another typical case:

\[L_j(x) = a_j x + e_j, \quad \Psi_j(x, y) = d_j y + \varphi_j(x), \quad \forall j. \]

\(d_j \) is also called a vertical scaling factor. In this case,

\[f(L_j(x)) = d_j f(x) + \varphi_j(x). \]
Classical fractal interpolation functions

Works on classical FIFs:

- Box dimension and Hausdorff dimension;
- Using affine FIFs to fit discrete data;
- Hölder continuity;
- Calculus and fractional calculus;
- The relationship between the range of affine FIF and vertical scaling factors,
- Higher dimensional case: fractal interpolation surfaces.
- ...
We assume that X is a p.c.f. self-similar set with boundary $V_0 = \{q_1, \ldots, q_{N_0}\}$, where

- X: self-similar set determined by IFS $\{\mathbb{R}^d; F_1, \ldots, F_N\}$.
- $F_j(q_j) = q_j$ for all $j = 1, \ldots, N_0$ and $N_0 \leq N$.

We denote:

- $\Sigma = \{1, 2, \ldots, N\}$.
- $\Sigma^* = \bigcup_{m=1}^{\infty} \Sigma^m$.
We assume that X is a p.c.f. self-similar set with boundary $V_0 = \{q_1, \ldots, q_{N_0}\}$, where

- X: self-similar set determined by IFS $\{\mathbb{R}^d; F_1, \ldots, F_N\}$.
- $F_j(q_j) = q_j$ for all $j = 1, \ldots, N_0$ and $N_0 \leq N$.

We denote:

- $\Sigma = \{1, 2, \ldots, N\}$.
- $\Sigma^* = \bigcup_{m=1}^{\infty} \Sigma^m$.
We assume that X is a p.c.f. self-similar set with boundary $V_0 = \{q_1, \ldots, q_{N_0}\}$, where

- X: self-similar set determined by IFS $\{\mathbb{R}^d; F_1, \ldots, F_N\}$.
- $F_j(q_j) = q_j$ for all $j = 1, \ldots, N_0$ and $N_0 \leq N$.

We denote:

- $\Sigma = \{1, 2, \ldots, N\}$.
- $\Sigma^* = \bigcup_{m=1}^\infty \Sigma^m$.
We assume that X is a p.c.f. self-similar set with boundary $V_0 = \{q_1, \ldots, q_{N_0}\}$, where

- X: self-similar set determined by IFS $\{\mathbb{R}^d; F_1, \ldots, F_N\}$.
- $F_j(q_j) = q_j$ for all $j = 1, \ldots, N_0$ and $N_0 \leq N$.

We denote:

- $\Sigma = \{1, 2, \ldots, N\}$.
- $\Sigma^* = \bigcup_{m=1}^{\infty} \Sigma^m$.

Huo-Jun Ruan
FIFs on p.c.f. self-similar sets
P.C.F. self-similar sets

We assume that X is a p.c.f. self-similar set with boundary $V_0 = \{q_1, \ldots, q_{N_0}\}$, where

- X: self-similar set determined by IFS $\{\mathbb{R}^d; F_1, \ldots, F_N\}$.
- $F_j(q_j) = q_j$ for all $j = 1, \ldots, N_0$ and $N_0 \leq N$.

We denote:

- $\Sigma = \{1, 2, \ldots, N\}$.
- $\Sigma^* = \bigcup_{m=1}^{\infty} \Sigma^m$.

Huo-Jun Ruan | FIFs on p.c.f. self-similar sets
\[\forall m \in \mathbb{Z}^+, V_m = \bigcup_{\omega \in \Sigma^m} F_\omega(V_0). \]
\[V_* = \bigcup_{m \geq 0} V_m. \]
P.C.F. self-similar sets

∀ \(m \in \mathbb{Z}^+ \), \(V_m = \bigcup_{\omega \in \Sigma^m} F_\omega(V_0) \).

\(V_* = \bigcup_{m \geq 0} V_m \).
∀ \(m \in \mathbb{Z}^+ \), \(V_m = \bigcup_{\omega \in \Sigma^m} F_\omega(V_0) \).

\(V_* = \bigcup_{m \geq 0} V_m \).
Given a function $B : V_1 \to \mathbb{R}$, we will construct a fractal function f on X such that $f|_{V_1} = B$. We call B the basic function of f.

