Mathematics 210
SOLUTIONS
Professor Alan H. Stein
Monday, October 1, 2007
This problem set is worth 50 points.

1. Find the angle between the vectors $(2,7,3)$ and $(5,-2,4)$.

Solution: Let θ be the angle. $(2,7,3) \cdot(5,-2,4)=|(2,7,3)| \cdot|(5,-2,4)| \cos \theta$, so $8=\sqrt{62} \sqrt{45} \cos \theta, \cos \theta=\frac{8}{3 \sqrt{310}}$, so $\theta=\arccos \left(\frac{8}{3 \sqrt{310}}\right)$.
2. Find vector parametric, scalar parametric and scalar symmetric equations for the line through the point $(5,3,1)$ and orthogonal to the plane $3 x-7 y+2 z=8$.
Solution: The normal to the plane is in the direction of the line, so the vector $(3,-7,2)$ is in the direction of the line.
Vector Equation: $\mathbf{X}=(5,3,1)+(3,-7,2) t$.
Scalar Parametric Equations: $x=5+3 t, y=3-7 t, z=1+2 t$.
Scalar Symmetric Equations: $\frac{x-5}{3}=\frac{y-3}{-7}=\frac{z-1}{2}$.
3. Find an equation of the plane through the points $(1,5,4),(4,9,1)$ and $(5,17,5)$. Extra Credit: Obtain the same equation using an entirely different method.
Solution: Let $\mathbf{v}=(4,9,1)-(1,5,4)=(3,4,-3), \mathbf{w}=(5,17,5)-(1,5,4)=(4,12,1)$, $\mathrm{n}=\mathbf{v} \times \mathbf{w}=(3,4,-3) \times(4,12,1)=\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ 3 & 4 & -3 \\ 4 & 12 & 1\end{array}\right|=(40,-15,20)=5(8,-3,4)$. Since we can use any vector in the same direction as a normal to the plane, we redefine $\mathbf{n}=(8,-3,4)$. We get an equation for the plane $\mathbf{n} \cdot \mathbf{x}=\mathbf{n} \cdot(1,5,4)$. Writing $\mathbf{X}=(x, y, z)$, we get $(8,-3,4) \cdot(x, y, z)=(8,-3,4) \cdot(1,5,4)$ or $8 x-3 y+4 z=9$
Alternatively, we know the three points satisfy an equation of the form $a x+b y+c z=d$. We may thus try to solve the following system for a, b, c, d.

$$
\begin{aligned}
a(1)+b(5)+c(4) & =d \\
a(4)+b(9)+c(1) & =d \\
a(5)+b(17)+c(5) & =d
\end{aligned}
$$

Since we have an extra variable, if we so desire we can arbitarily choose a value for one of them. If we let $d=9$, we will obtain $a=8, b=-3, c=4$. If we chose any other value for d, we would have obtained an equivalent equation.
4. Find the distance between the point $(1,2,3)$ and the plane $4 x+5 y+6 z=7$. Extra Credit: Find the distance using an entirely different method.
Solution: If we let (x, y, z) represent a vector whose tip is in the plane, the distance is the projection of $(x, y, z)-(1,2,3)$ onto the unit normal $\frac{(4,5,6)}{\sqrt{77}}=\frac{(4,5,6)}{\sqrt{77}}$. The length will be $\left|((x, y, z)-(1,2,3)) \cdot \frac{(4,5,6)}{\sqrt{77}}\right|=\frac{|4 x+5 y+6 z-(1 \cdot 4+2 \cdot 5+3 \cdot 6)|}{\sqrt{77}}=$ $\frac{|7-32|}{\sqrt{77}}=\frac{25}{\sqrt{77}}$.
Alternatively, one could find where the line $\mathbf{X}=(1,2,3)+(4,5,6) t$ intersects the plane and find the distance between that point and $(1,2,3)$.
5. An ant walks on the paraboloid $z=x^{2}+y^{2}$. Using the usual orientation for the coordinate axis, the ant starts at the origin and is rising at a rate of 4 units per second. Looking from above, it looks as if the ant is spiralling around the z-axis, starting by the x-axis and making a complete revolution every 5 seconds.
(a) Find a vector parametric equation for the path of the ant.

