Poincaré Duality and Bakry–Émery Gradient Estimates on Dirichlet Spaces

Daniel J. Kelleher
Golomb Visiting Assistant Professor
Department of Mathematics
Purdue University

Joint work with Fabrice Baudoin

AMS Sectional Meetings — March 2016 — Stony Brook, NY
Bakry–Émery Gradient Estimates

If Γ is an appropriate notion of gradient, and P_t is an associated heat kernel, the Bakry–Émery Gradient estimates

$$\sqrt{\Gamma(P_t f)} \leq P_t \sqrt{\Gamma(f)}.$$

Can be used to establish

1. Riesz-Transform Bounds
 (Coulhon and Duong et al.)

2. Isoperimetric inequalities
 (e.g. Baudoin–Bonnefont)

3. Wasserstein Control
 (Kuwada Duality)
Generalizations of Curvature

The Bakry–Émery estimate can be thought of as a curvature condition.

In the appropriate settings it is equivalent to

1. Curvature Dimension Inequalities of Bakry-Émery.

Question Can we find a situation which supports a Bakry–Émery gradient estimate, but neither of the above?
Setting

- (X,d) is a locally compact Hausdorff space
- μ Borel regular measure with volume doubling, i.e. there is some constant C_{vol}
 \[C_{vol}\mu(B_{2r}(x)) \leq \mu(B_r(x)) \quad \text{and} \quad \mu(B_1(x)) \geq c_{vol} \]
- $(\mathcal{E}, \text{dom} \mathcal{E})$ is a local regular Dirichlet form with heat semigroup P_t.
- Energy Measures $\nu_{f,g}$ such that
 \[2 \int \phi \: d\nu_{f,g} = \mathcal{E}(f\phi, g) + \mathcal{E}(g\phi, f) - \mathcal{E}(\phi, fg). \]
- \mathcal{E} admits a Carré du Champ/\(\mu\) is energy dominant
 \[\mu \ll \nu_{f,g} \text{ for all } f \text{ and define } \Gamma_\mu(f, g) = \frac{d\nu_{f,g}}{d\mu} \]
- Poincaré inequality
 \[\int_{B_r(x)} \left| f - \bar{f}_{B_r(x)} \right| \: d\mu \leq \nu_f(B_{CPr}(x)) \]
General Results

Reisz Transform: $f \mapsto \Gamma_\mu(\Delta^{-1/2} f)$.

Theorem

If we have
- Locally compact Hausdorff metric space (X, d).
- Upper and lower volume Doubling measure μ.
- Dirichlet form $(E, \text{dom} E)$ which admits a Carré du Champ.

Which Satisfy
- Poincaré Inequality
- Bakry–Émery inequality

Then the **Riesz Transform** is bounded for $p \geq 1$, i.e.

$$
\left\| \Gamma_\mu(f, f)^{1/2} \right\|_p \leq C_p \left\| \Delta^{1/2} f \right\|_p
$$
We say f is **bounded variation**, and write $f \in BV$, if

$$\lim_{t \to 0} \int \sqrt{P_t f} \, d\mu < \infty$$

and define $\text{Var}(f) = \lim_{t \to 0} \int \sqrt{P_t f} \, d\mu$.

If $1_E \in BV$, we then the **perimeter** is called $\text{Per } E = \text{Var}(1_E)$.

E is called a **Caccioppoli set** if $1_E \in BV$.
Isoperimetric Inequalities

Theorem (Baudoin-K.)

If we have

- Locally compact Hausdorff metric space \((X, d)\).
- Upper and lower volume Doubling measure \(\mu\).
- Dirichlet form \((\mathcal{E}, \text{dom} \mathcal{E})\).

Which Satisfy

- Poincaré Inequality and Bakry–Émery Inequality

Then Isoperimetric Inequality there exists \(Q\) and \(C_{iso}\) such that

\[\mu(E)^{1-1/Q} \leq C_{iso} P(E). \]

and Gaussian Isoperimetric Inequality

\[C\mu(E)\sqrt{\ln \left(1/\mu(E)\right)} \leq \text{Per}(E). \]
Kuwada Duality

Let

\[W_p(\nu_1, \nu_2) = \inf_{\pi} \left(\int d(x, y)^p \, \pi(dx, dy) \right)^{1/p} \]

be the p-Wasserstein Distance between two probability measures on a metric measure space (X, d).