- For $j \in \Sigma$, let $\psi_j : X \times \mathbb{R} \to \mathbb{R}$ be continuous such that, for some constant $\alpha_j < 1$,
 $$\psi_j(q_k, B(q_k)) = B(q_{jk}) \quad \text{for all } q_k \in V_0,$$
 $$|\psi_j(x, z') - \psi_j(x, z'')| \leq \alpha_j |z' - z''|$$
 for all $x \in X$ and all $z', z'' \in \mathbb{R}$.

- Define $W_j : X \times \mathbb{R} \to X \times \mathbb{R}$ for $j = 1, 2, \ldots, N$ by
 $$W_j(x, z) = (F_j(x), \psi_j(x, z)).$$

- $\{X \times \mathbb{R}, W_j : j = 1, 2, \ldots, N\}$ is an IFS.
Given a function $B : V_1 \to \mathbb{R}$, we will construct a fractal function f on X such that $f|_{V_1} = B$. We call B the basic function of f.

For $j \in \Sigma$, let $\Psi_j : X \times \mathbb{R} \to \mathbb{R}$ be continuous such that, for some constant $\alpha_j < 1$,

$$\Psi_j(q_k, B(q_k)) = B(q_{jk}) \quad \text{for all } q_k \in V_0,$$

$$|\Psi_j(x, z') - \Psi_j(x, z'')| \leq \alpha_j |z' - z''|$$

for all $x \in X$ and all $z', z'' \in \mathbb{R}$.

Define $W_j : X \times \mathbb{R} \to X \times \mathbb{R}$ for $j = 1, 2, \ldots, N$ by

$$W_j(x, z) = (F_j(x), \Psi_j(x, z)).$$

$\{X \times \mathbb{R}, W_j : j = 1, 2, \ldots, N\}$ is an IFS.
Given a function $B : V_1 \to \mathbb{R}$, we will construct a fractal function f on X such that $f|_{V_1} = B$. We call B the basic function of f.

- For $j \in \Sigma$, let $\Psi_j : X \times \mathbb{R} \to \mathbb{R}$ be continuous such that, for some constant $\alpha_j < 1$,

$$
\Psi_j(q_k, B(q_k)) = B(q_{jk}) \quad \text{for all } q_k \in V_0,
$$

$$
|\Psi_j(x, z') - \Psi_j(x, z'')| \leq \alpha_j |z' - z''|
$$

for all $x \in X$ and all $z', z'' \in \mathbb{R}$.

- Define $W_j : X \times \mathbb{R} \to X \times \mathbb{R}$ for $j = 1, 2, \ldots, N$ by

$$
W_j(x, z) = (F_j(x), \Psi_j(x, z)).
$$

- $\{X \times \mathbb{R}, W_j : j = 1, 2, \ldots, N\}$ is an IFS.
Similarly as the classical case, we have the following theorem.

Theorem (R’2010)

The IFS \(\{ X \times \mathbb{R}, W_j : j = 1, 2, \ldots, N \} \) defined above has a unique attractor \(G \), i.e., \(G = \bigcup_{j=1}^{N} W_j(G) \). Furthermore, \(G \) is the graph of a continuous function \(f : X \to \mathbb{R} \) which obeys

\[
f|_{V_1} = B.
\]

We call such a function \(f \) a fractal interpolation function, or FIF for short, on \(X \).

In case that for any \(j \),

\[
\psi_j(x, z) = d_jz + \varphi_j(x)
\]

for some constant \(d_j \in (-1, 1) \) and a continuous function \(\varphi_j \) on \(\mathbb{R}^d \), we call the corresponding FIF a linear FIF.
Similarly as the classical case, we have the following theorem.

Theorem (R’2010)

The IFS \(\{ X \times \mathbb{R}, W_j : j = 1, 2, \ldots, N \} \) defined above has a unique attractor \(G \), i.e., \(G = \bigcup_{j=1}^{N} W_j(G) \). Furthermore, \(G \) is the graph of a continuous function \(f : X \to \mathbb{R} \) which obeys

\[
 f|_{V_1} = B.
\]

We call such a function \(f \) a fractal interpolation function, or FIF for short, on \(X \).

In case that for any \(j \),

\[
 \Psi_j(x, z) = d_j z + \varphi_j(x)
\]

for some constant \(d_j \in (-1, 1) \) and a continuous function \(\varphi_j \) on \(\mathbb{R}^d \), we call the corresponding FIF a linear FIF.
The figure displays the FIF on SG where

\[B(q_1) = 0, \quad B(q_2) = 1, \quad B(q_3) = 0, \]
\[B(q_{12}) = 1, \quad B(q_{13}) = 0.8, \quad B(q_{23}) = 0.5. \]

and \(\psi_j(x, z) = d_j z + \varphi_j(x) \) where \(d_1 = 0.3, \ d_2 = 0.2, \ d_3 = 0.3 \)

and \(\varphi_j \) is a harmonic function for any \(j \).
The following theorem presents a sufficient condition such that a linear FIF has finite energy.

