
Mathematics 2110 SOLUTIONS
Professor Alan H. Stein
Wednesday, October 15, 2008

1. Let f(x, y, z) = x2y + y3 sin(z2). Find all three �rst partial derivatives of f .

Solution:
∂f

∂x
= 2xy,

∂f

∂y
= x2 + 3y2 sin(z2),

∂f

∂z
= 2y3z cos(z2).

2. Consider the function z = g(x, y) de�ned implicitly by the equation x2y+ y3 sin(z2) = 1

in the neighborhood of some point. Find
∂z

∂x
and

∂z

∂y
. Extra Credit: Why did I add the

description about a neighborhood of a point?

Solution:

Letting f(x, y, z) = x2y + y3 sin(z2):

∂z

∂x
= −

∂f

∂x
∂f

∂z

= − 2xy

2y3z cos(z2)
= − x

y2z cos(z2)

∂z

∂y
= −

∂f

∂y
∂f

∂z

= −x
2 + 3y2 sin(z2)

2y3z cos(z2)

3. Let f(x, y, z) = x2y + y3 sin(z2). Find ∇f in general and also calculate ∇f
∣∣
(−1,1,

√
π)

.

Solution:

∇f = 〈∂f
∂x
,
∂f

∂y
,
∂f

∂z
〉 = 〈2xy, x2 + 3y2 sin(z2), 2y3z cos(z2)〉

∇f
∣∣
(−1,1,

√
π)

= 〈−2, 1,−2
√
π〉, since sinπ = 0 and cos π = −1.

4. Find an equation for the plane tangent to x2y + y3 sin(z2) = 1 at (−1, 1,
√
π).

Solution:

−2(x+ 1) + 1(y − 1)− 2
√
π(z −

√
π) = 0 or 2x+ y − 2

√
πz + 1 + 2π = 0.
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5. Use the Chain Rule to evaluate
dw

dt
, where w = x2y+ y3 sin(z2) with x = 5t, y = t2 and

z = 4t+ 9. Please do not try to simplify this.

Solution:
dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
= 2xy ·5+(x2+3y2 sin(z2))·2t+2y3z cos(z2)·4.

6. Use the Chain Rule to evaluate
∂w

∂s
and

∂w

∂t
, where w = x2y+y3 sin(z2) with x = s2 +5t,

y = s3t2 and z = est. Please do not try to simplify this.

Solution:
dw

ds
=
∂w

∂x

∂x

∂s
+
∂w

∂y

∂y

∂s
+
∂w

∂z

∂z

∂s
= 2xy · 2s+ (x2 + 3y2 sin(z2)) · 3s2t2 + 2y3z cos(z2) · test.

dw

dt
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
+
∂w

∂z

∂z

∂t
= 2xy · 5 + (x2 + 3y2 sin(z2)) · 2s3t+ 2y3z cos(z2) · sest.

7. Let f(x, y, z) = x2y+y3 sin(z2) and let u be the unit vector in the direction of 〈5,−2, 9〉.
Find the directional derivative Duf .

Solution: |〈5,−2, 9〉| =
√

52 + (−2)2 + 92 =
√

110, so u =
〈5,−2, 9〉√

110
,

Duf = ∇f · u = 〈2xy, x2 + 3y2 sin(z2), 2y3z cos(z2)〉 · 〈5,−2, 9〉√
110

=
1√
110
· [5(2xy)− 2(x2 + 3y2 sin(z2)) + 9(2y3z cos(z2))]

8. Find all critical points of the function f(x, y) = x4 + y4 − 2x2 + 4xy − 2y2. Examine
each critical point and determine what you can about it in terms of whether it’s a local
minimum, local maximum or saddle point.

