Mathematics 211 Professor Alan H. Stein Due Wednesday, April 26

SOLUTIONS

This problem set is worth 50 points.

1. Find the general solution of $\frac{d^2x}{dt^2} - 16x = 0$.

Solution: The auxiliary equation is $m^2 - 16 = 0$, which may be factored (m+4)(m-4) = 0. It has solutions m = -4, m = 4, so the differential equation has solutions e^{-4t} and e^{4t} and the general solution is $x = ae^{-4t} + be^{4t}$.

2. Find the general solution of $\frac{d^2x}{dt^2} + 16x = 0$.

Solution: The auxiliary equation is $m^2 + 16 = 0$, which has complex solutions $m = \pm 4i$, so the differential equation has solutions $\cos(4t)$ and $\sin(4t)$ and the general solution is $x = a\cos(4t) + b\sin(4t)$.

3. Find the general solution of $\frac{d^2x}{dt^2} - 4\frac{dx}{dt} + 4x = 6e^t$.

Solution: The auxiliary equation is $m^2 - 4m + 4 = 0$, which may be factored to $(m-2)^2 = 0$, so it has a double solution m = 2 and the associated homogeneous differential equation has solutions e^{2t} and te^{2t} .

We can use Judicious Guessing to find a particular solution to the differential equation, guessing $x = ae^t$. Then $\frac{dx}{dt} = \frac{d^2x}{dt^2} = ae^t$, and plugging into the differential equation we get $ae^t - 4ae^t + 4ae^t = 6e^t$, so $ae^t = 6e^t$ and a = 6. So we get $x = 6e^t$ as a particular solution and $x = ae^{2t} + bte^{2t} + 6e^t$ as the general solution.

4. Find the general solution of $\frac{d^3x}{dt^3} - 6\frac{d^2x}{dt^2} + 11\frac{dx}{dt} - 6x = 0.$

Solution: The auxiliary equation is $m^3 - 6m^2 + 11m - 6 = 0$. Looking at the divisor of 6 for a solution, we get m = 1 is a solution, so we factor $m^3 - 6m^2 + 11m - 6 = (m-1)(m^2-5m+6)$. We can finish the factoring by trial and error, getting $m^2-5m+6 = (m-2)(m-3)$, so we can write the auxiliary equation in the form (m-1)(m-2)(m-3) = 0.

Thus the differential equation has solutions e^t , e^{2t} and e^{3t} and general solution $x = ae^t + be^{2t} + ce^{3t}$.

- 5. A spring is such that a 4 pound weight stretches the spring 0.4 feet. The 4 pound weight is attached to the spring and the weight is started from the equilibrium position with an initial upward velocity of 2 feet per second.
 - (a) Set up a differential equation to model this.
 - (b) Solve the differential equation.
 - (c) Describe the motion of the weight.

Solution: The force of the spring is given by Hooke's Law, F = kx, where F is the force, x is the amount the spring is stretched past the equilibrium position, and k is a constant. We know x = 0.4 when F = 4, so 4 = k(0.4) and thus k = 10.

The appropriate unit of mass is the slug. If we let m be the mass, in slugs, F the weight and g the acceleration due to gravity, F = mg, so $m = \frac{F}{g}$. Since we have a 4 pound weight and $g \approx 32$, $m \approx \frac{4}{32} = \frac{1}{8}$.

Since there is no retarding force, our model becomes $\frac{1}{8}\frac{d^2x}{dt^2} + 10x = 0$, with initial conditions x(0) = 0 and x'(0) = -2. The spring starts at the equilibrium position, so x(0) = 0, but it has an initial upward speed of 2 so $\frac{dx}{dt} = -2$.

The auxiliary equation is $\frac{1}{8}m^2 + 10 = 0$, which may be solved as follows: $m^2 + 80 = 0$, $m = \pm \sqrt{80}i = \pm 4i\sqrt{5}$.

The differential equation thus has solutions $\cos(4\sqrt{5}t)$ and $\sin(4\sqrt{5}t)$ and general solution $x = a\cos(4\sqrt{5}t) + b\sin(4\sqrt{5}t)$.

Since x(0) = 0, we get a = 0, so $x = b\sin(4\sqrt{5}t)$.

Since $x' = 4\sqrt{5}b\cos(4\sqrt{5}t)$ and x'(0) = -2, we get $4\sqrt{5}b = -2$, $b = -\frac{1}{2\sqrt{5}}$, so the solution to the differential equation with initial conditions is $x = -\frac{1}{2\sqrt{5}}\sin(4\sqrt{5}t)$.

The weight starts at the equilibrium position. x goes from 0 to $-\frac{1}{2\sqrt{5}}$ to 0 to $\frac{1}{2\sqrt{5}}$ back to 0 and then repeats, so the weight moves up $\frac{1}{2\sqrt{5}}$ feet above the equilibrium position, then swings back down past the equilibrium position until it's $\frac{1}{2\sqrt{5}}$ feet below the equilibrium position, then goes back up to the equilibrium position and repeats the cycle.

It goes through a full cycle as $4\sqrt{5}t$ increases by 2π , in other words, every $\frac{\pi}{2\sqrt{5}} \approx 0.702481473$ seconds.

6. Repeat the previous question with the added condition that the motion takes place in a medium which furnishes a retarding force of a magnitude numerically equal to the speed of the weight (in feet per second).

Solution: The differential equation becomes $\frac{1}{8}\frac{d^2x}{dt^2} + \frac{dx}{dt} + 10x = 0$ with the same initial conditions.