Theorem (R’2010)

Let f be the linear FIF determined by $\{(F_j(x), \Psi_j(x, z))\}_{j=1}^N$, where $\Psi_j(x, z) = d_j z + \varphi_j(x)$, $\forall j$. Let $\{r_1, \ldots, r_N\}$ be the renormalization factors in energy form, i.e.

$$\mathcal{E}(u) = \sum_{j=1}^N r_j^{-1} \mathcal{E}(u \circ F_j),$$

for all $u : X \to \mathbb{R}$. Then $f \in \text{dom} \mathcal{E}$ if $\sum_{j=1}^N r_j^{-1} d_j^2 < 1/2$ and $\varphi_j \in \text{dom} \mathcal{E}$ for all $j \in \Sigma$.

Let f be the linear FIF defined in the above example.
Let \mathcal{E} be the standard energy on SG, then $f \in \text{dom} \mathcal{E}$.
The following theorem presents a sufficient condition such that a linear FIF has finite energy.

Theorem (R’2010)

Let \(f \) be the linear FIF determined by \(\{ (F_j(x), \Psi_j(x, z)) \}_{j=1}^{N} \), where \(\Psi_j(x, z) = d_j z + \varphi_j(x) \), \(\forall j \). Let \(\{ r_1, \ldots, r_N \} \) be the renormalization factors in energy form, i.e.

\[
\mathcal{E}(u) = \sum_{j=1}^{N} r_j^{-1} \mathcal{E}(u \circ F_j),
\]

for all \(u : X \rightarrow \mathbb{R} \). Then \(f \in \text{dom } \mathcal{E} \) if \(\sum_{j=1}^{N} r_j^{-1} d_j^2 < 1/2 \) and \(\varphi_j \in \text{dom } \mathcal{E} \) for all \(j \in \Sigma \).

- Let \(f \) be the linear FIF defined in the above example.
- Let \(\mathcal{E} \) be the standard energy on SG, then \(f \in \text{dom } \mathcal{E} \).
The following theorem presents a sufficient condition such that a linear FIF has finite energy.

Theorem (R’2010)

Let \(f \) be the linear FIF determined by \(\{(F_j(x), \psi_j(x, z))\}_{j=1}^{N} \), where \(\psi_j(x, z) = d_j z + \varphi_j(x), \forall j \). Let \(\{r_1, \ldots, r_N\} \) be the renormalization factors in energy form, i.e.

\[
\mathcal{E}(u) = \sum_{j=1}^{N} r_j^{-1} \mathcal{E}(u \circ F_j),
\]

for all \(u : X \rightarrow \mathbb{R} \). Then \(f \in \text{dom } \mathcal{E} \) if \(\sum_{j=1}^{N} r_j^{-1} d_j^2 < 1/2 \) and \(\varphi_j \in \text{dom } \mathcal{E} \) for all \(j \in \Sigma \).

- Let \(f \) be the linear FIF defined in the above example.
- Let \(\mathcal{E} \) be the standard energy on SG, then \(f \in \text{dom } \mathcal{E} \).
Now, we will focus on linear FIFs on SG.

Theorem

Let \(B : V_1 \to \mathbb{R} \) be a given function. For any given numbers \(d_j \in (-1, 1), \ j = 1, 2, 3 \), there exists a unique continuous function \(f : SG \to \mathbb{R} \), such that \(f|_{V_1} = B \) and

\[
f(F_j(x)) = d_j f(x) + h_j(x)
\]

for \(x \in SG \), where \(h_j \) are all harmonic functions on SG.

- Denote by \(B_0 \) the function on \(V_1 \) satisfying \(B_0|_{V_0} = 0 \) and \(B_0|_{V_1 \setminus V_0} = 1 \).
- We will focus on FIFs with basic function \(B_0 \) and with same vertical scaling factors \(d \in (-1, 1) \), i.e., \(d_i = d \) for all \(i \).
- We call the corresponding FIF the **uniform FIF** with vertical scaling factor \(d \).
Now, we will focus on linear FIFs on SG.

