
Three Dimensional Euclidean Space

We set up a coordinate system in space (three dimensional
Euclidean space) by adding third axis perpendicular to the two
axes in the plane (two dimensional Euclidean space).

Usually the axes are called x , y and z , but that isn’t essential. The
three axes form a right hand system, in the sense that if one uses a
screwdriver on a screw, turning clockwise from the x-axis towards
the y -axis, the screw moves in the direction of the z-axis.
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Coordinates of a Point

In two dimensions, the x-coordinate represents a signed distance in
the direction of the positive or negative x-axis and the
y -coordinate represents a signed distance in the direction of the
positive or negative y -axis.

In three dimensions, the x-coordinate represents a signed distance
in the direction of the positive or negative x-axis, the y -coordinate
represents a signed distance in the direction of the positive or
negative y -axis and z-coordinate represents a signed distance in
the direction of the positive or negative z-axis.
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Drawing the Coordinate Axes

To do the impossible and draw the three perpendicular axes in a
plane, we draw the y -axis going horizontally to the right, the z-axis
vertically going up, and the x-axis making an angle of 3π

8 or 135◦

with the other two axes.

We visualize the x and y -axes as being in
the horizontal plane and the z-axis as being vertical.

Physicists and engineers sometimes draw the x and y -axes where
they’re drawn for R2 and the z-axis where we draw the x-axis.
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Distance Between Two Points

Consider points P1(x1, y1, z1), P2(x2, y2, z2).

Let P3 be the point
with coordinates (x2, y2, z1). |P1P3| is clearly the same as the
distance between the points (x1, y1, 0) and (x2, y2, 0) in the
xy -plane, so by the distance formula in R2,
|P1P3|2 = (x2 − x1)2 + (y2 − y1)2.
Since P2P3 is a vertical line segment, |P2P3| = |z2 − z1|.
Since P1P3 and P3P2 form the legs of a right triangle with
hypotenuse P1P2, we may use the Pythagorean Theorem to get
|P1P3|2 + |P3P2|2 = |P1P2|2, so

[(x2 − x1)2 + (y2 − y1)2] + (z2 − z1)2 = |P1P2|2.

We thus get the natural generalization of the distance formula to
three dimensions:

The distance s between points with coordinates (x1, y1, z1) and
(x2, y2, z2) is given by

s2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = |P1P2|2.
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Equations of Spheres

Since a sphere with center (x0, y0, z0) and radius r consists of all
points (x , y , z) a distance r from (x0, y0, z0), the distance formula
immediately shows its equation is

(x − x0)2 + (y − y0)2 + (z − z0)2 = r2.

Example: The sphere with center (2,5,-3) and radius 7 has
equation (x − 2)2 + (y − 5)2 + (z + 3)2 = 49. Remember,
z − (−3) = z + 3.

Example: (x + 4)2 + (y − 2)2 + (z − 8)2 = 43 is an equation for
the sphere with center (−4, 2, 8) and radius

√
43.
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Completing the Square

If an equation has all three variables occurring to the second
degree, with coefficient 1, but also has some or all occurring to
degree one, the method of completing the square can be used to
put it in the standard form for an equation of a sphere.

Example: x2 + 6x + y2 − 8y + z2 + 14z = 7.

(x + 3)2 = x2 + 6x + 9, so x2 + 6x = (x + 3)2 − 9

(y − 4)2 = y2 − 8y + 16, so y2 − 8y = (y − 4)2 − 16

(z + 7)2 = z2 + 14z + 49, so z2 + 14z = (z + 7)2 − 49

Thus, x2 + 6x + y2 − 8y + z2 + 14z = 7 may be written in the
form [(x + 3)2 − 9] + [(y − 4)2 − 16] + [(z + 7)2 − 49] = 7, or
(x + 3)2 + (y − 4)2 + (z + 7)2 = 81.

So the equation is for a sphere with center (−3, 4,−7) and radius
9.

Alan H. SteinUniversity of Connecticut
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Vectors

For a physicist, a vector has magnitude and direction.

For a mathematician, a vector space is a collection of objects
satisfying certain conditions and the elements are vectors.

