Math 210 MW 11:15-12:30, Th 12:30-1:45

13 Vectors and the Geometry of Space

13.1 Three Dimensional Coordinate Systems

Coordinate axes, Right-hand rule Coordinate planes, octants Distance formula Sphere 805/1, 3, 5, 7, 9, 11, 15, 23, 25, 35 805/13, 17, 29, 30, 37

13.2 Vectors

Vector (magnitude, direction), initial point, terminal point Addition (Parallelogram Law), scalar multiplication, subtraction Components, Position vector (from origin) Length, magnitude Properties: commutative, associative (addition, scalar multiplication), 0, inverse, distributive, multiplication by 1 Standard basis vectors i, j, k Unit vector 813/1, 3, 4, 7, 13, 17, 19, 23, 27, 31, 35 813/9, 15, 21, 29, 30, 39, 43

13.3 Dot Product

Definition

Properties: $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$, commutative, distributive, scalar multiplication, $\mathbf{0} \cdot \mathbf{a} = 0$ $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta$ (Proof-Law of Cosines) Orthogonal Direction angles α, β, γ Direction cosines $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$ Scalar projection $\operatorname{comp}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$ Vector projection $\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\mathbf{a}$ 820/1, 3, 5, 7, 15, 21, 23, 27, 29, 35, 47, 57 820/9, 17, 31, 37, 41, 49, 58

13.4 Cross Product

Definition, mnemonic using determinants

 $\mathbf{a} \times \mathbf{b}$ orthogonal to \mathbf{a} and \mathbf{b} .

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta \text{ (Proof - } |\mathbf{a} \times \mathbf{b}|^2 = |\mathbf{a}|^2|\mathbf{b}|^2 - (\mathbf{a} \cdot \mathbf{b})^2)$$

Length of cross product = area of parallelogram

Properties: anti-commutative, multiplication by scalar, distributive, triple product, $\mathbf{a} \times (\mathbf{b} \times \mathbf{b})$

 $(\mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$

Volume of parallopiped = scalar triple product

Torque $\tau = \mathbf{r} \times \mathbf{F}$

828/1, 9, 15, 17, 23, 25

828/3, 33, 39, 45

13.5 Equations of Lines and Planes

Lines

Vector Equation $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$

Parametric Equations $x = x_0 + at$, $y = y_0 + bt$, $z = z_0 + ct$

Direction Numbers

Symmetric Equations $\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$ Line segment: restrict t

838/1, 3, 7, 15, 19

838/5, 9, 17, 21

Planes

Normal vector

Vector equation: $\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$

Scalar equation: $a(x - x_0) + b(y - y)_0 + c(z - z_0) = 0$

Parallel, orthogonal planes

Distance from point to plane $\frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|}$

838/23, 25, 39, 47, 53, 55

838/27, 33, 41, 49, 54

13.6 Cylinders and Quadric Surfaces

Definition: Cylinder - lines parallel to a given line passing through a place curve

Quadric surface - graph of second degree equation in three variables

Ellipsoid, elliptic paraboloid, hyperbolic paraboloid, hyperboloid of one sheet, hyperboloid of two sheets

849/1, 3, 5, 9, 11, 13, 21-28, 29

849/15, 31

14 Vector Functions

14.1 Vector Functions and Space Curves

Vector Valued Function $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ Limit, continuity Space curves, parametric equations 858/1, 3, 7, 15, 19-24 858/9, 11, 25, 39

14.2 Derivatives and Integrals of Vector Functions

Definition - derivative, integral Tangent line, unit tangent $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$ Smooth curve: \mathbf{r}' is continuous and non-zero Properties of derivatives: term-by-term, product and chain rules. 864/1, 3, 9,11, 17, 23, 31, 33 864/5, 8, 15, 19, 27, 35, 37

14.3 Arc Length and Curvature

L =
$$\int_a^b |\mathbf{r}'(t)| \, dt$$

Arc length function $s(t) = \int_a^t |\mathbf{r}'(u)| \, du$
 $\frac{ds}{dt} = |\mathbf{r}'(t)|$
Parametrize curve with respect to arc length: Solve for t in terms of s
Curvature: $\kappa = \left|\frac{d\mathbf{T}}{ds}\right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|}$
 $\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$
For plane curve $y = f(x)$, $\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}}$
Normal Vector $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|}$

Binormal vector $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$ Normal plane - determined by \mathbf{N} and \mathbf{B} Osculating plane - determined by \mathbf{T} and \mathbf{N} 872/1, 3, 13, 37, 39 872/5, 15, 27