Then there is a dual form of the Bakry–Émery inequality called p-Wasserstein control:

\[W_p(P_t^*\nu_1, P_t^*\nu_2) \leq e^{-kt} W_p(\nu_1, \nu_2). \]

Where

\[\int f \, dP_t^*\nu = \int P_t f \, d\nu. \]
Theorem (Kuwada)

\[p\text{-Wasserstein control:} \]

\[W_p(P_t^*\nu_1, P_t^*)\nu_2 \leq e^{-kt} W_p(\nu_1, \nu_2). \]

is Equivalent to

\[\sqrt{\Gamma(P_t f)} \leq e^{-kt} (P_t(\Gamma(f))^{p/2})^{1/p} \]
Goals

- To classify the differential forms on one-dimensional Dirichlet spaces, particularly on the Sierpinski Gasket.
- Relate the heat equation on differential forms to that on scalars.
Idea: to deal with these problems by developing a differential geometry for Dirichlet spaces and hence fractals

based on

Differential forms on the Sierpinski gasket and other papers by Cipriani–Sauvageot

Derivations and Dirichlet forms on fractals
by Ionescu–Rogers–Teplyaev, JFA 2012

Vector analysis on Dirichlet Spaces
by Hinz–Röckner–Teplyaev, SPA 2013
Differential forms on Dirichlet spaces

Let X be a locally compact second countable Hausdorff space and m be a Radon measure on X with full support. Let $(\mathcal{E}, \mathcal{F})$ be a regular symmetric Dirichlet form on $L_2(X, m)$.

Write $\mathcal{C} := C_0(X) \cap \mathcal{F}$.

The space \mathcal{C} is a normed space with

$$\|f\|_\mathcal{C} := \mathcal{E}_1(f)^{1/2} + \sup_{x \in X} |f(x)|.$$
We equip the space $\mathcal{C} \otimes \mathcal{C}$ with a bilinear form, determined by

$$\langle a \otimes b, c \otimes d \rangle_\mathcal{H} = \int_X bd \, d\Gamma(a, c).$$

This bilinear form is nonnegative definite, hence it defines a seminorm on $\mathcal{C} \otimes \mathcal{C}$.

\mathcal{H}: the Hilbert space obtained by factoring out zero seminorm elements and completing.
Differential forms on Dirichlet spaces

In the classical setting, this norm

$$\int |b|^2 |
\nabla a|^2 \, d\mu$$

Where μ is Lebesgue measure in the appropriate dimension.

And, any simple tensor $a \otimes b = \sum_{i=1}^{d} x^i \otimes b \frac{\partial a}{\partial x^i}$.

Think of $x^i \otimes 1$ as dx^i,
We call \mathcal{H} the \textit{space of differential 1-forms} associated with $(\mathcal{E}, \mathcal{F})$.

The space \mathcal{H} can be made into a \mathcal{C}-\mathcal{C}-bimodule by setting

\[a(b \otimes c) := (ab) \otimes c - a \otimes (bc) \quad \text{and} \quad (b \otimes c)d := b \otimes (cd) \]

and extending linearly.

\mathcal{C} acts on both sides by uniformly bounded operators.
we can introduce a derivation operator by defining \(\partial : \mathcal{C} \to \mathcal{H} \) by \(\partial a := a \otimes 1 \).

\[\| \partial a \|^2 \leq 2 \mathcal{E}(a) \] and the \textbf{Leibniz rule} holds,

\[\partial(ab) = a \partial b + b \partial a, \quad a, b \in \mathcal{C}. \]
The operator ∂ extends to a closed unbounded linear operator from $L_2(X, m)$ into \mathcal{H} with domain \mathcal{F}.

Let ∂^* denote its adjoint, such that

$$\langle \partial^* \omega, g \rangle_{L^2} = \langle \omega, \partial g \rangle_{\mathcal{H}}$$

(1)

Let \mathcal{C}^* be the dual space of the normed space \mathcal{C}. Then ∂^* defines a bounded linear operator from \mathcal{H} into \mathcal{C}^*.

In this talk we shall consider $\partial^* : \mathcal{H} \rightarrow L^2(X)$ by restricting to the domain

$$\text{dom } \partial^* = \{ \eta \in \mathcal{H} \mid \exists f \in L^2(X) \text{ with } \partial^* \eta(\phi) = \langle f, \phi \rangle_{L^2} \}$$
PDE on fractals

We can think of ∂ as something like a gradient or an exterior derivative.

And think of ∂^* as div or as the co-differential.

This allows for a lot of new differential equations to but represented on fractals

For instance, we now have a divergence form

$$\partial^* a(\partial u) = 0$$
Magnetic Schrödinger operators

Classically

\[i \frac{\partial u}{\partial t} = (-i \nabla - A)^2 u + V u \]

becomes

\[i \frac{\partial u}{\partial t} = (-i \partial - a)^* (-i \partial - a) u + V u \]

Where \(a \in \mathcal{H} \) and \(V \in L_\infty(X, m) \).
A result of *Hinz–Röckner–Teplyaev* shows that (with some technical conditions) there is a “fibrewise” inner product and norm on \mathcal{H}. Call the fibres \mathcal{H}_x and the inner product $\langle \cdot, \cdot \rangle_{\mathcal{H},x}$.

