Math 2110 MW 11:15-12:30, Th 12:30-1:45
Final Exam: Wed Dec 10, 12-2

13 Vectors and the Geometry of Space

13.1 Three Dimensional Coordinate Systems

Coordinate axes, Right-hand rule
Coordinate planes, octants
Distance formula

Sphere

805/1, 3,5, 7,9, 11, 15, 23, 25, 35
805/13, 17, 29, 30, 37

13.2 Vectors

Vector (magnitude, direction), initial point, terminal point

Addition (Parallelogram Law), scalar multiplication, subtraction

Components, Position vector (from origin)

Length, magnitude

Properties: commutative, associative (addition, scalar multiplication), 0, inverse, distribu-
tive, multiplication by 1

Standard basis vectors i, j, k

Unit vector

813/1, 3,4, 7,13, 17, 19, 23, 27, 31, 35

813/9, 15, 21, 29, 30, 39, 43

13.3 Dot Product

Definition
Properties: a-a = |al?, commutative, distributive, scalar multiplication, 0 -a = 0
a-b = |a||b|cos @ (Proof-Law of Cosines)
Orthogonal
Direction angles «, 3,
Direction cosines
cos’ o + cos? B+ cos?y =1
Scalar projection comp,b = ﬁ
a

a- b> a a-b

a| / la]  [af?
820/1, 3, 5, 7, 15, 21, 23, 27, 29, 35, 47, 57
820/9, 17, 31, 37, 41, 49, 58

Vector projection proj,b = ( a
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13.4 Cross Product

Definition, mnemonic using determinants

a X b orthogonal to a and b.

la x b| = |a||b|sinf (Proof - |a x b|? = |a|*|b|? — (a- b)?)

Length of cross product = area of parallelogram

Properties: anti-commutative, multiplication by scalar, distributive, triple product, a x (b x
c)=(a-c)b—(a-b)c

Volume of parallopiped = scalar triple product

Torque T =r x F

828/1, 9, 15, 17, 23, 25

828/3, 33, 39, 45

13.5 Equations of Lines and Planes
Lines

Vector Equation r = rg + tv
Parametric Equations x = zg +at, y = yo + bt, 2 = 2o + ct
Direction Numbers
g . . T—To Y —Y _ 2 %0
ymmetric Equations = =
a c
Line segment: restrict ¢

838/1, 3, 7, 15, 19
838/5, 9, 17, 21

Planes

Normal vector

Vector equation: n- (r —rg) =0

Scalar equation: a(x — xo) + b(y —y)o + c(z — 20) =0
Parallel, orthogonal planes

n-b|

0|

Distance from point to plane

838/23, 25, 39, 47, 53, 55
838/27, 33, 41, 49, 54

13.6 Cylinders and Quadric Surfaces

Definition: Cylinder - lines parallel to a given line passing through a place curve

Quadric surface - graph of second degree equation in three variables

Ellipsoid, elliptic paraboloid, hyperbolic paraboloid, hyperboloid of one sheet, hyperboloid
of two sheets

849/1, 3, 5,9, 11, 13, 21-28, 29

849/15, 31



14 Vector Functions

14.1 Vector Functions and Space Curves

Vector Valued Function r(t) =< f(t), g(t), h(t) >= f(t)i+ g(t)j + h(t)k
Limit, continuity

Space curves, parametric equations

858/1, 3, 7, 15, 19-24

858/9, 11, 25, 39

14.2 Derivatives and Integrals of Vector Functions

Definition - derivative, integral

r'(t)

r'(2)]

Smooth curve: r’ is continuous and non-zero

Properties of derivatives: term-by-term, product and chain rules.
864/1, 3, 9,11, 17, 23, 31, 33

864/5, 8, 15, 19, 27, 35, 37

Tangent line, unit tangent T(¢) =

14.3 Arc Length and Curvature

L= [7x'(t)dt
Arc length function s(t) = fi v’ (u)| du

ds
=~ )
Parametrize curve with respect to arc length: Solve for ¢ in terms of s

dT| _ |T'(1)]
Curvature: Kk = |—| = ———

ds | |r'(2)]

/ t ! t
= F )
e (8)[?