14.4 Motion in Space: Velocity and Acceleration

```
\mathbf{v}(t) = \mathbf{r}'(t)

\mathbf{a}(t) = \mathbf{v}'(t)

Newton's Second Law of Motion: \mathbf{F} = m\mathbf{a}

\mathbf{a} = v'\mathbf{T} + \kappa v^2\mathbf{N}

882/1, 3, 5, 9, 19, 23, 31

882/7, 11, 25, 33
```

15 Partial Derivatives

15.1 Functions of Several Variables

Definition 1 (Function of Two Variables). f(x,y)

Independent variables, dependent variable Domain, range Graph Contour or Level Curves - graphs of f(x,y)=k Functions of three or more variables Three views: function of n real variables x_1,x_2,\ldots,x_n , function of a single point variable (x_1,x_2,\ldots,x_n) , function of a vector variable $\mathbf{x}=< x_1,x_2,\ldots,x_n>$ 901/1, 3, 5, 7, 11, 21 901/9, 15, 25

15.2 Limits and Continuity

Definition $\lim_{(x,y)\to(a,b)} f(x,y) = L$ Definition - Continuity Functions of three or more variables 913/1, 5, 7, 19, 27, 29, 37 913/9, 11, 31

15.3 Partial Derivatives

Definition $f_x(a,b)$, $f_y(a,b)$, $f_x(x,y)$, $f_y(x,y)$

Notations: f_x , $\frac{\partial f}{\partial x}$, $\frac{\partial z}{\partial x}$, f_1 , $D_1 f$, $D_x f$

Functions of more than two variables

Higher Derivatives

Notation:
$$(f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 z}{\partial y \partial x}$$

Theorem 1 (Clairaut's Theorem). If f_{xy} and f_{yx} are both continuous on a disk containing (a,b), then $f_{xy}(a,b) = f_{yx}(a,b)$.

924/1, 13, 15, 35, 41, 45, 53 924/17, 19, 37, 47, 57

15.4 Tangent Planes and Linear Approximations

Tangent Plane: $z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$ (If partial derivatives are continuous.)

Linear or Tangent Plane Approximation

Definition: f differentiable if $z = f_x(a,b)$ $x + f_y(a,b)$ $y + \epsilon_1$ $x + \epsilon_2$ y where $\epsilon_1 \to 0$ and $\epsilon_2 \to 0$ as $(x, y) \to (0,0)$.

Theorem 2. Partials continuous nearby implies function differentiable.

Total di erential: $dz = f_x(x, y)dx + f_y(x, y)dy$ 935/1, 3, 7, 11, 17, 23, 29, 31 935/5, 13, 25, 33

15.5 Chain Rule

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt} \frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s}, \ \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$$
 Implicit Di erentiation:

$$y = f(x)$$
 defined by $F(x,y) = 0$ implies $\frac{\partial F}{\partial x} \frac{dx}{dx} + \frac{\partial F}{\partial y} \frac{dy}{dx} = 0$ implies $\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y}$.

$$z=f(x,y)$$
 defined by $F(x,y,z)=0 \implies \frac{\partial z}{\partial x}=-\frac{F_x}{F_z}$ 943/1, 3, 7, 13, 21, 35 943/5, 9, 11, 23, 45

15.6 Directional Derivatives and the Gradient Vector

Definition 2 (Directional Derivative). Unit vector $\mathbf{u} = \langle a, b \rangle$, $D_u f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$.

Theorem 3. $D_u f(x,y) = f_x(x,y)a + f_y(x,y)b$

$$D_{\mathbf{u}}f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle \cdot \mathbf{u}.$$

Definition 3 (Gradient). $gradf = \nabla f = \langle f_x, f_y \rangle$

Theorem 4. Maximum value of directional derivative is $|\nabla f|$ and occurs in the direction of ∇f .

Tangent plane to level surface F(x,y,z) = k: $\nabla F \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$ Tangent plane to z = f(x,y): $z - z_0 = f_x(x - x_0) + f_y(y - y_0)$ 956/1, 5, 7, 11, 13, 21, 27 956/9, 15, 23, 29

15.7 Maximum and Minimum Values

Definition: local maximum, local minimum, absolute maximum, absolute minimum

Theorem 5. f has local extremum and partials exist \implies partials equal θ .

Critical point (stationary point) - partials are 0 or a partial doesn't exist Second Derivative Test: Critical point, second partials continuous, $D = f_{xx}f_{yy} - (f_{xy})^2$.

