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Sequences

A sequence is simply a function whose domain is the set of positive integers. We generally
use slightly different notation for sequences than for other functions, so that we may write
an = n2 rather than f(x) = x2. This helps us recognize when we are dealing with a sequence
rather than another type of function. To further distinguish sequences, we generally call the
independent variable an index.

When dealing with sequences, we are generally most interested in answering two questions.

(1) Does the sequence converge?
(2) What limit does the sequence converge to?

Often, we can determine whether a sequence converges, and what it converges to, by
methods analogous to those used to determine limits at infinity for other functions. For

example, if we consider the sequence {an} defined by the formula an =
n+ 5 ln(nn)√
n− n ln(n)

and

want to find limn→∞ an we will, or at least we should, get exactly the same answer as we

would if we considered the function f(x) =
x+ 5 ln(xx)√
x− x ln(x)

and wanted to find limx→∞ f(x).

This similarity is emphasized by the following lemma.

Lemma 1. Consider a monotonic function f : R → R and a sequence an : Z+ → R. If
an = f(n) for all n ∈ Z and limx→∞ f(x) exists, then so does lim an and the latter is equal
to the former.

Based on this lemma, we can often even make use of L’Hopital’s Rule to obtain the limit
of a sequence, even though we can’t actually use L’Hopital’s Rule on the sequence itself ! We
were able to make use of this to determine the following important limits.

(1) lim
lnn

n
= 0

(a) More generally, lim
(lnn)α

nβ
= 0 whenever β > 0.

(2) lim
n

expn
= 0

(a) More generally, lim
nα

βn
= 0 whenever β > 1.

We also, without the use of L’Hopital’s Rule, make use of another limit in a similar vein.

(3) lim
αn

n!
= 0 for any α ∈ R.

We can easily see this last by writing
αn

n!
=
α

1
· α

2
. . .

α

n
. When n is very large, most of

these factors will be extremely small, making the product very small regardless of how large
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α is. One quick way of verifying that is to choose some integer N ≥ 2α, let B =
αN

N !
and

observe that
αn

n!
≤ B

2n−N
, which obviously goes to zero as n→∞.

The upshot of these particular limits is the rule of thumb that logarithms are much smaller
than powers, which in turn are much smaller than exponentials, which then in turn are much
smaller than factorials.

We have one other key lemma which sometimes enables us to answer the first question in
the affirmative even when we can’t answer the second question.

Lemma 2. If a sequence an : Z+ → R is monotonic and bounded, then it is convergent.

It is rare that we actually use this theorem on specific sequences, but it is a useful tool for
proving various tests for convergence of infinite series.

Sequence Summary. When actually calculating a limit limn→∞ an, we work almost exactly
as if we were calculating a limit limx→∞ f(x). We also use a theorem about the convergence
of monotonic sequences for theoretical purposes when examining series.

Note that just as not every function is called f and not every independent variable is called
x, not every sequence is called a and not every index is called n.

Series

A series is an expression
∑∞

n=1 an = a1 + a2 + a3 + . . . .
Actually, a series is more generally an expression

∑∞
n=α an, but it’s easier to pretend for

now that α is always 1. Indeed, we’ll often write merely write
∑
an, assuming that n goes

from some integer α to ∞ and recognizing that the value of α is irrelevant.
Remember that a series is not a sequence. A series actually involves two separate se-

quences, the sequence {an} of its terms and the sequence {sn} of its partial sums, where
sn =

∑n
k=1 ak. We are primarily interested in the convergence of its sequence of partial

sums, not in the convergence of its terms! That, indeed, is how the convergence of a series is
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series whose terms approach zero. This very useful lemma merely eliminates many series
from contention in the convergence sweepstakes, but does not show that a series converges
in and of itself. To do that, we need to use other tests.

Most convergence tests are actually tests for the convergence of positive term series.

Theorem 4. If
∑
|an| <∞, then

∑
an converges.

In other terminology, if a series is absolutely convergent, then it is convergent. Thus, even
if a series

∑
an is not a positive term series, we can test the associated positive term series∑

|an| for convergence as a substitute.

Positive Term Series

Here we consider the tests for convergence of positive term series, all of which can then
be used to test for absolute convergence of a series if it’s not a positive term series. We will
assume that each of the series considered in this section are positive term series.

Most of the tests are based on the following relatively straightforward consequence of the
lemma about the convergence of monotone sequences.