Theorem

Let $B : V_1 \rightarrow \mathbb{R}$ be a given function. For any given numbers $d_j \in (-1, 1)$, $j = 1, 2, 3$, there exists a unique continuous function $f : SG \rightarrow \mathbb{R}$, such that $f|_{V_1} = B$ and

$$f(F_j(x)) = d_j f(x) + h_j(x)$$

for $x \in SG$, where h_j are all harmonic functions on SG.

- Denote by B_0 the function on V_1 satisfying $B_0|_{V_0} = 0$ and $B_0|_{V_1 \setminus V_0} = 1$.
- We will focus on FIFs with basic function B_0 and with same vertical scaling factors $d \in (-1, 1)$, i.e., $d_i = d$ for all i.
- We call the corresponding FIF the **uniform FIF** with vertical scaling factor d.

Huo-Jun Ruan
FIFs on p.c.f. self-similar sets
Now, we will focus on linear FIFs on SG.

Theorem

Let $B : V_1 \to \mathbb{R}$ be a given function. For any given numbers $d_j \in (-1, 1)$, $j = 1, 2, 3$, there exists a unique continuous function $f : SG \to \mathbb{R}$, such that $f|_{V_1} = B$ and

$$f(F_j(x)) = d_j f(x) + h_j(x)$$

for $x \in SG$, where h_j are all harmonic functions on SG.

- Denote by B_0 the function on V_1 satisfying $B_0|_{V_0} = 0$ and $B_0|_{V_1 \setminus V_0} = 1$.
- We will focus on FIFs with basic function B_0 and with same vertical scaling factors $d \in (-1, 1)$, i.e., $d_i = d$ for all i.
- We call the corresponding FIF the uniform FIF with vertical scaling factor d.

Huo-Jun Ruan
Now, we will focus on linear FIFs on SG.

Theorem

Let $B : V_1 \to \mathbb{R}$ be a given function. For any given numbers $d_j \in (-1, 1), j = 1, 2, 3$, there exists a unique continuous function $f : SG \to \mathbb{R}$, such that $f|_{V_1} = B$ and

$$f(F_j(x)) = d_j f(x) + h_j(x)$$

for $x \in SG$, where h_j are all harmonic functions on SG.

- Denote by B_0 the function on V_1 satisfying $B_0|_{V_0} = 0$ and $B_0|_{V_1 \setminus V_0} = 1$.
- We will focus on FIFs with basic function B_0 and with same vertical scaling factors $d \in (-1, 1)$, i.e., $d_i = d$ for all i.
- We call the corresponding FIF the **uniform FIF** with vertical scaling factor d.
Theorem (Ri&R’2011)

Let \(f \) be the uniform FIF with vertical scaling factor \(d \). Then

- \(\mathcal{E}(f) < \infty \) if and only if \(|d| < \frac{1}{\sqrt{5}} \). Furthermore, in case that \(|d| < \frac{1}{\sqrt{5}} \), we have \(\mathcal{E}(f) = \frac{10}{1-5d^2} \).
- \(\partial_n f(q_j) \) exists for some (then for all) \(j = 1, 2, 3 \) if and only if \(|d| < \frac{3}{5} \). Furthermore, in case that \(|d| < \frac{3}{5} \), we have

 \((1). \quad \partial_n f(q_j) = \frac{2}{d-3/5} \) for any \(j \) and

 \((2). \quad \partial_n^K f(q_{jk}) = \frac{5d-1}{d-3/5} \) for any \(j, k = 1, 2, 3 \) with \(j \neq k \).
- It follows that \(\partial_n^K f(q_{jk}) = 0 \) for any \(j, k = 1, 2, 3 \) with \(j \neq k \) if \(d = 1/5 \).

Theorem (Ri&R’2011)

Let \(f \) be the uniform FIF with vertical scaling factor \(d \). Then \(0 \leq f(x) \leq 1 \) for all \(x \in SG \) if and only if \(d \in \left[-\frac{3}{5}, \frac{1}{5} \right] \).
Theorem (Ri&R’2011)

Let \(f \) be the uniform FIF with vertical scaling factor \(d \). Then

- \(\mathcal{E}(f) < \infty \) if and only if \(|d| < \frac{1}{\sqrt{5}} \). Furthermore, in case that \(|d| < \frac{1}{\sqrt{5}} \), we have \(\mathcal{E}(f) = \frac{10}{1 - 5d^2} \).