Solution: Clearly, $z=4 t$, where t represents time. Since $x^{2}+y^{2}=z$, we have $x^{2}+y^{2}=4 t$. If θ is the angle we visualize looking straight down between the x-axis and the line from the origin to the ant, $x=\sqrt{4 t} \cos \theta$ and $y=\sqrt{4 t} \sin \theta$. Since θ starts at 0 and increases by 2π every 5 seconds, $\theta=\frac{2 \pi t}{5}$. We thus obtain $\mathrm{r}=\left(2 \sqrt{t} \cos \left(\frac{2 \pi t}{5}\right), 2 \sqrt{t} \sin \left(\frac{2 \pi t}{5}\right), 4 t\right)$.
(b) Find the velocity of the ant.

Solution: $\mathbf{v}=\mathbf{r}^{\prime}=\left(\frac{1}{\sqrt{t}} \cos \left(\frac{2 \pi t}{5}\right)-\frac{4 \pi \sqrt{t}}{5} \sin \left(\frac{2 \pi t}{5}\right), \frac{1}{\sqrt{t}} \sin \left(\frac{2 \pi t}{5}\right)+\frac{4 \pi \sqrt{t}}{5} \cos \left(\frac{2 \pi t}{5}\right), 4\right)$.
(c) Find the acceleration of the ant.

Solution: $\mathrm{a}=\mathrm{v}^{\prime}=\left(-\frac{1}{2 t \sqrt{t}} \cos \left(\frac{2 \pi t}{5}\right)-\frac{4 \pi}{5 \sqrt{t}} \sin \left(\frac{2 \pi t}{5}\right)-\frac{8 \pi^{2} \sqrt{t}}{25} \cos \left(\frac{2 \pi t}{5}\right), \frac{1}{2 t \sqrt{t}} \sin \left(\frac{2 \pi t}{5}\right)+\right.$ $\left.\frac{4 \pi}{5 \sqrt{t}} \cos \left(\frac{2 \pi t}{5}\right)-\frac{8 \pi^{2} \sqrt{t}}{25} \sin \left(\frac{2 \pi t}{5}\right), 0\right)$
Represent time by t. Each of your conclusions should be in terms of t.
6. Consider the vector function $\mathbf{X}=(t, 3 \sin t, 4 \cos t), t \geq 0$.
(a) Sketch the graph.
(b) Find the length of the portion of the curve for which $\pi \leq t \leq 2 \pi$. Give your answer in terms of a definite integral. You do not need to evaluate the integral but may do so for extra credit.
Solution: Since $\frac{d \mathbf{x}}{d t}=(1,3 \cos t,-4 \sin t)$, the length is $\int_{\pi}^{2 \pi} \sqrt{1+9 \cos ^{2} t+16 \sin ^{2} t} d t$.
7. Consider the vector function $\mathbf{X}=\left(t, t^{2}, t^{3}\right), t \geq 1$.
(a) Sketch the graph.
(b) Find the unit tangent vector T at $t=2$.

Solution: $\mathbf{v}=\left(1,2 t, 3 t^{2}\right)$, so $\mathbf{T}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\left(1,2 t, 3 t^{2}\right)}{\sqrt{1+4 t^{2}+9 t^{2}}}$.
When $t=2, \mathbf{T}=\frac{(1,4,12)}{\sqrt{161}}$.
(c) Find the normal vector \mathbf{N} at $t=2$.

Solution: $N=\frac{T^{\prime}}{\left|T^{\prime}\right|}$
$\mathbf{T}^{\prime}=\frac{\sqrt{1+4 t^{2}+9 t^{4}}(0,2,6 t)-\left(1,2 t, 3 t^{2}\right) \frac{8 t+36 t^{3}}{2 \sqrt{1+4 t^{2}+9 t^{4}}}}{1+4 t^{2}+9 t^{4}}$.
When $t=2$, we get $\mathrm{T}^{\prime}=\frac{\sqrt{161}(0,2,12)-(1,4,12) \frac{152}{\sqrt{161}}}{161}=\frac{2(-76,-143,54)}{161 \sqrt{161}}$.
Thus $\mathbf{N}=\frac{(-76,-143,54)}{|(-76,-143,54)|}=\frac{(-76,-143,54)}{\sqrt{29141}}$.
(d) Find the binormal vector B at $t=2$.

