Example of a Derivative That Is Not Continuous

Define
$$f(x) = \begin{cases} x^2 \sin(1/x) & \text{for } x \neq 0 \\ 0 & \text{for } x = 0. \end{cases}$$

Since $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin(1/x) - 0}{x} = \lim_{x \to 0} x \sin(1/x) = 0$, we have $f'(x) = \begin{cases} 2x \sin(1/x) - \cos(1/x) & \text{for } x \neq 0 \\ 0 & \text{for } x = 0. \end{cases}$
As $x \to 0$, $x \sin(1/x) \to 0$ but $\cos(1/x)$ oscillates between -1 and 1, so $f'(x)$ has no limit

as $x \to 0$ and f' cannot be continuous at 0.

Proof the Derivatives Have the Intermediate Value Property

Let f be a differentiable function on an interval [a, b], with a < b. We will show that f'takes on every value between f'(a) and f'(b).

Let λ be between f'(a) and f'(b). It suffices to show $\exists \xi \in (a,b)$ such that $f'(\xi) = \lambda$.

Define two functions α and β which are continuous on [a,b] and for which $\alpha(x) < \beta(x)$ when a < x < b, $\alpha(x) = a$ for x close to a, $\alpha(x) = x$ for x close to b, $\beta(x) = x$ for x close to a and $\beta(x) = b$ for x close to b.

This can be done in many ways, as can be seen by drawing some pictures. For example, the graph of α could consist of the line segments going from (a,a) to $(a+\epsilon,a)$ to $(b-\epsilon,b-\epsilon)$ to (b,b), for any positive number $\epsilon < \frac{b-a}{2}$, while the graph of β could go from (a,a) to

 $(a + \epsilon, a + \epsilon) \text{ to } (b - \epsilon, b) \text{ to } (b, b).$ Now, define $g(x) = \frac{f(\beta(x)) - f(\alpha(x))}{\beta(x) - \alpha(x)}$ for a < x < b. Since $f(\alpha(x))$ and $f(\beta(x))$ are continuous functions and hence continuous on (a, b).

If x is close to a, $g(x) = \frac{f(x) - f(a)}{x - a}$, so $\lim_{x \to a^+} g(x) = f'(a)$. Similarly, $\lim_{x \to b^-} g(x) = f'(b)$. By the Intermediate Value Theorem for Continuous Functions, there is some x_0 between a and b such that $g(x_0) = \lambda$. Letting $A = \alpha(x_0)$ and $B = \beta(x_0)$, we have $\frac{f(B)-f(A)}{B-A}=\lambda$. By the Mean Value Theorem, $\exists \xi \in (A,B)$ such that $f'(\xi)=\frac{f(B)-f(A)}{B-A}$. Hence $f'(\xi) = \lambda$.