1. Find the general solution of $\frac{d^2x}{dt^2} - 16x = 0$.

Solution: The auxiliary equation is $m^2 - 16 = 0$, which may be factored $(m+4)(m-4) = 0$. It has solutions $m = -4, m = 4$, so the differential equation has solutions e^{-4t} and e^{4t} and the general solution is $x = ae^{-4t} + be^{4t}$.

2. Find the general solution of $\frac{d^2x}{dt^2} + 16x = 0$.

Solution: The auxiliary equation is $m^2 + 16 = 0$, which has complex solutions $m = \pm 4i$, so the differential equation has solutions $\cos(4t)$ and $\sin(4t)$ and the general solution is $x = a\cos(4t) + b\sin(4t)$.

3. Find the general solution of $\frac{d^2x}{dt^2} - 4\frac{dx}{dt} + 4x = 6e^t$.

Solution: The auxiliary equation is $m^2 - 4m + 4 = 0$, which may be factored to $(m - 2)^2 = 0$, so it has a double solution $m = 2$ and the associated homogeneous differential equation has solutions e^{2t} and te^{2t}.

We can use Judicious Guessing to find a particular solution to the differential equation, guessing $x = ae^t$. Then $\frac{dx}{dt} = \frac{d^2x}{dt^2} = ae^t$, and plugging into the differential equation we get $ae^t - 4ae^t + 4ae^t = 6e^t$, so $ae^t = 6e^t$ and $a = 6$. So we get $x = 6e^t$ as a particular solution and $x = ae^{2t} + bte^{2t} + 6e^t$ as the general solution.

4. Find the general solution of $\frac{d^3x}{dt^3} - 6\frac{d^2x}{dt^2} + 11\frac{dx}{dt} - 6x = 0$.

Solution: The auxiliary equation is $m^3 - 6m^2 + 11m - 6 = 0$. Looking at the divisor of 6 for a solution, we get $m = 1$ is a solution, so we factor $m^3 - 6m^2 + 11m - 6 = (m-1)(m^2 - 5m + 6)$. We can finish the factoring by trial and error, getting $m^2 - 5m + 6 = (m-2)(m-3)$, so we can write the auxiliary equation in the form $(m-1)(m-2)(m-3) = 0$.

Thus the differential equation has solutions e^t, e^{2t} and e^{3t} and general solution $x = ae^t + be^{2t} + ce^{3t}$.

This problem set is worth 50 points.
5. A spring is such that a 4 pound weight stretches the spring 0.4 feet. The 4 pound weight is attached to the spring and the weight is started from the equilibrium position with an initial upward velocity of 2 feet per second.

(a) Set up a differential equation to model this.

(b) Solve the differential equation.

(c) Describe the motion of the weight.

Solution: The force of the spring is given by Hooke’s Law, \(F = kx \), where \(F \) is the force, \(x \) is the amount the spring is stretched past the equilibrium position, and \(k \) is a constant. We know \(x = 0.4 \) when \(F = 4 \), so \(4 = k(0.4) \) and thus \(k = 10 \).

The appropriate unit of mass is the slug. If we let \(m \) be the mass, in slugs, \(F \) the weight and \(g \) the acceleration due to gravity, \(F = mg \), so \(m = \frac{F}{g} \). Since we have a 4 pound weight and \(g \approx 32 \), \(m \approx \frac{4}{32} = \frac{1}{8} \).

Since there is no retarding force, our model becomes

\[\frac{1}{8} \frac{d^2x}{dt^2} + 10x = 0, \text{ with initial conditions } x(0) = 0 \text{ and } x'(0) = -2. \]

The spring starts at the equilibrium position, so \(x(0) = 0 \), but it has an initial upward speed of 2 so \(\frac{dx}{dt} = -2 \).

The auxiliary equation is \(\frac{1}{8} m^2 + 10 = 0 \), which may be solved as follows: \(m^2 + 80 = 0 \), \(m = \pm \sqrt{80}i = \pm 4i\sqrt{5} \).

The differential equation thus has solutions \(\cos(4\sqrt{5}t) \) and \(\sin(4\sqrt{5}t) \) and general solution \(x = a \cos(4\sqrt{5}t) + b \sin(4\sqrt{5}t) \).

Since \(x(0) = 0 \), we get \(a = 0 \), so \(x = b \sin(4\sqrt{5}t) \).

Since \(x' = 4\sqrt{5}b \cos(4\sqrt{5}t) \) and \(x'(0) = -2 \), we get \(4\sqrt{5}b = -2 \), \(b = -\frac{1}{2\sqrt{5}} \), so the solution to the differential equation with initial conditions is \(x = -\frac{1}{2\sqrt{5}} \sin(4\sqrt{5}t) \).

The weight starts at the equilibrium position. \(x \) goes from 0 to \(-\frac{1}{2\sqrt{5}} \) to 0 to \(\frac{1}{2\sqrt{5}} \) back to 0 and then repeats, so the weight moves up \(\frac{1}{2\sqrt{5}} \) feet above the equilibrium position, then swings back down past the equilibrium position until it’s \(\frac{1}{2\sqrt{5}} \) feet below the equilibrium position, then goes back up to the equilibrium position and repeats the cycle.

It goes through a full cycle as \(4\sqrt{5}t \) increases by \(2\pi \), in other words, every \(\frac{\pi}{2\sqrt{5}} \approx 0.702481473 \) seconds.
6. Repeat the previous question with the added condition that the motion takes place in a medium which furnishes a retarding force of a magnitude numerically equal to the speed of the weight (in feet per second).

