Mathematics 2110 Professor Alan H. Stein Due Monday, September 22, 2008

1. Find vector parametric, scalar parametric and scalar symmetric equations for the line through the points (5,3,1) and (2,7,9).

Solution:

Vector Parametric: $\mathbf{x} = \langle 5, 3, 1 \rangle + \langle -3, 4, 8 \rangle t$ Scalar Parametric: x = 5 - 3t, y = 3 + 4t, z = 1 + 8tScalar Symmetric: $\frac{x-5}{-3} = \frac{y-3}{4} = \frac{z-1}{8}$

- 2. Find the center and radius of the sphere $x^2 + y^2 + 6y + z^2 = 4x + 8z + 200$. Solution: Completing the Square: $x^2 - 4x + y^2 + 6y + z^2 - 8z = 200$, $(x-2)^2 - 4 + (y+3)^2 - 9 + (z-4)^2 - 16 = 200$, $(x-2)^2 + (y+3)^2 + (z-4)^2 - 16 = 229$. So the center is (2, -3, 4) and the radius is $\sqrt{229}$.
- 3. Find the angle between the vectors $\langle 5, 3, 9 \rangle$, $\langle 4, 2, 7 \rangle$. **Solution:** $\langle 5, 3, 9 \rangle \cdot \langle 4, 2, 7 \rangle = 5 \cdot 4 + 3 \cdot 2 + 9 \cdot 7 = 89.$ $|\langle 5, 3, 9 \rangle| = \sqrt{115}, |\langle 4, 2, 7 \rangle| = \sqrt{69}$, so the angle is $\arccos(\frac{89}{\sqrt{115 \cdot 69}})$.
- 4. Find the scalar projection of $\langle 5, 3, 9 \rangle$ on $\langle 4, 2, 7 \rangle$. Solution: $\frac{\langle 5, 3, 9 \rangle \cdot \langle 4, 2, 7 \rangle}{|\langle 4, 2, 7 \rangle|} = \frac{89}{\sqrt{69}}$.
- 5. Find the vector projection of $\langle 5, 3, 9 \rangle$ on $\langle 4, 2, 7 \rangle$. Solution: $\frac{\langle 5, 3, 9 \rangle \cdot \langle 4, 2, 7 \rangle}{\langle 4, 2, 7 \rangle \langle 4, 2, 7 \rangle} \langle 4, 2, 7 \rangle = \frac{89}{69} \langle 4, 2, 7 \rangle$
- 6. Find an equation for the plane containing the points (0, 1, 2), (1, 2, 3) and (3, 2, 1). Solution: Find a normal vector $(\langle 1, 2, 3 \rangle - \langle 0, 1, 2 \rangle) \times (\langle 3, 2, 1 \rangle - \langle 1, 2, 3 \rangle) = \langle 1, 1, 1 \rangle \times \langle 2, 0, -2 \rangle = \langle -2, 4, -2 \rangle$

We could use that, but it will be more convenient to use $\mathbf{n} = \langle 1, -2, 1 \rangle$. We get equation $\mathbf{n} \cdot \langle x, y, z \rangle = \mathbf{n} \cdot \langle 1, 2, 3 \rangle$, or x - 2y + z = 0.

7. Find the distance between the point (2, 3, 4) and the plane 2x + 3y + 4z = 5.

Solution: Given a point \mathbf{x}_0 on the plane, the distance will be equal to the magnitude of the scalar projection of $\langle 2, 3, 4 \rangle - \mathbf{x}_0$ on the normal vector $\langle 2, 3, 4 \rangle$. The scalar projection is $\frac{\mathbf{n} \cdot (\langle 2, 3, 4 \rangle - \mathbf{x}_0)}{|\mathbf{n}|} = \frac{\mathbf{n} \cdot \langle 2, 3, 4 \rangle - \mathbf{n} \cdot \mathbf{x}_0}{\sqrt{29}} = \frac{29-5}{\sqrt{29}} = \frac{24}{\sqrt{29}}$. So the distance is $\frac{24}{\sqrt{29}}$.

SOLUTIONS

Problem Set

- (8-15): Consider the vector function $\mathbf{x} = \langle 2t \cos t, 2t \sin t, t \rangle$.
- 8. Sketch the graph of **x** and describe it in relatively plain language. Solution: The curve travels around the cone $4z^2 = x^2 + y^2$.
- 9. Find \mathbf{v} and \mathbf{a} .

Solution:

 $\mathbf{v} = \langle 2\cos t - 2t\sin t, 2\sin t + 2t\cos t, 1 \rangle$

 $\mathbf{a} = \langle -4\sin t - 2t\cos t, 4\cos t - 2t\sin t, 0 \rangle$

10. Find **T**.

Solution: $\mathbf{T} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\langle 2\cos t - 2t\sin t, 2\sin t + 2t\cos t, 1 \rangle}{\sqrt{4t^2 + 5}}$

11. Find **N**.

Solution:

Too messy to print out. To calculate it, find \mathbf{T}' and divide by its length.

12. Find **B**.

Solution: Also too messy to print out. $\mathbf{B} = \mathbf{T} \times \mathbf{N}$.

13. Describe the osculating and normal planes at arbitrary points on the curve.

Solution: If you're looking directly at the point, the osculating plane will be tilted and seem to contain a small portion of the curve, with the normal plane intersecting it at a right angle. *Yes, I know - not a very good description.*

14. Find the tangential and normal components of **a**.

Solution:

The tangential component is $\mathbf{a} \cdot \mathbf{T} = \frac{4t}{\sqrt{4t^2+5}}$. The normal component is $\mathbf{a} \cdot \mathbf{N} = 2\sqrt{\frac{4t^4+17t^2+20}{5+4t^2}}$.

15. Find the curvature κ .

Solution: $\kappa = 2\sqrt{\frac{4t^4 + 17t^2 + 20}{(5+4t^2)^3}}.$