- \(\partial_n f(q_j) \) exists for some (then for all) \(j = 1, 2, 3 \) if and only if \(|d| < \frac{3}{5} \). Furthermore, in case that \(|d| < \frac{3}{5} \), we have

 (1). \(\partial_n f(q_j) = \frac{2}{d-\frac{3}{5}} \) for any \(j \) and

 (2). \(\partial^K_n f(q_{jk}) = \frac{5d-1}{d-\frac{3}{5}} \) for any \(j, k = 1, 2, 3 \) with \(j \neq k \).

- It follows that \(\partial^K_n f(q_{jk}) = 0 \) for any \(j, k = 1, 2, 3 \) with \(j \neq k \) if \(d = \frac{1}{5} \).

Theorem (Ri&R’2011)

Let \(f \) be the uniform FIF with vertical scaling factor \(d \). Then

\(0 \leq f(x) \leq 1 \) for all \(x \in \text{SG} \) if and only if \(d \in [-\frac{3}{5}, \frac{1}{5}] \).
Theorem (Ri&R’2011)

Let \(f \) be the uniform FIF with vertical scaling factor \(d \). Then

- \(\mathcal{E}(f) < \infty \) if and only if \(|d| < \frac{1}{\sqrt{5}} \). Furthermore, in case that \(|d| < \frac{1}{\sqrt{5}} \), we have \(\mathcal{E}(f) = \frac{10}{1-5d^2} \).

- \(\partial_n f(q_j) \) exists for some (then for all) \(j = 1, 2, 3 \) if and only if \(|d| < \frac{3}{5} \). Furthermore, in case that \(|d| < \frac{3}{5} \), we have

 (1). \(\partial_n f(q_j) = \frac{2}{d^{3/5}} \) for any \(j \) and

 (2). \(\partial^K_{n, j} f(q_{jk}) = \frac{5d-1}{d^{3/5}} \) for any \(j, k = 1, 2, 3 \) with \(j \neq k \).

- It follows that \(\partial^K_{n, j} f(q_{jk}) = 0 \) for any \(j, k = 1, 2, 3 \) with \(j \neq k \) if \(d = 1/5 \).
Let \(f \) be the uniform FIF with vertical scaling factor \(d \). Then

- \(\mathcal{E}(f) < \infty \) if and only if \(|d| < \frac{1}{\sqrt{5}} \). Furthermore, in case that \(|d| < \frac{1}{\sqrt{5}} \), we have \(\mathcal{E}(f) = \frac{10}{1-5d^2} \).
- \(\partial_n f(q_j) \) exists for some (then for all) \(j = 1, 2, 3 \) if and only if \(|d| < \frac{3}{5} \). Furthermore, in case that \(|d| < \frac{3}{5} \), we have
 (1). \(\partial_n f(q_j) = \frac{2}{d^{3/5}} \) for any \(j \) and
 (2). \(\partial_n^K f(q_{jk}) = \frac{5d-1}{d^{3/5}} \) for any \(j, k = 1, 2, 3 \) with \(j \neq k \).
- It follows that \(\partial_n^K f(q_{jk}) = 0 \) for any \(j, k = 1, 2, 3 \) with \(j \neq k \) if \(d = 1/5 \).

Let \(f \) be the uniform FIF with vertical scaling factor \(d \). Then

\(0 \leq f(x) \leq 1 \) for all \(x \in SG \) if and only if \(d \in \left[-\frac{3}{5}, \frac{1}{5} \right] \).
Theorem (Ri&R’2011)

Let f be the uniform FIF with vertical scaling factor d. Then

- $\mathcal{E}(f) < \infty$ if and only if $|d| < \frac{1}{\sqrt{5}}$. Furthermore, in case that $|d| < \frac{1}{\sqrt{5}}$, we have $\mathcal{E}(f) = \frac{10}{1 - 5d^2}$.

- $\partial_n f(q_j)$ exists for some (then for all) $j = 1, 2, 3$ if and only if $|d| < \frac{3}{5}$. Furthermore, in case that $|d| < \frac{3}{5}$, we have
 (1). $\partial_n f(q_j) = \frac{2}{d - 3/5}$ for any j and
 (2). $\partial^K_n f(q_{jk}) = \frac{5d - 1}{d - 3/5}$ for any $j, k = 1, 2, 3$ with $j \neq k$.

- It follows that $\partial^K_n f(q_{jk}) = 0$ for any $j, k = 1, 2, 3$ with $j \neq k$ if $d = 1/5$.