The auxiliary equation is then $\frac{1}{8}m^2 + m + 10 = 0$, which may be solved using the Quadratic Formula. It's easier if we multiply both sides of the equation by 8 before applying the Quadratic Formula:

$$m^{2} + 8m + 80 = 0, \text{ so } m = \frac{-8 \pm \sqrt{8^{2} - 4 \cdot 1 \cdot 80}}{2} = \frac{-8 \pm \sqrt{8^{2} - 4 \cdot 8 \cdot 2 \cdot 5}}{2}$$
$$= \frac{-8 \pm \sqrt{8^{2} - 8^{2} \cdot 5}}{2} = \frac{-8 \pm \sqrt{8^{2}(1 - 5)}}{2} = \frac{-8 \pm 8\sqrt{-4}}{2} = (-4 \pm 8i)$$

We thus get solutions $e^{-4t} \cos(8t)$, $e^{-4t} \sin(8t)$ and the general solution $x = ae^{-4t} \cos(8t) + be^{-4t} \sin(8t)$.

Since x(0) = 0, we get a = 0, so $x = be^{-4t} \sin(8t)$.

Differentiating, $x' = b(8e^{-4t}\cos(8t) - 4e^{-4t}\sin(8t))$. Since x'(0) = -2, we get 8b = -2, so $b = -\frac{1}{4}$ and the solution to the differential equation with the initial conditions is $x = -\frac{1}{4}e^{-4t}\sin(8t)$.

The motion is similar, but with each cycle the weight swings closer and closer to the equilibrium point.

7. Find the general solution of the system:

$$\frac{dx}{dt} = 4x - y$$
$$\frac{dy}{dt} = 2x + y$$

Solution: We can write the equation in the form $\frac{d\mathbf{X}}{dt} = \mathbf{A}\mathbf{X}$, where $A = \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$. We get eigenvalues by solving $A - \lambda I = 0$:

$$\begin{vmatrix} 4-\lambda & -1\\ 2 & 1-\lambda \end{vmatrix} = 0.$$

$$(4-\lambda)(1-\lambda) - (-1)(2) = 0$$

$$\lambda^2 - 5\lambda + 4 + 2 = 0$$

$$\lambda^2 - 5\lambda + 6 = 0$$

$$(\lambda - 3)(\lambda - 2) = 0$$
So the eigenvalues are $\lambda = 3$ and $\lambda = 2$.
We now solve $(A - \lambda I)U = 0$:
For $\lambda = 3$, we get:
 $u - v = 0, 2u - 2v = 0$, so $v = u$. We may take $u = v = 1$
So we get a solution $X = e^{3t} \begin{pmatrix} 1\\ 1 \end{pmatrix}$.
For $\lambda = 2$, we get:
 $2u - v = 0, 2u - v = 0$, so $v = 2u$ and we may take $u = 1, v = 2$.
So we get a solution $X = e^{2t} \begin{pmatrix} 1\\ 2 \end{pmatrix}$.
The general solution is $X = ae^{3t} \begin{pmatrix} 1\\ 1 \end{pmatrix} + be^{2t} \begin{pmatrix} 1\\ 2 \end{pmatrix}$.
In scalar form, we have $x = ae^{3t} + be^{2t}$, $y = ae^{3t} + 2be^{2t}$.

8. Use the definition of a Laplace Transform to derive the formula $\mathcal{L}[\sin \omega t] = \frac{\omega}{s^2 + \omega^2}$. Solution: $\mathcal{L}[\sin \omega t] = \int_0^\infty e^{-st} \sin wt \, dt$.

We could use Integration By Parts to find $I = \int e^{-st} \sin \omega t \, dt$, but we'll use Judicious Guessing, guessing $I = ae^{-st} \sin \omega t + be^{-st} \cos \omega t$. Since $I' = (-as - b\omega)e^{-st} \sin \omega t + (a\omega - bs)e^{-st} \cos \omega t$, we get $-as - b\omega = 1$, $a\omega - bs = 0$. From the second equation, $b = \frac{a\omega}{s}$, so $-as - \frac{a\omega}{s}\omega = 1$, $-as^2 - a\omega^2 = s$, $a = -\frac{s}{s^2 + \omega^2}$. Since $b = \frac{a\omega}{s}$, it follows that $b = -\frac{\omega}{s^2 + \omega^2}$. We thus have $I = -\frac{s}{s^2 + \omega^2}e^{-st} \sin \omega t - \frac{\omega}{s^2 + \omega^2}e^{-st} \cos \omega t$. Thus $\mathcal{L}[\sin \omega t] = \int_0^\infty e^{-st} \sin \omega t \, dt = \lim_{u \to \infty} \int_0^u e^{-st} \sin \omega t \, dt$ $= \lim_{u \to \infty} \left[-\frac{s}{s^2 + \omega^2}e^{-st} \sin \omega t - \frac{\omega}{s^2 + \omega^2}e^{-st} \cos \omega t\right]_0^t$ $= \lim_{u \to \infty} -\frac{s}{s^2 + \omega^2}e^{-su} \sin \omega u - \frac{\omega}{s^2 + \omega^2}e^{-su} \cos \omega u - (0 - \frac{\omega}{s^2 + \omega^2}) = -(-\frac{\omega}{s^2 + \omega^2})$

9. Suppose a, b > 0. Derive the formula $a \sin \theta + b \cos \theta = \sqrt{a^2 + b^2} \sin(\theta + \delta)$, where $\delta = \arccos\left(\frac{a}{\sqrt{a^2 + b^2}}\right)$.

Solution: $a\sin\theta + b\cos\theta = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \sin\theta + \frac{b}{\sqrt{a^2 + b^2}} \cos\theta \right)$ = $\sqrt{a^2 + b^2} (\cos\delta\sin\theta + \sin\delta\cos\theta) = \sqrt{a^2 + b^2} \sin(\theta + \delta).$