/" ()]
[+ (f())?P?

For plane curve y = f(z), k(z) =

T/
Normal Vector N(t) = |T/E2|

Binormal vector B(t) = T(t) x N(t)
Normal plane - determined by N and B
Osculating plane - determined by T and N
872/1, 3, 13, 37, 39

872/5, 15, 27
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14.4 Motion in Space: Velocity and Acceleration

v(t) =1'(t)

a(t) = v'(t)

Newton’s Second Law of Motion: F = ma
a=vT+ kv’N

882/1, 3, 5,9, 19, 23, 31

882/7, 11, 25, 33

15 Partial Derivatives

15.1 Functions of Several Variables

Definition 1 (Function of Two Variables). f(z,y)

Independent variables, dependent variable
Domain, range

Graph

Contour or Level Curves - graphs of f(z,y) =k
Functions of three or more variables

Three views: function of n real variables xq, s, ..., z,, function of a single point variable
(1,22, ..., x,), function of a vector variable x =< xy,xs,..., 2, >

901/1, 3,5, 7, 11, 21

901/9, 15, 25

15.2 Limits and Continuity

Definition lim, y)—(ap) f(2,y) = L
Definition - Continuity

Functions of three or more variables
913/1, 5, 7, 19, 27, 29, 37

913/9, 11, 31
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15.3 Partial Derivatives

Definition fx(abb), fay(@, b), fo(x,y), fy(x,y)
Notations: f,, —f, —Z, fi. Dif, Do f
ox’ Ox

Functions of more than two variables

Higher Derivatives
0 (8 f > 0 f 0z

Notation: (fy)y = foy = fi2 = 75 \as — R — e

Theorem 1 (Clairaut’s Theorem). If f,, and f,, are both continuous on a disk containing
(a,b), then fiy(a,b) = fu(a,b).

924/1, 13, 15, 35, 41, 45, 53
924/17, 19, 37, 47, 57

15.4 Tangent Planes and Linear Approximations

Tangent Plane: z — 2y = fa(20, v0)(x — 20) + fy(20,y0)(y — vo) (If partial derivatives are
continuous.)

Linear or Tangent Plane Approximation

Definition: f differentiable if Az = f,(a,b)Az + f,(a,b)Ay + e;Ax + e2Ay where ¢, — 0 and
ea — 0 as (Az, Ay) — (0,0).

Theorem 2. Partials continuous nearby implies function differentiable.

Total differential: dz = f.(z,y)dx + f,(z,y)dy
935/1, 3, 7, 11, 17, 23, 29, 31
935/5, 13, 25, 33

15.5 Chain Rule
dz E)z@ Ozdy 0z 0z0x 0z0y Oz 823_x ﬁz@

dt _ Oxdt ' Oydt 95 Ords Oyds Of Oz Ot | dyot
Implicit Differentiation:

oF
- . OFde O9Fdy . . dy gy F
y = f(x) defined by F(z,y) = 0 implies O dr + 8_y% = 0 implies i —@ = —Fy.
dy
0z FE,

z = f(x,y) defined by F(z,y,2) =0 — — = ——

ox LI,
043/1, 3, 7, 13, 21, 35
043/5, 9, 11, 23, 45
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15.6 Directional Derivatives and the Gradient Vector

Definition 2 (Directional Derivative). Unit vector u =< a,b >,

f(zo + ha,yo + hb) — f(z0, o)
h

Theorem 3. D, f(z,y) = f.(x,y)a+ f,(z,y)b

Dyuf(z,y) =< fu(z,y), fy(z,y) > u.

Definition 3 (Gradient). gradf =</ f =< fu, f, >

Duf(%, yO) = li1’nh—>0

Theorem 4. Mazimum value of directional derivative is | <7 f| and occurs in the direction

of Vf.