- D > 0, $f_{xx} > 0$ implies local minimum
- ullet D>0, $f_{xx}<0$ implies local maximum
- ullet D < 0 implies saddle point

f continuous on closed set implies f has absolute extrema 966/1, 5, 7, 27, 35, 37, 43 966/9, 15, 29, 39, 45, 48

15.8 Lagrange Multipliers

Find extrema for f(x,y,z) subject to constraint g(x,y,z)=k. Solve: $\nabla f=\lambda \nabla g$, g(x,y,z)=k. Two constraints g(x,y,z)=k, h(x,y,z)=c: Solve $\nabla f=\lambda \nabla g+\mu \nabla h$ 976/3, 7 976/5, 9

16 Multiple Integrals

16.1 Double Integrals Over Rectangles

Riemann Sum $\sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*, y_{ij}^*)$ A_{ij} Definition: $\int \int_R f(x,y) \, dA = \lim_{m,n \to \infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*, y_{ij}^*)$ A_{ij} Application: Volume Numerical calculation: Midpoint Rule Properties: $\int \int_R f(x,y) \pm g(x,y) \, dA$, $\int \int_R k f(x,y) \, dA$ $f(x,y) \geq g(x,y) \implies \int \int_R f(x,y) \, dA \geq \int \int_R g(x,y) \, dA$ 994/1, 3, 11 994/13, 14

16.2 Iterated Integrals

Iterated Integral

Theorem 6 (Fubini's Theorem). If f is continuous on a rectangle R, $\int \int_R f(x,y) dA = \int_a^b \int_c^d f(x,y) dy dx = \int_c^d \int_a^b f(x,y) dx dy$.

1000/1, 3, 11, 13 1000/5, 9, 15

16.3 Double Integrals over General Regions

If region D lies in a rectangle R, define $F(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \in R \\ 0 & \text{if } (x,y) \notin R. \end{cases}$

Type I Region: Between two functions, vertical sides - convert to iterated integral

Type II Region: Horizontal sides

Properties: Sum or di erence, multiplication by constant, $f(x,y) \ge g(x,y)$, integral over union of non-overlapping regions, $m \le f(x,y) \le M$

1008/1, 7, 9, 19 1008/3, 11, 13, 37

16.4 Double Integrals in Polar Coordinates

 $\iint_{R} f(x,y) dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) r dr d\theta$ 1014/1-3, 7, 9, 17, 21, 29
1014/4-6, 11, 15, 19, 23, 31, 33

16.5 Applications of Double Integrals

Density and mass Moments and center of mass Moment of inertia 1024/3, 5, 11 1024/7, 15

16.6 Triple Integrals

Definition Turn into iterated integral Applications: Volume = $\iiint_E dV$ Mass, center of mass, moments, centroid, moment of inertia 1035/1, 3, 7, 9, 17 1035/5, 11, 25, 27

16.7 Triple Integrals in Cylindrical Coordinates

 $dV \rightarrow r \, dz \, dr \, d\theta$ 1040/1,3, 7,9, 15, 23 1040/5, 17, 19, 25, 27

16.8 Triple Integrals in Spherical Coordinates

 $dV \rightarrow \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$ 1046/1,3,6, 7,9,11, 15, 21 1046/5,13, 17, 19, 33, 39

16.9 Change of Variables in Multiple Integrals

Transformation T(u, v) = (x, y)

$$x = g(u, v), y = h(u, v) \text{ or } x = x(u, v), y = y(u, v)$$

Let S be rectangle with sides (u, v). Image R=T(S) is approximately a rectangle with sides $<\frac{\partial x}{\partial u},\frac{\partial y}{\partial u}>$ $u_{i}<\frac{\partial x}{\partial v},\frac{\partial y}{\partial v}>$ v.

Area is approximately the Jacobian
$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} u v.$$

So
$$A \approx \frac{\partial(x,y)}{\partial(u,v)}$$
 u v .

$$\iint_{R} f(x,y) dA = \iint_{S} f(g(u,v),h(u,v)) \left\| \frac{\partial x}{\partial u} \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} \right\| du dv.$$

Example: Change to polar coordinates

Triple Integrals

1057/1, 7, 11, 15, 17

1057/3, 5, 9, 13, 23, 35

17 Vector Calculus

17.1 Vector Fields

Definition 4 (Vector Field). Vector function \mathbf{F} assigning $(x, y) \to \mathbf{F}(x, y)$.

Examples: velocity field, gravitational field, force field, gradient vector field

Definition 5 (Conservative Vector Field). **F** is conservative if $\mathbf{F} = \nabla f$ for some potential function f.