Theorem (Ri&R’2011)

Let f be the uniform FIF with vertical scaling factor d. Then $0 \leq f(x) \leq 1$ for all $x \in SG$ if and only if $d \in [-\frac{3}{5}, \frac{1}{5}]$.
Theorem (Ri&R’2011)

Let f be the uniform FIF with vertical scaling factor d. Then, for any $x \in V_* \setminus V_1$, we have the following property:

- $\Delta f(x) = 0$ if $d = 0$,
- $\Delta f(x) = -15$ if $d = \frac{1}{5}$, and
- $\Delta f(x) = \infty$ if $d \neq 0, \frac{1}{5}$.

Corollary (Ri&R’2011)

Let f be the uniform FIF with vertical scaling factor $d = \frac{1}{5}$. Let α be a given real number. Then $-\frac{\alpha f}{15}$ is the unique solution of the following Dirichlet problem:

$$
\begin{align*}
\Delta f(x) &= \alpha, \quad \forall x \in SG \setminus V_0, \\
\end{align*}
$$

subject to

$$
\begin{align*}
|f|_{V_0} &= 0.
\end{align*}
$$
Theorem (Ri&R’2011)

Let f be the uniform FIF with vertical scaling factor d. Then, for any $x \in V_* \setminus V_1$, we have the following property:

- $\Delta f(x) = 0$ if $d = 0$,
- $\Delta f(x) = -15$ if $d = \frac{1}{5}$, and
- $\Delta f(x) = \infty$ if $d \neq 0, \frac{1}{5}$.

Corollary (Ri&R’2011)

Let f be the uniform FIF with vertical scaling factor $d = \frac{1}{5}$. Let α be a given real number. Then $-\frac{\alpha f}{15}$ is the unique solution of the following Dirichlet problem:

$$
\begin{cases}
 f|_{V_0} = 0, \\
 \Delta f(x) = \alpha, \quad \forall x \in SG \setminus V_0.
\end{cases}
$$
Theorem (Ri&R’2011)

Let f be the uniform FIF with vertical scaling factor d. Then, for any $x \in V_* \setminus V_1$, we have the following property:

- $\Delta f(x) = 0$ if $d = 0$,
- $\Delta f(x) = -15$ if $d = \frac{1}{5}$, and
- $\Delta f(x) = \infty$ if $d \neq 0, 1/5$.

Corollary (Ri&R’2011)

Let f be the uniform FIF with vertical scaling factor $d = \frac{1}{5}$. Let α be a given real number. Then $-\frac{\alpha f}{15}$ is the unique solution of the following Dirichlet problem:

$$
\begin{cases}
 f|_{V_0} = 0, \\
 \Delta f(x) = \alpha, \quad \forall x \in SG \setminus V_0.
\end{cases}
$$
Theorem (Ri&R’2011)

Let \(f \) be the uniform FIF with vertical scaling factor \(d \). Then, for any \(x \in V_* \setminus V_1 \), we have the following property:

- \(\Delta f(x) = 0 \) if \(d = 0 \),
- \(\Delta f(x) = -15 \) if \(d = \frac{1}{5} \), and
- \(\Delta f(x) = \infty \) if \(d \neq 0, 1/5 \).

Corollary (Ri&R’2011)

Let \(f \) be the uniform FIF with vertical scaling factor \(d = \frac{1}{5} \). Let \(\alpha \) be a given real number. Then \(-\frac{\alpha f}{15} \) is the unique solution of the following Dirichlet problem:

\[
\begin{cases}
 f|_{V_0} = 0, \\
 \Delta f(x) = \alpha, \quad \forall x \in SG \setminus V_0.
\end{cases}
\]
Theorem (Ri&R’2011)

Let f be the uniform FIF with vertical scaling factor d. Then, for any $x \in V_\ast \setminus V_1$, we have the following property:

- $\Delta f(x) = 0$ if $d = 0$,
- $\Delta f(x) = -15$ if $d = \frac{1}{5}$, and
- $\Delta f(x) = \infty$ if $d \neq 0, \frac{1}{5}$.

Corollary (Ri&R’2011)

Let f be the uniform FIF with vertical scaling factor $d = \frac{1}{5}$. Let α be a given real number. Then $\frac{-\alpha f}{15}$ is the unique solution of the following Dirichlet problem:

$$
\begin{cases}
 f|_{V_0} = 0, \\
 \Delta f(x) = \alpha, \quad \forall x \in SG \setminus V_0.
\end{cases}
$$
Thank you!