Solution to §14.4 \#31(b):
Notice that this solution is somewhat slicker than the way we first solved the problem in class. This is typical. You should recognize the value of looking further at a question even after coming up with the answer. Note also that the solutions given often give little insight into how they were originally arrived at.

We set up a coordinate system with the origin at the point along the left bank of the river from where the boat embarks, with the positive x-axis going to the east and the positive y-axis going to the north. We let $\mathbf{r}=\mathbf{r}(t)=(x, y)=(x(t), y(t))$ represent the position of the boat at time t and let $\mathbf{v}=\mathbf{v}(t)$ represent the velocity of the boat.

Suppose the heading of the boat is θ, measured in the standard way. In other words, θ is the measurement of the angle, measured counterclockwise, that \mathbf{v} would make with the positive x-axis if there was no current.

Since the boat is traveling at a speed, relative to the water, of 5 meters per second, we would have $\mathbf{v}=(5 \cos \theta, 5 \sin \theta)$ were it not for the current. Since the current is moving north at a speed of $\frac{3}{400} x(40-x)$, we have $\mathbf{v}=\left(5 \cos \theta, 5 \sin \theta+\frac{3}{400} x(40-x)\right)$.

Since the first component of \mathbf{v} is $\frac{d x}{d t}=5 \cos \theta$, it follows that $x=5 t \cos \theta+k$ for some constant k. Since $x=0$ when $t=0$ (since the boat starts from the origin), it follows that $k=0$, so $x=5 t \cos \theta$.

We thus get $\mathbf{v}=\left(5 \cos \theta, 5 \sin \theta+\frac{3}{400} \cdot 5 t \cos \theta(40-5 t \cos \theta)\right)$.
Simplifying:

$$
\begin{aligned}
\mathbf{v} & =5\left(\cos \theta, \sin \theta+\frac{3 t \cos \theta}{400}(40-5 t \cos \theta)\right) \\
& =5\left(\cos \theta, \sin \theta+\frac{3 t \cos \theta}{400} \cdot 5(8-t \cos \theta)\right) \\
& =5\left(\cos \theta, \sin \theta+\frac{3 t \cos \theta}{80}(8-t \cos \theta)\right) \\
\mathbf{v} & =5\left(\cos \theta, \sin \theta+\frac{3 t \cos \theta}{10}-\frac{3 t^{2} \cos ^{2} \theta}{80}\right)
\end{aligned}
$$

We thus get

$$
\begin{aligned}
\mathbf{r} & =\int \mathbf{v}(t) d t \\
& =5\left(t \cos \theta, t \sin \theta+\frac{3 t^{2} \cos \theta}{20}-\frac{t^{3} \cos ^{2} \theta}{80}\right) \\
& =5 t\left(\cos \theta, \sin \theta+\frac{3 t \cos \theta}{20}-\frac{t^{2} \cos ^{2} \theta}{80}\right)
\end{aligned}
$$

Since the river is 40 meters wide, $x=40$ when the boat gets to the other side, so $5 t \cos \theta=40$ and $t \cos \theta=8$. It follows that at that point in time,

$$
\begin{aligned}
\mathbf{r} & =5 t\left(\cos \theta, \sin \theta+\frac{3 \cdot 8}{20}-\frac{8^{2}}{80}\right) \\
& =5 t\left(\cos \theta, \sin \theta+\frac{2}{5}\right)
\end{aligned}
$$

Since we want the boat to wind up directly across the river from its starting point, we need $\sin \theta+\frac{2}{5}=0, \sin \theta=-\frac{2}{5}, \theta=\arcsin \left(-\frac{2}{5}\right) \approx-0.411516846 \approx-23.5781784782^{\circ}$.

Since $\cos ^{2} \theta+\sin ^{2} \theta=1, \cos ^{2} \theta+\left(-\frac{2}{5}\right)^{2}=1, \cos ^{2} \theta+\frac{4}{25}=1, \cos ^{2} \theta=\frac{21}{25}, \cos \theta= \pm \frac{\sqrt{21}}{5}$. Since $-\pi / 2 \leq \theta \leq \pi / 2, \cos \theta$ must be non-negative, so $\cos \theta=\frac{\sqrt{21}}{5}$.

We thus get

$$
\begin{aligned}
\mathbf{r} & =5 t\left(\frac{\sqrt{21} 5}{,}-\frac{2}{5}+\frac{3 t\left(\frac{\sqrt{21}}{5}\right)}{20}-\frac{t^{2}\left(\frac{\sqrt{21}}{5}\right)^{2}}{80}\right) \\
& =5 t\left(\frac{\sqrt{21}}{5},-\frac{2}{5}+\frac{3 t \sqrt{21}}{100}-\frac{21 t^{2}}{2000}\right)
\end{aligned}
$$

Note we may find the y component in terms of the x component. If we do that, we find y is a cubic function of x. This is consistent with our intuition regarding the path of the boat.