Solution:

fx = 4x3 − 4x+ 4y = 4(x3 − x+ y), fy = 4y3 + 4x− 4y = 4(y3 + x− y)

fxx = 4(3x2 − 1), fxy = 4, fyy = 4(3y2 − 1)

The critical points occur where both �rst partial derivatives are equal to 0, so we solve:
x3 − x+ y = 0, y3 + x− y = 0
(x3 − x+ y) + (y3 + x− y) = 0 + 0
x3 + y3 = 0.
Clearly, the only solution to the last equation is y = −x. Plugging into the �rst equation,
we get x3 − x+ (−x) = 0, x3 − 2x = 0, x(x2 − 2) = 0. This clearly has three solutions,
0,
√

2 and −
√

2.

We thus have critical points (0, 0), (
√

2,−
√

2), (−
√

2,
√

2).

At (0, 0), f 2
xy−fxxfyy = 42−(−4)(−4) = 0, so the Second Derivative Test is inconclusive.

However, we note that f(x, 0) = x4 − 2x2 = x2(x2 − 2) < 0 if x is close to 0, while
f(x, x) = x4 +x4−xx2 +4x2−2x2 = 2x4 > 0 if x is close to 0, so (0, 0) is a saddle point.

At both (
√

2,−
√

2) and (−
√

2,
√

2), f 2
xy − fxxfyy = 42 − 20 · 20 < 0 and fxx = 20 > 0,

so there is a local minimum at both places.
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9. Find all critical points of the function f(x, y) = (x − 1)(y − 1)(x + y − 1). Examine
each critical point and determine what you can about it in terms of whether it’s a local
minimum, local maximum or saddle point.

Solution:

fx = (y − 1)(2x+ y − 2), fy = (x− 1)(x+ 2y − 2)

fxx = 2(y − 1), fxy = 2x+ 2y − 3, fyy = 2(x− 1).

The critical points occur where both �rst partial derivatives are equal to 0, so we solve:
(y − 1)(2x+ y − 2) = 0, (x− 1)(x+ 2y − 2) = 0

We have four cases, each of which is easily solved:

Case 1: y − 1 = 0, x− 1 = 0. This gives the critical point (1, 1).

Case 2: y − 1 = 0, x + 2y − 2 = 0. Plugging y = 1 into the second equation gives
x+ 2− 2 = 0, x = 0, so we have the critical point (0, 1).

Case 3: 2x + y − 2 = 0, x − 1 = 0. Plugging x = 1 into the �rst equation gives
2 + y − 2 = 0, y = 0, so we have the critical point (1, 0).

Case 4: 2x+ y − 2 = 0, x+ 2y − 2 = 0. Subtracting corresponding sides gives
(2x + y − 2) − (x + 2y − 2) = 0 − 0, x − y = 0, x = y. Plugging y = x into the �rst
equation gives 2x+ x− 2 = 0, x = 2

3
, so we have the critical point (2

3
, 2

3
).

At (1, 1), f 2
xy − fxxfyy = 12 − 0 · 0 > 0, so this is a saddle point.

At (0, 1), f 2
xy − fxxfyy = (−1)2 − (−2)(0) > 0, so this is also a saddle point.

At (1, 0), f 2
xy − fxxfyy = (−1)2 − (0)(−2) > 0, so this is also a saddle point.

At (2
3
, 2

3
), f 2

xy − fxxfyy = (−1
3
)2 − (−2

3
)(−2

3
) < 0, so there is a local extremum. Since

fxx = −2
3
< 0, it is a local maximum.

10. Find the point of the plane 2x − 3y − 4z = 25 which is nearest to the point (3, 2, 1).
Extra Credit: Do this two completely different ways. Even More Extra Credit: Do this
three completely different ways.

Solution:

We must minimize f(x, y, z) = (x − 3)2 + (y − 2)2 + (z − 1)2 subject to the constraint
g(x, y, z) = 2x − 3y − 4z = 25. Using Lagrange Multipliers, we set ∇f = λ∇g, 〈2(x −
3), 2(y − 2), 2(z − 1)〉 = λ〈2,−3,−4〉. We thus solve:

2(x− 3) = 2λ, 2(y − 2) = −3λ, 2(z − 1) = −4λ, 2x− 3y − 4z = 25.