In this course, we will be less abstract. A vector in Rn,
n-dimensional Euclidean space, will be an n-tuple.

In R2, a vector will be an ordered pair < a, b > of real numbers.

In R3, a vector will be an ordered triple < a, b, c > or real
numbers.

Most of our early examples will be in R2, but will easily generalize
to R3 or higher dimensional Euclidean space.
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Geometric Interpretation and Notation

We can visualize the vector < a, b > as the directed line segment
from the origin to the point (a, b),

or as any other directed line
segment with the same length going in the same direction.

Notation: Vectors are usually printed in boldface, such as
v =< a, b >. It’s hard to print in boldface, so when writing vectors
by hand one generally puts an arrow above it, such as
−→v =< a, b >.
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Addition of Vectors

Definition (Vector Addition)

< a, b > + < c , d >=< a + c , b + d >.

This probably isn’t much of a surprise. This definition is for R2.
The generalization to other dimensions should be obvious.

Geometrically, one may visualize v + w by placing the initial point
of w at the endpoint of v. v + w goes from the initial point of v to
the endpoint of w.
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Commutativity

Addition is commutative,

v + w = w + v.
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The Zero Vector

The vector 0 =< 0, 0 > is called the zero vector.

It satisfies the property 0 + v = v + 0 = v for any vector v.
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Additive Inverse

Every vector v has an additive inverse, denoted by −v, such that
v + (−v) = 0.

It is easy to see − < a, b >=< −a,−b >.
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Subtraction of Vectors

Definition (Vector Subtraction)

v −w = v + (−w)

It is easy to see < a, b > − < c , d >=< a− c , b − d >.

This probably isn’t much of a surprise. This definition is for R2.
The generalization to other dimensions should be obvious.

Geometrically, one may visualize v −w as going from the endpoint
of w to the endpoint of v.

Subtraction is not commutative!
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Scalar Multiplication

Real numbers are referred to as scalars.

Multiplication of a vector
by a scalar is referred to as scalar multiplication.

Definition (Scalar Multiplication)

k < a, b >=< ka, kb >

Geometrically, if k > 0, kv is a vector in the same direction as v
with a magnitude k times as great.

If k < 0, the kv is in the opposite direction from v.

It is easy to see 0v = 0 and 1v = v.

Alan H. SteinUniversity of Connecticut



Scalar Multiplication

Real numbers are referred to as scalars. Multiplication of a vector
by a scalar is referred to as scalar multiplication.

Definition (Scalar Multiplication)

k < a, b >=< ka, kb >

Geometrically, if k > 0, kv is a vector in the same direction as v
with a magnitude k times as great.

If k < 0, the kv is in the opposite direction from v.

It is easy to see 0v = 0 and 1v = v.

Alan H. SteinUniversity of Connecticut



Scalar Multiplication

Real numbers are referred to as scalars. Multiplication of a vector
by a scalar is referred to as scalar multiplication.

Definition (Scalar Multiplication)

k < a, b >=< ka, kb >

Geometrically, if k > 0, kv is a vector in the same direction as v
with a magnitude k times as great.

If k < 0, the kv is in the opposite direction from v.

It is easy to see 0v = 0 and 1v = v.

Alan H. SteinUniversity of Connecticut



Scalar Multiplication

Real numbers are referred to as scalars. Multiplication of a vector
by a scalar is referred to as scalar multiplication.

Definition (Scalar Multiplication)

k < a, b >=< ka, kb >

Geometrically, if k > 0, kv is a vector in the same direction as v
with a magnitude k times as great.

If k < 0, the kv is in the opposite direction from v.

It is easy to see 0v = 0 and 1v = v.

Alan H. SteinUniversity of Connecticut



Scalar Multiplication

Real numbers are referred to as scalars. Multiplication of a vector
by a scalar is referred to as scalar multiplication.

Definition (Scalar Multiplication)

k < a, b >=< ka, kb >

Geometrically, if k > 0, kv is a vector in the same direction as v
with a magnitude k times as great.

If k < 0, the kv is in the opposite direction from v.

It is easy to see 0v = 0 and 1v = v.