Solution: The differential equation becomes \(\frac{1}{8} \frac{d^2x}{dt^2} + \frac{dx}{dt} + 10x = 0 \) with the same initial conditions.

The auxiliary equation is then \(\frac{1}{8} m^2 + m + 10 = 0 \), which may be solved using the Quadratic Formula. It’s easier if we multiply both sides of the equation by 8 before applying the Quadratic Formula:

\[
m^2 + 8m + 80 = 0, \quad m = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 1 \cdot 80}}{2} = \frac{-8 \pm \sqrt{64 - 320}}{2} = \frac{-8 \pm \sqrt{-256}}{2} = \frac{-8 \pm 8i}{2} = -4 \pm 4i
\]

We thus get solutions \(e^{-4t} \cos(8t) \), \(e^{-4t} \sin(8t) \) and the general solution \(x = ae^{-4t} \cos(8t) + be^{-4t} \sin(8t) \).

Since \(x(0) = 0 \), we get \(a = 0 \), so \(x = be^{-4t} \sin(8t) \).

Differentiating, \(x' = b(8e^{-4t} \cos(8t) - 4e^{-4t} \sin(8t)) \). Since \(x'(0) = -2 \), we get \(8b = -2 \), so \(b = -\frac{1}{4} \) and the solution to the differential equation with the initial conditions is \(x = -\frac{1}{4} e^{-4t} \sin(8t) \).

The motion is similar, but with each cycle the weight swings closer and closer to the equilibrium point.
7. Find the general solution of the system:

\[
\begin{align*}
\frac{dx}{dt} &= 4x - y \\
\frac{dy}{dt} &= 2x + y
\end{align*}
\]

Solution: We can write the equation in the form \(\frac{dX}{dt} = AX \), where \(A = \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix} \).

We get eigenvalues by solving \(A - \lambda I = 0 \):

\[
\begin{vmatrix}
4 - \lambda & -1 \\
2 & 1 - \lambda
\end{vmatrix} = 0.
\]

\((4 - \lambda)(1 - \lambda) - (-1)(2) = 0\)

\(\lambda^2 - 5\lambda + 4 + 2 = 0\)

\(\lambda^2 - 5\lambda + 6 = 0\)

\((\lambda - 3)(\lambda - 2) = 0\)

So the eigenvalues are \(\lambda = 3 \) and \(\lambda = 2 \).

We now solve \((A - \lambda I)U = 0 \):

For \(\lambda = 3 \), we get:

\(u - v = 0, 2u - 2v = 0\), so \(v = u \). We may take \(u = v = 1 \)

So we get a solution \(X = e^{3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \).

For \(\lambda = 2 \), we get:

\(2u - v = 0, 2u - v = 0\), so \(v = 2u \) and we may take \(u = 1, v = 2 \).

So we get a solution \(X = e^{2t} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \).

The general solution is \(X = ae^{3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + be^{2t} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \).

In scalar form, we have \(x = ae^{3t} + be^{2t}, y = ae^{3t} + 2be^{2t} \).
8. Use the definition of a Laplace Transform to derive the formula \(\mathcal{L}[\sin \omega t] = \frac{\omega}{s^2 + \omega^2} \).

Solution: \(\mathcal{L}[\sin \omega t] = \int_0^\infty e^{-st} \sin \omega t \, dt \).

We could use Integration By Parts to find \(I = \int e^{-st} \sin \omega t \, dt \), but we’ll use Judicious Guessing, guessing \(I = ae^{-st} \sin \omega t + be^{-st} \cos \omega t \).

Since \(I' = (-as - b\omega)e^{-st} \sin \omega t + (a\omega - bs)e^{-st} \cos \omega t \), we get \(-as - b\omega = 1, a\omega - bs = 0\).

From the second equation, \(b = \frac{a\omega}{s} \), so \(-as - \frac{a\omega}{s}\omega = 1, -as^2 - a\omega^2 = s, a = -\frac{s}{s^2 + \omega^2} \).

Since \(b = \frac{a\omega}{s} \), it follows that \(b = -\frac{\omega}{s^2 + \omega^2} \).

Thus \(\mathcal{L}[\sin \omega t] = \int_0^\infty e^{-st} \sin \omega t \, dt = \lim_{u \to \infty} \int_0^u e^{-st} \sin \omega t \, dt

= \lim_{u \to \infty} \left[-\frac{s}{s^2 + \omega^2} e^{-st} \sin \omega t - \frac{\omega}{s^2 + \omega^2} e^{-st} \cos \omega t \right]_0^u

= \lim_{u \to \infty} -\frac{s}{s^2 + \omega^2} e^{-su} \sin \omega u - \frac{\omega}{s^2 + \omega^2} e^{-su} \cos \omega u - (0 - \frac{\omega}{s^2 + \omega^2}) = \left(-\frac{\omega}{s^2 + \omega^2}\right)

= \frac{\omega}{s^2 + \omega^2} \).

9. Suppose \(a, b > 0 \). Derive the formula \(a \sin \theta + b \cos \theta = \sqrt{a^2 + b^2} \sin(\theta + \delta) \), where \(\delta = \arccos \left(\frac{a}{\sqrt{a^2 + b^2}} \right) \).

Solution:

\[
\begin{align*}
 a \sin \theta + b \cos \theta &= \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \sin \theta + \frac{b}{\sqrt{a^2 + b^2}} \cos \theta \right) \\
&= \sqrt{a^2 + b^2} (\cos \delta \sin \theta + \sin \delta \cos \theta) = \sqrt{a^2 + b^2} \sin(\theta + \delta) .
\end{align*}
\]