Tangent plane to level surface F(z,y,z) =k: VF- <z — 20,y — Yo,2 — 20 >= 0

Tangent plane to z = f(x,y): 2 — 20 = fo(x — x0) + f,(y — v0)
956/1, 5, 7, 11, 13, 21, 27
956/9, 15, 23, 29

15.7 Maximum and Minimum Values
Definition: local maximum, local minimum, absolute maximum, absolute minimum
Theorem 5. f has local extremum and partials exist = partials equal 0.

Critical point (stationary point) - partials are 0 or a partial doesn’t exist
Second Derivative Test: Critical point, second partials continuous, D = fu.fy, — (fay)?-

e D >0, for >0 implies local minimum
e D >0, fr <0 implies local maximum
e D < 0 implies saddle point

f continuous on closed set implies f has absolute extrema
966/1, 5, 7, 27, 35, 37, 43
966/9, 15, 29, 39, 45, 48

15.8 Lagrange Multipliers

Find extrema for f(z,y, z) subject to constraint g(z,y, z) = k.

Solve: 7f =Av g, 9(x,y,2) = k.

Two constraints g(x,y,z) =k, h(x,y,z) = ¢: Solve Vf =A< g+u<yh
976/3, 7

976/5, 9
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16 Multiple Integrals

16.1 Double Integrals Over Rectangles

Riemann Sum ) ", Z?Zl f @iy, ui5) AA;

Definition: [ [, f(2,y) dA = limy, n oo D imy 20— (255, U5;) A A
Application: Volume

Numerical calculation: Midpoint Rule

Properties: [ [, f(x,y) £ g(z,y)dA, [ [ kf(z,y)dA

flay) > gley) = [ [z fle,y)dA> [ [g(z,y)dA
994/1, 3, 11

994/13, 14

16.2 Iterated Integrals

Iterated Integral

Theorem 6 (Fubini’s Theorem). If f is continuous on a rectangle R, ffRf(x,y) dA =
I2 [ fy) dyde = [* [ f(x,y) do dy.

1000/1, 3, 11, 13
1000/5, 9, 15

16.3 Double Integrals over General Regions

fla,y) if (z,y) € R

0 if (z,y) ¢ R.

Type I Region: Between two functions, vertical sides - convert to iterated integral

Type II Region: Horizontal sides

Properties: Sum or difference, multiplication by constant, f(x,y) > g(z,y), integral over
union of non-overlapping regions, m < f(z,y) < M

1008/1, 7,9, 19

1008/3, 11, 13, 37

If region D lies in a rectangle R, define F(x,y) = {

16.4 Double Integrals in Polar Coordinates

ffRf(a:,y) dA = ff fabf('rcosﬁ,rsinﬁ)'r’drd@
1014/1—3, 7,9, 17,21, 29
1014/4—6, 11, 15, 19, 23, 31, 33
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16.5 Applications of Double Integrals

Density and mass

Moments and center of mass
Moment of inertia

1024/3, 5, 11

1024/7, 15

16.6 Triple Integrals

Definition

Turn into iterated integral

Applicatons:

Volume = [[[. dV

Mass, center of mass, moments, centroid, moment of inertia
1035/1, 3, 7,9, 17

1035/5, 11, 25, 27

16.7 Triple Integrals in Cylindrical Coordinates
dV — rdzdrdf

1040/1,3, 7,9, 15, 23
1040/5, 17, 19, 25, 27

16.8 Triple Integrals in Spherical Coordinates
dV — p*sin ¢ dp df do

1046/1,3,6, 7,9,11, 15, 21

1046/5,13, 17, 19, 33, 39
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16.9 Change of Variables in Multiple Integrals

Transformation 7'(u,v) = (x,y)
x = g(u,v), y = h(u,v) or x = x(u,v), y = y(u,v)
Let S be rectangle with sides (Au, Av). Image R = T'(S) is approximately a rectangle with

. Jx Oy dxr 0y
sides < %,% > AUJ, < %,% > Av.

