Most of what follows is a Maple session that yields most of the solutions to
the exam. The first line is a command to use the “linalg” package.

> with (linalg);

Here, we enter the coeflicient matrix A, the constant matrix B and the
augmented matrix C', answering question 2 and preparing for the later questions.

> A:= matrix([[1, 4, 1], [0, 1, 11, [1, 6, 2]11); B:=matrix([[3],

(o],
> [41]);C:=augment(A,B);
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We tell Maple to use Gauss-Jordan to reduce the augmented matrix to re-
duced echelon form.
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> gaussjord(C);

1 0 0 18
01 0 -8
0 0 1 17
From this, we can read off the solution to the system: = = 18, y = -8,

z=17.
We then ask Maple to get the matrix U in the LU Decomposition of A.
> U:=LUdecomp(A);

1 4 1
U=|0 1 1
00 -1
Once we have U, we cheated to get L. Since A = LU, it follows that
L=AU"
> L:=multiply(A,inverse(U));
1 0
L=|0 1
1 2
Next, we solved LY = B by letting Y = L~!'B and then solved UX =Y
by letting X = U~'Y. This, of course, is not how one would do it by hand—
otherwise, why would one get an LU factorization in the first place—but provides
an easy way to check your work. Note the solution obtained this way is, of
course, the same as the solution obtained by reducing the augmented matrix.
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> Y:=multiply(inverse(L),B); X:=multiply(inverse(U),Y);
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X:=1| -8
17

Finally, we solve the same system by calculating X = A~! B, again obtaining
the same solution.

> AINV := inverse(A); X:=multiply(AINV,B);

4 2 -3
AINV .= | -1 -1 1
1 2 -1

18

X:=| =8

17

On to question 6. We use Gauss-Jordan represent 0 as a linear combination
v and w, finding av + bw = 0 if a 4+ 3b = 0. Effectively, b is a free variable. We
can set b =1, solve for a = —3 and get the linear combination —3v +w = 0.
Of course, this is overkill, since it is obvious at sight that w = 3v.

> v:=[2,5,3];w:=[6,15,9] ;zero:=[0,0,0];

v:i=1[2,5, 3
w = [6, 15, 9]
zero := [0, 0, 0]
>  Z:=augment (v,w,zero);
2 6 0
Z:=15 15 0
3 90
> gaussjord(Z);
1 3 0
0 0 0
0 0 O

For question 7, we do the same thing with two other vectors. This time,
when we try to represent 0 as a linear combination of v and w we find only
the trivial linear combination works, showing that {v, w} forms a set of linearly
independent vectors. This can also be easily seen at sight, since av + dbw =<
3a,6a + b >. For this to be < 0,0 >, it is obvious that ¢ must equal 0, from
which it is obvious that b must also equal 0.

> v:=[3,2];w:=[0,1];zero:=[0,0] ;Z:=augment (v,w,zero) ;

v:i=1[3, 2]
w:= 10, 1]



> gaussjord(Z);
1 00
01 0
Question 8 is a routine calculation.

> T:=matrix([[2, 5, -3], [8, -1, 411);v:=[5,1,2];multiply(T,v);

2 5 -3
T'{S -1 4}

vi=[5,1, 2]
[9, 47]

Question 9: The columns of the matrix of a transformation are simply the
images of the standard basis vectors.

> T:=augment([1,3],[1,-11);

r-[1 1]

Question 10 is a simple calculation.

> A:=matrix([[2,5,1],[-1,0,2]1);B:=matrix([[1,-1]1,[2,3],[-1,1]1]) ;multip
> 1y(A,B);

1 -1
B = 2 3
-1 1

11 14

-3 3

Question 11: Using the hint, we note that, on the one hand, A(BC) = AI =
A, since BC' = I, while from the associative law A(BC) = (AB)C = IC = C.
It immediately follows that A = C. Note that this calculation shows that if a
square matrix has a left inverse and a right inverse then it is invertible, with
the left and right inverses actually being equal and being the inverse.