Solving for λ, we get x = λ+ 3, y = −3
2
λ+ 2, z = −2λ+ 1, so

2(λ+ 3)− 3(−3
2
λ+ 2)− 4(−2λ+ 1) = 25, 29

2
λ− 4 = 25, 29

2
λ = 29, λ = 2.

We thus get x = 5, y = −1, z = −3.

The closest point is thus (5,−1,−3).
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11. Find the minimum value for x3 + y3 + z3 among points on the plane x + 4y + 9z = 28
for which all the coordinates are positive.

Solution: If there is such a point, using Lagrange Multipliers it must satisfy
∇(x3 + y3 + z3) = λ∇(x+ 4y + 9z), or 〈3x2, 3y2, 3z2〉 = λ〈1, 4, 9〉.
If we let λ = 3µ, this simpli�es to 〈x2, y2, z2〉 = µ〈1, 4, 9〉, or

x2 = µ, y2 = 4µ, z2 = 9µ. Since all the values are positive, we have x =
√
µ, y = 2

√
µ,

z = 3
√
µ, so

√
µ+ 4 · 2√µ+ 9 · 3√µ = 28, 36

√
µ = 28,

√
µ = 28

36
= 7

9
.

We get the point (7
9
, 14

9
, 21

9
).

It’s not immediately obvious that this point yields a minimum rather than a maximum.
The following is one way of showing it yields a minimum.

Any line in the plane through the point (7
9
, 14

9
, 21

9
) has parametric equations x = at+ 7

9
,

y = bt+ 14
9

, z = ct+ 21
9

. Since any point on the line is on the plane x+ 4y + 9z = 28, it
follows that (at+ 7

9
) + 4(at+ 7

9
) + 9(ct+ 21

9
) = 28, (a+ 4b+ 9c)t = 0, so a = −(4b+ 9c).

We thus have x = −(4b+ 9c)t+ 7
9
, y = bt+ 14

9
, z = ct+ 21

9
.

If we let w = x3 + y3 + z3, then w = [−(4b+ 9c)t+ 7
9
]3 + [bt+ 14

9
]3 + [ct+ 21

9
]3.

w′ = 3[(−(4b+ 9c))[−(4b+ 9c)t+ 7
9
]2 + b[bt+ 14

9
]2 + c[ct+ 21

9
]2].

w′′ = 2 · 3[(4b+ 9c)2[−(4b+ 9c)t+ 7
9
] + b2[bt+ 14

9
] + c2[ct+ 21

9
]].

It’s clear that w′′ > 0 when t = 0, so w has a minimum when t = 0, i.e. at the point
(7

9
, 14

9
, 21

9
).

12. Use a double integral to �nd the area of a unit circle. You will need to represent the area
as a double integral of some function over some plane region and then use an iterated
integral to evaluate the double integral. It is likely that you’ll need some of the integration
techniques from Calculus II in order to evaluate the iterated integral.

Solution: Area =
∫ 1

−1
dx
∫ √1−x2

−
√

1−x2 y = 2
∫ 1

−1

√
1− x2 dx.

Using a trigonometric substitution with a right triangle with acute angle θ, opposite side
x, adjacent side

√
1− x2, and hypotenuse 1.

Then
√

1− x2 = cos θ, x = sin θ,
dx

dθ
= cos θ, dx = cos θ dθ, so

∫ √
1− x2 dx =∫

cos θ · cos θ dθ =
∫

cos2 θ dθ =
∫ 1 + cos 2θ

2
dθ =

θ

2
+

sin 2θ

4
=

θ

2
+

sin θ cos θ

2
=

arcsinx+ x
√

1− x2

2
.

Thus, the area =
arcsinx+ x

√
1− x2

2

∣∣1
−1

= 1
2
[(arcsin 1 + 0)− (arcsin(−1) + 0)]

= 1
2
[π − (−π)] = 1

2
(2π) = π.