Alan H. SteinUniversity of Connecticut



Scalar Multiplication

Real numbers are referred to as scalars. Multiplication of a vector
by a scalar is referred to as scalar multiplication.

Definition (Scalar Multiplication)

k < a, b >=< ka, kb >

Geometrically, if k > 0, kv is a vector in the same direction as v
with a magnitude k times as great.

If k < 0, the kv is in the opposite direction from v.

It is easy to see 0v = 0 and 1v = v.

Alan H. SteinUniversity of Connecticut



The Distributive Law

Scalar multiplication is distributive under any reasonable
interpretation.

For example,

k(v + w) = kv + kw
(a + b)v = av + bv
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Magnitude of a Vector

Definition (Magnitude or Length)

| < a, b > | =
√

a2 + b2

A vector of length 1 is called a unit vector.

We may find a unit vector in the same direction as a vector v by
dividing by its length. In other words, we take v

|v| .

We haven’t defined scalar division; what we mean is
1

|v|
· v.
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Standard Basis Vectors

The unit vectors in the directions of the coordinate axes are called
the standard basis vectors and denoted by i, j and k.

In R2, i =< 1, 0 >, j =< 0, 1 >.

In R3, i =< 1, 0, 0 >, j =< 0, 1, 0 >, k =< 0, 0, 1 >.

Any vector can easily be written in terms of the standard basis
vectors: < a, b, c >= ai + bj + ck.
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Dot Product

Definition (Dot Product)

< a, b, c > · < d , e, f >= ad + be + cf

Properties:

I v · v = |v|2

I 0 · v = 0

I The dot product is commutative: v ·w = w · v.

I The dot product is distributive over addition
u · (v + w) = u · v + u ·w.

I k(v ·w) = (kv) ·w = v · (kw)

I v ·w = |v||w| cos θ, where θ is the angle between the vectors.
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u · (v + w) = u · v + u ·w.

I k(v ·w) = (kv) ·w = v · (kw)

I v ·w = |v||w| cos θ, where θ is the angle between the vectors.

Alan H. SteinUniversity of Connecticut



Law of Cosines

The formula v ·w = |v||w| cos θ may be proven using the Law of
Cosines.

If we place the initial points of v and w together, then v, w and
v −w form a triangle.

Using the Law of Cosines and remembering v · v = |v|2, we have
(v −w) · (v −w) = v · v + w ·w − 2|v||w| cos θ.

Multiplying out the dot product on the left, we get
v · v − 2v ·w + w ·w = v · v + w ·w − 2|v||w| cos θ.

−2v ·w = −2|v||w| cos θ

v ·w = |v||w| cos θ

Alan H. SteinUniversity of Connecticut



Law of Cosines

The formula v ·w = |v||w| cos θ may be proven using the Law of
Cosines.

If we place the initial points of v and w together, then v, w and
v −w form a triangle.

Using the Law of Cosines and remembering v · v = |v|2, we have
(v −w) · (v −w) = v · v + w ·w − 2|v||w| cos θ.

Multiplying out the dot product on the left, we get
v · v − 2v ·w + w ·w = v · v + w ·w − 2|v||w| cos θ.

−2v ·w = −2|v||w| cos θ

v ·w = |v||w| cos θ

Alan H. SteinUniversity of Connecticut



Law of Cosines

The formula v ·w = |v||w| cos θ may be proven using the Law of
Cosines.

If we place the initial points of v and w together, then v, w and
v −w form a triangle.

Using the Law of Cosines and remembering v · v = |v|2, we have
(v −w) · (v −w) = v · v + w ·w − 2|v||w| cos θ.

Multiplying out the dot product on the left, we get
v · v − 2v ·w + w ·w = v · v + w ·w − 2|v||w| cos θ.

−2v ·w = −2|v||w| cos θ

v ·w = |v||w| cos θ

Alan H. SteinUniversity of Connecticut



Law of Cosines

The formula v ·w = |v||w| cos θ may be proven using the Law of
Cosines.

If we place the initial points of v and w together, then v, w and
v −w form a triangle.

