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INTRODUCTION

The ability to sketch a graph of a function is extremely useful because it enables one to
visualize the behavior of the function, thus giving a concrete meaning to the function and
making it more than an abstraction. The sketching of the graph of a function is intimately
tied to the study of monotonicity (increasing or decreasing), extrema and concavity, which
in turn are tied to the first and second derivatives. (In what follows, we assume that the first
and second derivatives are defined wherever relevant. If there are any points where either
derivative is not defined, then such points need to be dealt with using algebraic techniques.
In practice, such points stick out like sore thumbs and the behavior of a function near such
points is usually obvious if one uses a little common sense.)

A WORD OF ADVICE

These notes will appear meaningless unless you visualize what you are reading. Therefore,
read them with a pencil in your hand and use it. By the time you have finished, you should
have drawn dozens of pictures.

CONVENTIONS AND NOTATION

We will refer to a function y = f(z). That means that the name of the function is f, there
is an independent variable called x and a dependent variable called y. We will also refer to
the horizontal axis as the r—axis and the vertical axis as the y—axis. In actual examples,
the names may be changed to protect the innocent.

MonNoTONICITY

Definition 1 (Monotonicity). A function f is increasing on an interval I if f(a) < f(b)
whenever a,b € I,a < b. A function f is decreasing on an interval I if f(a) > f(b) whenever
a,bel,a<b.

Informally, if the graph of a function rises as we look from the left to the right (“go from
left to right,” since the world seems to be ruled by righties), then we say that the function
is increasing. Similarly, if the graph falls as we go from left to right, then we say that the
function is decreasing. We sometimes add the adjective “strictly” or use the words non-
decreasing or non-increasing when we need to be particular, but usually we do not have to
be too precise as long as we're consistent.

Often, just knowing where a function is increasing and where it is decreasing will give us
enough information to draw a rough sketch. So, the first thing we try to find out when we
want to sketch a graph is to find out where the function we are graphing is increasing and

where it is decreasing. In order to do this, we find the use of the first derivative helpful.
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Theorem 1 (Monotonicity). Consider a function f which is differentiable on an interval I.
If f'(x) is positive for all x € I, then f is increasing on I. If f'(x) is negative for all x € I,
then f is decreasing on I.

The key ideas are that the derivative represents rate of change and a function which is
increasing is changing in a positive direction. Therefore, a function will be increasing where
its derivative is positive and decreasing where its derivative is negative. This leads to the
following first step.

Step 1: Calculate f'(x). Determine where (on which intervals) f’ is positive and where it
is negative. This will tell you where f is increasing and where it is decreasing.

The endpoints of such intervals are clearly important points which should be placed ap-
propriately on the graph. This leads to the next two steps.

Step 2: Find the coordinates of the endpoints of the intervals determined in Step 1. Since
the first coordinates have been found in Step 1, one merely has to use the formula for f to
find the second coordinates.

Step 3: Place the points obtained in Step 2 on the graph and connect them appropriately.
(This may need to be redone after you obtain more information.)

EXTREMA

Definition 2 (Extrema). A function f has a local maximum at o if there is an open interval
I containing o such that if v € I, x # «, then f(x) < f(a). A function f has a local minimum
at o if there is an open interval I containing o such that if x € I, x # «, then f(z) > f(a).

Monotonicity is tied together with extrema. (Recall that a minimum or maximum is also
referred to as an extremum.) Usually, if a function increases and then decreases it will have
a maximum at the common endpoint of the two intervals. After performing Steps 1-3, any
maximum or minimum will be apparent with a glance at what has been drawn. As a double
check, either of the following two theorems can be used.

Theorem 2 (First Derivative Test for Extrema). Consider a function f which is differen-
tiable on an open interval I containing the point o. If f'(x) > 0 for x € I,z < «, while
f'(x) <0 forx € I,x > a, then f has a local mazimum at . If f'(x) <0 forx € I,z < a,
while f'(z) > 0 for z € I,z > «, then [ has a local minimum at .

CONCAVITY

A graph is generally concave down near a minimum and concave up near a maximum.
Knowing where a graph is concave down and where it is concave up further helps us to
sketch a graph.

Theorem 3 (Concavity). If f”(x) > 0 for all x in some interval, then the graph of f is
concave up on that interval. If f"(x) < 0 for all z in some interval, then the graph of f is
concave down on that interval.

Thus we can determine concavity by examining the second derivative. We can understand
why by glancing at a portion of a graph which is concave up. As one looks left to right
(the standard direction), the slope of the tangent appears to increase. Thus the derivative
increases also, which leads to the expectation that the second derivative (f”) is positive.
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The connection between the second derivative and concavity leads to the next series of
steps.