Solution: $\mathrm{B}=\mathrm{T} \times \mathrm{N}=\frac{(1,4,12) \times(-76,-143,54)}{\sqrt{161} \sqrt{29141}}$
$(1,4,12) \times(-76,-143,54)=\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ 1 & 4 & 12 \\ -76 & -143 & 54\end{array}\right|=(1932,-966,161)$
We thus have $\mathbf{B}=\frac{(1932,-966,161)}{\sqrt{161} \sqrt{29141}}$.
We can simplify this by observing \mathbf{B} is a unit vector in the direction of $(1932,-966,161)=$
$161(12,-6,1)$, so $B=\frac{(12,-6,1)}{|(12,-6,1)|}=\frac{(12,-6,1)}{\sqrt{181}}$.
(e) Verify \mathbf{T}, \mathbf{N} and \mathbf{B} are mutually orthogonal.

Solution: We calculate each of the dot products. Each comes out to be 0 .
(f) Find the curvature κ at $t=2$.

Solution: $\kappa=\frac{\left|\mathrm{T}^{\prime}\right|}{\frac{d s}{d t}}$.
When $t=2, \mathrm{~T}^{\prime}=\frac{2(-76,-143,54)}{161 \sqrt{161}}$, so $\left|\mathrm{T}^{\prime}\right|=\frac{2 \sqrt{29141}}{161 \sqrt{161}}=\frac{2 \sqrt{181}}{161}$.
Also, when $t=2, \mathbf{v}=(1,4,12)$, so $\frac{d s}{d t}=|\mathbf{v}|=\sqrt{161}$.
We thus have $\kappa=\frac{\left(\frac{2 \sqrt{181}}{161}\right)}{\sqrt{161}}=\frac{2 \sqrt{181}}{161 \sqrt{161}}$.
8. A jogger runs leisurely at a constant pace of a six minute mile around a quarter mile track. The track consists of two parallel straighaways connected by two semicircles, each 110 yards long.
(a) Set up an appropriate coordinate system.

Solution: We set the origin at the center of the track. The x-axis is parallel to the straight portion, oriented in the direction the jogger starts out. We orient the y-axis so the y-coordinate is negative when the jogger begins.
Since each semicircle is of length 110 (measured in yards), we effectively have part of a circle with circumference 220 . Letting r be the radius, we have $2 \pi r=220$, so $r=\frac{110}{\pi}$
We will consider the horizontal portion to be going east-west, with the jogger starting out going to the east, then counterclockwise around a semicircle, then going
(c) Find the acceleration of the runner when he or she is exactly halfway through one of the semicircles. Extra Credit: Obtain the acceleration again using an entirely different method.
Solution: Around the first curve, $\mathbf{r}=(55,0)+\frac{110}{\pi}\left(\cos \left(-\frac{\pi}{2}+\frac{8 \pi}{3}\left(t-\frac{3}{8}\right)\right), \sin \left(-\frac{\pi}{2}+\right.\right.$ $\left.\frac{8 \pi}{3}\left(t-\frac{3}{8}\right)\right)$), so $\mathbf{v}=\frac{110}{\pi}\left(-\sin \left(-\frac{\pi}{2}+\frac{8 \pi}{3}\left(t-\frac{3}{8}\right)\right), \cos \left(-\frac{\pi}{2}+\frac{8 \pi}{3}\left(t-\frac{3}{8}\right)\right)\right) \cdot \frac{8 \pi}{3}$ and $\mathrm{a}=$ $\frac{110}{\pi}\left(-\cos \left(-\frac{\pi}{2}+\frac{8 \pi}{3}\left(t-\frac{3}{8}\right)\right),-\sin \left(-\frac{\pi}{2}+\frac{8 \pi}{3}\left(t-\frac{3}{8}\right)\right)\right) \cdot\left(\frac{8 \pi}{3}\right)^{2}$.