Using the Law of Cosines and remembering v · v = |v|2, we have
(v −w) · (v −w) = v · v + w ·w − 2|v||w| cos θ.

Multiplying out the dot product on the left, we get

v · v − 2v ·w + w ·w = v · v + w ·w − 2|v||w| cos θ.

−2v ·w = −2|v||w| cos θ

v ·w = |v||w| cos θ

Alan H. SteinUniversity of Connecticut



Law of Cosines

The formula v ·w = |v||w| cos θ may be proven using the Law of
Cosines.

If we place the initial points of v and w together, then v, w and
v −w form a triangle.

Using the Law of Cosines and remembering v · v = |v|2, we have
(v −w) · (v −w) = v · v + w ·w − 2|v||w| cos θ.

Multiplying out the dot product on the left, we get
v · v − 2v ·w + w ·w = v · v + w ·w − 2|v||w| cos θ.

−2v ·w = −2|v||w| cos θ

v ·w = |v||w| cos θ

Alan H. SteinUniversity of Connecticut



Law of Cosines

The formula v ·w = |v||w| cos θ may be proven using the Law of
Cosines.

If we place the initial points of v and w together, then v, w and
v −w form a triangle.

Using the Law of Cosines and remembering v · v = |v|2, we have
(v −w) · (v −w) = v · v + w ·w − 2|v||w| cos θ.

Multiplying out the dot product on the left, we get
v · v − 2v ·w + w ·w = v · v + w ·w − 2|v||w| cos θ.

−2v ·w = −2|v||w| cos θ

v ·w = |v||w| cos θ

Alan H. SteinUniversity of Connecticut



Law of Cosines

The formula v ·w = |v||w| cos θ may be proven using the Law of
Cosines.

If we place the initial points of v and w together, then v, w and
v −w form a triangle.

Using the Law of Cosines and remembering v · v = |v|2, we have
(v −w) · (v −w) = v · v + w ·w − 2|v||w| cos θ.

Multiplying out the dot product on the left, we get
v · v − 2v ·w + w ·w = v · v + w ·w − 2|v||w| cos θ.

−2v ·w = −2|v||w| cos θ

v ·w = |v||w| cos θ

Alan H. SteinUniversity of Connecticut



Direction Angles and Direction Cosines

The angles a vector makes with the three coordinate axes are
called direction angles and denoted by α, β and γ.

The cosines of the direction angles are called the direction cosines,
cos α, cos β and cos γ.

We know v · i = |v||i| cos α.

If v =< a, b, c >, since i =< 1, 0, 0 > and |i| = 1, we get
a =

√
a2 + b2 + c2 cos α, so

cos α = a√
a2+b2+c2

.

Similarly,
cos β = b√

a2+b2+c2
.

cos γ = c√
a2+b2+c2

.
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Projections

Definition (Scalar Projection of v on w)

compwv = v·w
|w|

If the angle between the vectors is acute, the scalar projection is
the length of the leg along w of the right triangle formed by
drawing a line from the tip of v perpendicular to w.

If the angle is obtuse, the scalar projection is the negative of the
length.

Definition (Vector Projection of v on w)

projwv =
(

v·w
|w|

)
w
|w| = v·w

|w|2 w

Geometrically, this is the vector along w whose length is equal to
the length of the scalar projection.
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Cross Product

The cross product v ×w is a vector of length |v||w| sin θ, where θ
is the angle between v and w, orthogonal to both v and w, such
that v, w, v ×w form a right-hand triple.

We will come up with a definition and then show it has all the
above properties.

If the cross product has the properties indicated above, it follows
that:

i× j = k, j× k = i, k× i = j, j× i = −k, k× j = −i, i× k = −j,
i× i = j× j = k× k = 0.

If the usual rules of algebra, such as the associative and
distributive laws, hold for the cross product, we could calculate the
cross product of any two vectors by writing them in terms of the
standard basis vectors.
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Cross Product

Letting v =< x1, y1, z1 >, w =< x2, y2, z2 >, we get

v×w = (x1i+ y1j+ z1k)× (x2i+ y2j+ z2k) = x1x2i× i+ x1y2i× j+
x1z2i× k + y1x2j× i + y1y2j× j + y1z2j× k + z1x2k× i + z1y2k× j +
z1z2k×k = 0+x1y2k−x1z2j−y1x2k+0+y1z2i+z1x2j−z1y2i+0 =
(y1z2 − y2z1)i + (z1x2 − z2x1)j + (x1y2 − x2y1)k.