Step 4: Calculate f” and determine where it is positive and where it is negative. That
tells us where the graph is concave up and where it is concave down.

The endpoints of such intervals are clearly important points. They are called points of
inflection and should be placed appropriately on the graph. Thus the next two steps are
reminiscent of Steps 2 and 3.

Step 5: Find the coordinates of the endpoints of the intervals determined in Step 4. Since
the first coordinates have already been found, one merely has to use the formula for f to
find the second coordinates.

Step 6: Place the points obtained in Step 5 on the graph and connect them appropriately.

OTHER THINGS TOo CONSIDER

Often, an examination of monotonicity and concavity will give enough information to
sketch a graph. Sometimes, it is useful to look at other properties such as intercepts, sym-
metry and asymptotes. These are described below. As you gain experience sketching graphs,
you will begin to get a feeling for when it is worthwhile to give these properties more than
a cursory consideration.

Intercepts. A point where a curve crosses one of the axes is called an intercept. There are
two types of intercepts, x—intercepts and y—intercepts.

Since a curve crosses the y—axis at a point where the first coordinate equals 0, you can
calculate the y—intercept by simply evaluating f(0). This is usually fairly easy to calculate.

Since a curve crosses the y—axis at a point where the second coordinate equals 0, you can
calculate the z—intercept by solving the equation f(z) = 0. Depending on the formula for
f, this may be very difficult to solve and often is not worth the effort.

It’s generally important to find the y—intercept when it’s unclear whether the curve crosses
the y—axis above or below the origin, since drawing a picture with the curve crossing the
y—axis on the wrong side of the origin presents a misleading picture.

It’s important to find the x—intercepts when you’re not sure whether or not the curve
crosses the r—axis.

Symmetry. There are two types of symmetry that are sometimes worth paying attention
to, symmetry about the y—axis and symmetry about the origin.

FEven functions are symmetric about the y—axis. You can check whether a function is even
by seeing if f(—x) = f(z) for all values of x. Polynomial functions that contain only even
powers, such as f(z) = 2% — 5z? + 3, are examples of even functions. The cosine function is
also an example of an even function.

0dd functions are symmetric about the origin. You can check whether a function is odd
by seeing if f(—x) = —f(x) for all values of x. Polynomial functions that contain only odd
powers, such as f(z) = 10z7 + 82® — z, are examples of odd functions. The sine function is
also an example of an odd function.



It is never actually absolutely necessary to check for symmetry. However, if you recognize
from the formula for a function that its graph should exhibit symmetry, then you have
another check for whether you have sketched the graph correctly.

Asymptotes. There are two types of asymptotes, horizontal and vertical.

A graph will have a horizontal asymptote y = « if lim, . f(z) = a. In that case, the
right side of the curve will get closer and closer to the horizontal asymptote, the line y = a.
For example, if f(z) = (10x + 3)/(2z — 1), then lim, ., f(z) = 5, so that the line y = 5 is a
horizontal asymptote.

Similarly, a graph will have a horizontal asymptote y = « if lim,_,_, f(z) = a. In that
case, the left side of the curve will get closer and closer to the horizontal asymptote, the line
y = a. For example, if f(z) = (152 + 3)/(5x — 1), then lim, ., f(z) = 3, so that the line
y = 3 is a horizontal asymptote.

It’s worth checking for a horizontal asymptote on the right hand side if, for large z, either
f is increasing and concave down or decreasing and concave up. (Clearly, there can be no
such asymptote if f is increasing and concave up or decreasing and concave down. Draw a
picture to see why.)

A graph will have a vertical asymptote z = « if either lim, .+ f(x) = 0o, lim, o+ f(z) =
—o00, lim, - f(z) = oo or lim, .- f(z) = —oo. For example, if lim, .+ = oo, it follows
that if a point (z,y) is on the graph and z is just a little bigger than «, then y must be very
large and hence the curve must be close to the line x = «. Similar arguments hold for each
of the other cases.

Since vertical asymptotes, by their very nature, can exist only at discontinuities, it is
generally a simple matter to recognize possible asymptotes. You can look for some of the the
same clues that lead you to look for discontinuities—denominators that are zero. Once you
suspect that x = « is a verticle asymptote, check the two one-sided limits at «.

For example, let f(z) = z/(z — 3)?. Clearly, the denominator is zero when z = 3, so z = 3
is a possible vertical asymptote. Since lim, .3+ x/(x — 3)? = oo, the line x = 3 is a vertical
asymptote for the portion of the curve on the right. Since lim,_3- x/(z — 3)* = oo also, the
line x = 3 is also vertical asymptote for the portion of the curve on the left.



