Line Integrals

© Alan H. Stein

The University of Connecticut at Waterbury stein@math.uconn.edu http://www.math.uconn.edu/~stein

Line integrals take the general idea of a Riemann Sum and an integral one step further.

For ordinary integrals, we take a function f defined on an interval [a,b] in the real line, partition the interval into subintervals, choose a point c_k from each interval, multiply the value $f(c_k)$ of the function at that point by the basic dimension of that subinterval, its length Δx_k , add them up to get the Riemann Sum $\sum_k f(c_k) \Delta x_k$ and in some sort of limiting process come up with the definite integral $\int_a^b f(x) dx$.

For double integrals, we take a function f defined on a plane region \mathcal{E} , partition the region into subregions, choose a point $P_k = (x_k, y_k)$ from each subregion, multiply the value $f(P_k)$ of the function at that point by the basic dimension of that subregion, its area ΔA_k , add them up to get the Riemann Sum $\sum_k f(P_k) \Delta A_k$ and in some sort of limiting process come up with the double integral $\int_{\mathcal{E}} f(x,y) dA$.

For triple integrals, we take a function f defined on a solid region \mathcal{E} , partition the region into subregions, choose a point $P_k = (x_k, y_k, z_k)$ from each subregion, multiply the value $f(P_k)$ of the function at that point by the basic dimension of that subregion, its volume ΔV_k , add them up to get the Riemann Sum $\sum_k f(P_k) \Delta V_k$ and in some sort of limiting process come up with the triple integral $\int_{\mathcal{E}} f(x, y, z) dV$.

For line integrals, we take a function f defined on a curve C, partition the curve into subarcs, choose a point $P_k = (x_k, y_k)$ from each subarc, multiply the value $f(P_k)$ of the function at that point by the basic dimension of that subarc, its length Δs_k , add them up to get the Riemann Sum $\sum_k f(P_k)\Delta s_k$ and in some sort of limiting process come up with the line integral $\int_C f(x,y)ds$.

For a variation, we replace the length Δs_k of the subarc by the length Δx_k of the projection of the subarc on the x- axis, getting the Riemann Sum $\sum_k f(P_k) \Delta x_k$ and the line integral $\int_{\mathcal{C}} f(x,y) dx$, or perhaps by the projection on the y-axis to get a line integral $\int_{\mathcal{C}} f(x,y) dy$, or even a sum of terms of each type to get a line integral of the form $\int_{\mathcal{C}} P dx + Q dy$.

To actually calculate a line integral, we need a parametrization of the curve \mathcal{C} , say x = x(t),

 $y = y(t), a \le t \le b$, and mechanically replace the differential ds by $\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$, the

differential dx by $\frac{dx}{dt}dt$ and the differential dy by $\frac{dy}{dt}dt$, and put in limits from a to b to get an ordinary integral in terms of t.

Important: Try to understand why that mechanical substitution actually works.