5(z.y) Jx Ox

. . 0y |9e 2w

Area is approximately the Jacobian 3 = % % AuAv.
5 Ou Ov

So AA =~ MAUAU.
d(u,v)

JIn fla.y)dA = [[g f(g(u,v), h(u,0)) ||§4 G| dudv.

Example: Change to polar coordinates.
Triple Integrals

1057/1, 7, 11, 15, 17

1057/3, 5, 9, 13, 23, 35

17 Vector Calculus

17.1 Vector Fields
Definition 4 (Vector Field). Vector function ¥ assigning (x,y) — F(z,y).

Examples: velocity field, gravitational field, force field, gradient vector field

Definition 5 (Conservative Vector Field). F is conservative if F = <y f for some potential
function f.

1068/1, 11-14, 21
1068/3, 15-18, 25
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17.2 Line Integrals

Definition: fc f(z,y)ds in terms of Riemann Sum.
dz®  dy®

da® | dy

dt dt

Example: Mass of wire, center of mass

Variations: [, f(z,y)dz, [, f(z,y)dy, [, P(x,y)dz+ Q(z,y) dy
Line integrals in space

Line integrals of vector fields: Work = | cF-Tds

Calculation: ds =

Definition 6 (Line Integral of F along C). [, F -dr = ff F(r(t)) -r'(t)dt = [, F - Tds.
1079/1, 3, 9, 17, 19, 31

1079/5, 7, 11, 21, 39

17.3 Fundamental Theorem for Line Integrals

Theorem 7. [,/ f-dr = f(r(b)) — f(r(a))

Definition: Independence of path
Independent of path if and only if integral along any closed path is 0.
Theorem: | o F - dr independent of path = F is a conservative vector field.

oP 0
Theorem: F =< P, () > conservative —> — = —Q
oy ox
Simple curve, simply connected
. . opP 0Q .
Theorem: F =< P,) > on open simply-connected region and - 9z — F is
Y x

conservative.
1089/1, 3, 5, 13, 15, 19
1089/7, 17, 21, 33

17.4 Green’s Theorem

P
Theorem 8 (Green’s Theorem). [, Pdxr+Qdy = [[, (% - aa_y) dA

1096/1, 7, 13
1096/3, 9, 15



Page 11 of 12

17.5 Curl and Divergence

i i Kk
o o0 0
CUI‘IF—VXF—£ a_y &
P Q R

Theorem 9. If f has continuous second-order partial derivatives, N7 X (\7f) =0

Corollary: If F is conservative, then \7 x F = 0.

P
Definition 7 (Divergence). div F =</ -F = 8_ + 8_@ + @
ox dy 0z

Theorem 10. 7 -7 X F =0

Vector Form of Green’s Theorem: ¢, F -dr = [[, (v x F) - kdA.
$-F -nds= [[ v -FdA

1104/1, 3, 13, 23

1104/5, 7, 31

17.6 Parametric Surfaces and their Areas

Parametric Surface z = z(u,v), y = y(u,v), z = z(u,v)

Surface of revolution - from y = f(z): * =z, y = f(z)cosb, z = f(x)sinb.
ox 8y 0z oxr 0y 0z

ou du du " v v
Surface area - of surface given by r(u,v)

Areais [[, |ry X r,|dA

1114/1, 11-16, 19, 35

1114/3, 23, 39

Tangent planes: use tangent vectors < —

17.7 Surface Integrals
ffS z,y,z)dS as a Riemann Sum

For surface z = g(z,y), [[s f(z,y,2)dS = [[, f(z,y,9(x,y)) \/_ +% +1dA
Y

In general, dS — |r, X r,| dA

Surface integral of vector field [[(F-dS = [[,F-ndS. Called flux of F across S.
1127/5, 7, 19

1127/9, 11, 21

17.8 Stokes’ Theorem

Theorem 11 (Stokes’ Theorem). [[((vV x F)-dS = [, F - dr.

1133/3, 7, 13
1133/5, 9, 17
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17.9 Divergence Theorem

Theorem 12 (Divergence Theorem). ([, F-dS = [[[,7-FdV.

1139/1, 3, 7, 22
1139/5, 9, 23