1068/1, 11-14, 21

1068/3, 15-18, 25

17.2Line Integrals

Definition: $\int_C f(x,y) ds$ in terms of Riemann Sum.

Calculation: $ds = \sqrt{\frac{dx^2}{dt} + \frac{dy^2}{dt}}$ Example: Mass of wire, center of mass

Variations: $\int_C f(x,y) dx$, $\int_C f(x,y) dy$, $\int_C P(x,y) dx + Q(x,y) dy$

Line integrals in space

Line integrals of vector fields: Work = $\int_C \mathbf{F} \cdot \mathbf{T} ds$

Definition 6 (Line Integral of **F** along *C*). $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_C \mathbf{F} \cdot \mathbf{T} ds$.

1079/1, 3, 9, 17, 19, 31 1079/5, 7, 11, 21, 39

17.3Fundamental Theorem for Line Integrals

Theorem 7. $\int_C \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$

Definition: Independence of path

Independent of path if and only if integral along any closed path is 0.

Theorem: $\int_C \mathbf{F} \cdot d\mathbf{r}$ independent of path \implies \mathbf{F} is a conservative vector field.

Theorem: $\mathbf{F} = \langle P, Q \rangle$ conservative $\implies \frac{\partial P}{\partial u} = \frac{\partial Q}{\partial x}$.

Simple curve, simply connected

Theorem: $\mathbf{F} = \langle P, Q \rangle$ on open simply-connected region and $\frac{\partial P}{\partial u} = \frac{\partial Q}{\partial x} \implies \mathbf{F}$ is conservative.

1089/1, 3, 5, 13, 15, 19 1089/7, 17, 21, 33

17.4 Green's Theorem

Theorem 8 (Green's Theorem). $\int_{\partial D} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA$

1096/1, 7, 13 1096/3, 9, 15

17.5 Curl and Divergence

curl
$$\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

Theorem 9. If f has continuous second-order partial derivatives, $\nabla \times (\nabla f) = \mathbf{0}$ Corollary: If \mathbf{F} is conservative, then $\nabla \times \mathbf{F} = \mathbf{0}$.

Definition 7 (Divergence).
$$div \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$
.

Theorem 10. $\nabla \cdot \nabla \times \mathbf{F} = 0$

Vector Form of Green's Theorem: $\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_D (\nabla \times \mathbf{F}) \cdot \mathbf{k} \, dA$. $\oint_C \mathbf{F} \cdot \mathbf{n} ds = \iint_D \nabla \cdot \mathbf{F} \, dA$ 1104/1, 3, 13, 23 1104/5, 7, 31

17.6 Parametric Surfaces and their Areas

Parametric Surface x=x(u,v), y=y(u,v), z=z(u,v)Surface of revolution - from y=f(x): x=x, $y=f(x)\cos\theta$, $z=f(x)\sin\theta$. Tangent planes: use tangent vectors $<\frac{\partial x}{\partial u},\frac{\partial y}{\partial u},\frac{\partial z}{\partial u}>_{,}<\frac{\partial x}{\partial v},\frac{\partial y}{\partial v},\frac{\partial z}{\partial v}>$ Surface area - of surface given by $\mathbf{r}(u,v)$ Area is $\iint_{D}|\mathbf{r}_{u}\times\mathbf{r}_{v}|\,dA$ 1114/1, 11-16, 19, 35 1114/3, 23, 39

17.7 Surface Integrals

 $\iint_S f(x,y,z) dS$ as a Riemann Sum

For surface
$$z = g(x,y)$$
, $\iint_S f(x,y,z) dS = \iint_D f(x,y,g(x,y)) \sqrt{\frac{\partial z^2}{\partial x^2} + \frac{\partial z^2}{\partial y^2} + 1} dA$

In general, $dS \to |\mathbf{r}_u \times \mathbf{r}_v| dA$

Surface integral of vector field $\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_S \mathbf{F} \cdot \mathbf{n} \, dS$. Called flux of \mathbf{F} across S. 1127/5, 7, 19 1127/9, 11, 21

17.8 Stokes' Theorem

Theorem 11 (Stokes' Theorem). $\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \int_{\partial S} \mathbf{F} \cdot d\mathbf{r}$. 1133/3, 7, 13 1133/5, 9, 17

17.9 Divergence Theorem

Theorem 12 (Divergence Theorem). $\iint_{\partial E} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} \nabla \cdot \mathbf{F} \, dV.$

1139/1, 3, 7, 22

1139/5, 9, 23