Lemma 5. A positive term series is convergent if and only if its sequence of partial sums is
bounded.

Based on this lemma, we are able to prove two convergence theorems and the Integral
Test.

Theorem 6. (Convergence Test I) Consider positive terms series
∑
an and

∑
bn, where

0 ≤ an ≤ bn for all large enough integers n.

(1) If
∑
bn <∞ then

∑
an <∞.

(2) If
∑
an =∞ then

∑
bn =∞.

Theorem 7. (Convergence Test II) Consider positive terms series
∑
an and

∑
bn where

lim
an
bn

= γ 6= 0 for some γ ∈ R. Then either both series converge, or both series diverge.

Theorem 8. (Integral Test) Suppose an = f(n) for all large enough n ∈ Z+ for some
monotonic function f : R → R. Then

∑
an < ∞ if and only if the improper integral∫∞

f(x) dx <∞.

Note that, in the integral, the lower limit was omitted. That is, technically, improper
notation. It was used to make the point that the lower limit is irrelevant and just has to
be large enough to be able to try to evaluate the improper integral. Also note the similarity
between these two comparison tests and the two comparison tests for convergence of improper
integrals. That similarity is, of course, no accident.

In trying to determine the convergence of a positive term series, the first thing we need
to do, unless the series is either geometric or a P-Series, is that see if there is some baseline
series we can compare it to. Of course, in order to do that, we need a collection of baseline
series we are familiar with. These are provided by the following.

Theorem 9. (P-Test) ∑ 1

np

{
<∞ if p > 1

=∞ if p ≤ 1
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Theorem 10. (Geometric Series) A geometric series
∑
arn−1 = a+ar+ar2 + . . . converges

if and only if |r| < 1, in which case it converges to
a

1− r
.

Note how the P-Test is very similar to the test for the convergence of improper integrals
that goes by the same name, and that it can easily be verified using the Integral Test.

When confronted with a series, we start by trying to see if it similar to a P-Series, generally
by using the same idea we use to intuitively guess at the limit of a sequence with the same
terms. That is, if we are looking at a fraction, we ignore all but the most significant terms
of both the numerator and the denominator.

For example, if we were interested in the series
∑ n2 − n

n3
√
n+ 5n+ 3

, we would look at∑ n2

n3
√
n

=
∑ 1

n3/2
. Since the latter series is a convergent P-Series, we expect the former to

converge as well.
This, however, is not actually a valid argument. It needs to be massaged into a valid

argument. That can be done in this case, since it is obvious that
n2 − n

n3
√
n+ 5n+ 3

<
1

n3/2
,

but not always. In such cases, we generally resort next to the ratio test.

Theorem 11. (Ratio Test) Consider a positive term series
∑
an such that lim

an+1

an
exists.

If that limit is less than 1, then the series converges, while the series diverges if that limit is
greater than 1.

The Ratio Test generally works well on series that are almost geometric, such as
∑ n

2n
, or

which are much smaller than geometric series but may be difficult to apply the comparison

tests to, such as
∑ 2n

n!
, but does not work on series that are close to being P-Series, such as

the example above.
If the Comparison Tests don’t seem to work, and the Ratio Test doesn’t work, the last

thing to try is the Integral Test.

Positive Term Series Summary. Start examining a positive term series by checking
whether its terms approach zero. If they do, first check whether it’s either a geometric series
or a P-Series. If it’s not, try to apply one of the comparison tests. The next thing to try is
generally the ratio test, followed by the integral test.

Other Series

If a series
∑
an is not a positive term series, try checking for absolute convergence. This

can be done by the strategy above, applied to the associated positive term series
∑
|an|.

If the series is not absolutely convergent, then the best hope for showing that it’s con-
ditionally convergent comes if it’s an alternating series. If so, one can often determine its
convergence almost at sight, based on the Alternating Series Test.

Theorem 12. (Alternating Series Test) If an ≥ 0 for all large enough integers n and
the sequence {an} eventually converges monotonically to zero, then the alternating series∑

(−1)n+1an = a1 − a2 + a3 − a4 + . . . converges.
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This test works easily on alternating series such as the Alternating Harmonic Series 1 −
1

2
+

1

3
− 1

4
+

1

5
− 1

6
± . . . .

Final Summary

When analyzing both sequences and series–which you need to remember are different
creatures, it’s generally a good idea to try to use rough estimates to make a preliminary
decision about whether they converge or diverge, and then use more precise methods to
confirm that preliminary decision.