Note

$$\langle \partial f, \partial g \rangle_{\mathcal{H},x} = \Gamma_\mu(f, g)(x)$$

almost everywhere.
Definition of Poincaré Duality

Theorem (Baudoin–K.)

In the above situation, choose \(\omega \in \mathcal{H} \) such that \(\| \omega \|_{\mathcal{H},x} = 1 \) \(\mu \)-a.e.
then \(\ast L^2(X, \mu) \rightarrow \mathcal{H} \) defined by

\[
\ast f = \omega \cdot f
\]

is an isometry both globally and fiberwise with inverse

\[
\ast \eta(x) = \langle \omega, \eta \rangle_{\mathcal{H},x}.
\]

In particular \(L^2(X, \mu) \cong \mathcal{H} \) as Hilbert spaces.

Proof Hino index 1 implies that \(\dim \mathcal{H}_x = 1 \) almost everywhere.
Consider

$$\tilde{\Delta} = \partial \partial^*$$

with domain

$$\text{dom} \, \tilde{\Delta} = \{ \omega \in \mathcal{H} \mid \partial^* \omega \in \text{dom} \, \partial \}.$$
Hodge Decomposition

When restricted to topologically 1-dimensional fractals, there is a Hodge decomposition with

\[\mathcal{H} = \mathcal{H}^0 \oplus \mathcal{H}^1 \]

where

\[\mathcal{H}^0 = \text{Im} \partial \quad \text{are Exact Forms} \]

and

\[\mathcal{H}^1 = \text{ker} \partial^* \quad \text{are Harmonic Forms} \]
The co-differential has the following product rule

$$\partial^*(\eta \cdot f) = \langle \partial f, \eta \rangle_{\mathcal{H}_x} + f \partial^* \eta.$$

Thus if $\omega \in \mathcal{H}^1$ is harmonic, then the second term on the right disappears and we get.

$$\partial^* \star f = \star \partial f.$$

Note: It is not true that

$$\star \partial^* \eta = \partial \star \eta$$
Theorem (Baudoin–K.)

Consider the self-similar energy form \mathcal{E} on SG, with respect to a borel measure μ,

1. $\mu = \nu_h$ is the energy measure associated to the harmonic h with boundary V_0.
2. \star is the Hodge Star with respect to ∂h.
3. Δ_0 is the Dirichlet Laplacian with boundary V_0.

Then $\tilde{\Delta}$ restricted to exact forms \mathcal{H}^0 is equal to $-\star \Delta_0 \star$ as operators.

If $\Delta_\mu = -\partial^* \partial$ is the generator of \mathcal{E} with respect to μ, this implies that

$$\text{dom } \Delta_\mu = \{ f \in \text{dom } \mathcal{E} \mid \star \partial f = \Gamma(f, h) \in \text{dom}_0 \mathcal{E} \}$$
Energy measures can be extended to elements of \mathcal{H} by

$$\int \phi \, d\nu_\omega := \langle \omega \cdot \phi, \omega \rangle_{\mathcal{H}}.$$

Theorem (Baudoin–K.)

Consider the self-similar energy form \mathcal{E} on SG, with respect to a borel measure μ,

1. $\mu = \nu_\omega$ is the energy measure associated to the harmonic form $\omega \in \mathcal{H}^1$.
2. \star is the Hodge Star with respect to ω.
3. Δ_ω is the generator of \mathcal{E}.

Then $\tilde{\Delta}$ restricted to exact forms \mathcal{H}^0 is equal to $-\star \Delta \star$ as operators.
Theorem (Baudoin–K.)

In either of the settings of the above theorems, the Bakry–Émery inequality is satisfied.

That is if μ is either ν_h for some harmonic function h, or ν_ω for some harmonic form ω, then

$$\sqrt{\Gamma_\mu(e^{-t\Delta_\mu}f)} \leq e^{-t\Delta_\mu}\sqrt{\Gamma_\mu(f)}.$$
Proof of Bakry–Émery inequality

Idea:

$$e^{t\tilde{\Delta}} \partial = \partial e^{-t\Delta}$$

Then because $\tilde{\Delta} = -\ast \Delta \ast$

$$\ast e^{-t\Delta} \ast \partial = \partial e^{-t\Delta}.$$

Thus

$$|e^{-t\Delta} \ast \partial f(x)| = \|\partial e^{-t\Delta} f\|_{\mathcal{H},x} = \sqrt{\Gamma(e^{-t\Delta} f)(x)}.$$

The Inequality follows from the fact that

$$|e^{-t\Delta} \ast \partial f(x)| \leq e^{-t\Delta} |\ast \partial f| = e^{-t\Delta} \sqrt{\Gamma(f)}.$$
We can build a fractafold by gluing copies of SG together.

Theorem (Baudoin–K.)

The fractafold X admits a Poincaré duality, and satisfies the Bakry–Emery inequality.

The inequality also is preserved by taking products.