Definition (Cross Product)

< x1, y1, z1 > × < x2, y2, z2 >=
< y1z2 − y2z1, x2z1 − x1z2, x1y2 − x2y1 >

This is a complicated definition. Fortunately, there’s a convenient
mnemonic device involving symbolic determinants that may be
used to calculate cross products.
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Determinants

A matrix is a rectangular array of elements. A square matrix has
the same number of rows as columns.

There is a general definition of a determinant of a square matrix.
The special case of the determinant of a 3× 3 matrix, with 3 rows
and 3 columns, suffices for our purposes.

det

x11 x12 x13

x21 x22 x23

x31 x32 x33

 =

x11x22x33+x12x23x31+x13x21x32−x11x23x32−x12x21x33−x13x22x31.

We may think of this as adding the products of elements in each
diagonal going down as we go from left to right and subtracting
the products of elements in each diagonal going down as we go
from right to left.
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Cross Product as a Symbolic Determinant

Symbolically, < a, b, c > × < d , e, f >= det

 i j k
a b c
d e f

.
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Properties of the Cross Product

One can see v ×w is orthogonal to both v and w by calculating
the dot products v · (v ×w) and w · (v ×w).

For example, if v =< x1, y1, z1 > and w =< x2, y2, z2 >, then
v ×w =< y1z2 − y2z1, x2z1 − x1z2, x1y2 − x2y1 >, so
v · (v×w) = x1(y1z2− y2z1) + y1(x2z1− x1z2) + z1(x1y2− x2y1) =
x1y1z2 − x1y2z1 + x2y1z1 − x1y1z2 + x1y2z1 − x2y1z1 = 0.

A similar calculation works for w · (v ×w).
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Magnitude of the Cross Product

Again, let v =< x1, y1, z1 > and w =< x2, y2, z2 >, so

v ×w =< y1z2 − y2z1, x2z1 − x1z2, x1y2 − x2y1 > and
|v ×w|2 = (y1z2 − y2z1)2 + (x2z1 − x1z2)2 + (x1y2 − x2y1)2 =
(y2

1 z2
2 − 2y1y2z1z2 + y2

2 z2
1 ) + (x2

2 z2
1 − 2x1x2z1z2 + x2

1 z2
2 ) + (x2

1y2
2 −

2x1x2y1y2 + x2
2y2

1 )

Noticing the products of squares suggests looking at the product of
|v|2|w|2.

|v|2|w|2 = (x2
1 + y2

1 + z2
1 ) + (x2

2 + y2
2 + z2

2 ) =
x2
1x2

2 + x2
1y2

2 + x2
1 z2

2 + y2
1 x2

2 + y2
1 y2

2 + y2
1 z2

2 + z2
1x2

2 + z2
1y2

2 + z2
1 z2

2 .

If one looks at the difference, one gets

|v|2|w|2 − |v ×w|2 =
x2
1x2

2 + y2
1 y2

2 + z2
1 z2

2 + 2x1x2y1y2 + 2x1x2z1z2 + 2y1y2z1z2 = (v ·w)2.
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Magnitude of the Cross Product

|v|2|w|2 − |v ×w|2 = (v ·w)2

So, |v ×w|2 = |v|2|w|2 − (v ·w)2 = |v|2|w|2 − (|v||w| cos θ)2 =
|v|2|w|2(1− cos2 θ) = |v|2|w|2 sin2 θ.

It follows that |v ×w| = |v||w| sin θ.
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Immediate Applications

I If we place the initial points of vectors v and w at the same
place,

we get a parallelogram with the two vectors forming
two of the sides and the area will be |v ×w|.

I If we place the points of vectors u, v and w at the same
place, we get a parallelopiped with the three vectors forming
three of the edges and the volume will be |u · (v ×w)|.
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