Math 210 MW 11:15-12:30, Th 12:30-1:45

13 Vectors and the Geometry of Space

13.1 Three Dimensional Coordinate Systems

Coordinate axes, Right-hand rule
Coordinate planes, octants
Distance formula

Sphere

805/1, 3,5, 7, 9, 11, 15, 23, 25, 35
805/13, 17, 29, 30, 37

13.2 Vectors

Vector (magnitude, direction), initial point, terminal point

Addition (Parallelogram Law), scalar multiplication, subtraction

Components, Position vector (from origin)

Length, magnitude

Properties: commutative, associative (addition, scalar multiplication), 0, inverse, distribu-
tive, multiplication by 1

Standard basis vectors i, j, k

Unit vector

813/1, 3, 4, 7, 13, 17, 19, 23, 27, 31, 35

813/9, 15, 21, 29, 30, 39, 43

13.3 Dot Product

Definition

Properties: a - a = |a|?, commutative, distributive, scalar multiplication, 0-a =0
a-b = |a||b|cos@ (Proof-Law of Cosines)

Orthogonal

Direction angles «, 3, ~

Direction cosines

cos? av + cos? 3 + cos?y =1

Scalar projection comp,b = a|—‘
a

N . a-b\ a a-b
Vector projection proj,b = (—) T Tpa
al / la] la|
820/1, 3, 5, 7, 15, 21, 23, 27, 29, 35, 47, 57
820/9, 17, 31, 37, 41, 49, 58
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13.4 Cross Product

Definition, mnemonic using determinants

a x b orthogonal to a and b.

la x b| = |a||b|sin@ (Proof - |a x b|? = |a|*|b|? — (a - b)?)

Length of cross product = area of parallelogram

Properties: anti-commutative, multiplication by scalar, distributive, triple product, a x (b x
c)=(a-c)b—(a-b)c

Volume of parallopiped = scalar triple product

Torque 7 =r x F

828/1, 9, 15, 17, 23, 25

828/3, 33, 39, 45

13.5 Equations of Lines and Planes
Lines

Vector Equation r =rg + tv

Parametric Equations © =z +at, y = yg + bt, z = zg + ct
Direction Numbers

Symmetric Equations ~— 0 = ¥ —byo ="

Line segment: restrict ¢ ¢ ¢

838/1, 3, 7, 15, 19

838/5, 9, 17, 21

Planes

Normal vector

Vector equation: n- (r —ry) =0

Scalar equation: a(x — z¢) + b(y — y)o + c(z — z) =0
Parallel, orthogonal planes

n - bl

|

Distance from point to plane

838/23, 25, 39, 47, 53, 55
838/27, 33, 41, 49, 54

13.6 Cylinders and Quadric Surfaces

Definition: Cylinder - lines parallel to a given line passing through a place curve

Quadric surface - graph of second degree equation in three variables

Ellipsoid, elliptic paraboloid, hyperbolic paraboloid, hyperboloid of one sheet, hyperboloid
of two sheets

849/1, 3, 5, 9, 11, 13, 21-28, 29

849/15, 31



14 Vector Functions

14.1 Vector Functions and Space Curves

Vector Valued Function r(t) =< f(t), g(t), h(t) >= f@)i+ g(t)j + h(t)k
Limit, continuity

Space curves, parametric equations

858/1, 3, 7, 15, 19-24

85879, 11, 25, 39

14.2 Derivatives and Integrals of Vector Functions

Definition - derivative, integral

r'(?)

_ _ r'(2)]

Smooth curve: r’ is continuous and non-zero

Properties of derivatives: term-by-term, product and chain rules.
864/1, 3, 9,11, 17, 23, 31, 33

864/5, 8, 15, 19, 27, 35, 37

Tangent line, unit tangent T'(¢) =

14.3 Arc Length and Curvature

L= [’ dt
Arc length function s(t) = [ |r'(u)| du

ds
P ' (1)]
Parametrize curve with respect to arc length: Solve for ¢ in terms of s
Curvature: k = dT| _ 1T
P as| T @l
r'(t) x "(?)|
)= —"—"——~=
0= e
_ _ '@
For plane curve y = f(z), r(x) = L+ (7 ()T
T'(1)
Normal Vector N(¢) =
T (2)]

Binormal vector B(t) = T(t) x N(%)
Normal plane - determined by N and B
Osculating plane - determined by T and N
872/1, 3, 13, 37, 39

872/5, 15, 27
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14.4 Motion in Space: Velocity and Acceleration

v(t) =1'(t)

a(t) = v'(t)

Newton’s Second Law of Motion: F = ma
a=vT+ k>N

882/1, 3,5, 9, 19, 23, 31

882/7, 11, 25, 33

15 Partial Derivatives

15.1 Functions of Several Variables

Definition 1 (Function of Two Variables). f(x,y)

Independent variables, dependent variable
Domain, range

Graph

Contour or Level Curves - graphs of f(x,y) =k
Functions of three or more variables

Three views: function of n real variables xi, xo, ..., x,, function of a single point variable
(z1,x2,...,x,), function of a vector variable x =< zy,z5,..., 2, >

901/1, 3,5, 7,11, 21

901/9, 15, 25

15.2 Limits and Continuity

Definition lim, )@ f(z,y) = L
Definition - Continuity

Functions of three or more variables
913/1, 5, 7, 19, 27, 29, 37

913/9, 11, 31
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15.3 Partial Derivatives

Definition f.(a,b), f,(a,b), fo(x, ), f,(x,y)
Notations: f,, g—f % f1, D1if, D, f

xT xr
Functions of more than two variables

Higher Derivatives
. 9 (0 0* 0%z
Notation: (f;)y = foy = fi2 = (ai) - 8y5fx - Oyox

Theorem 1 (Clairaut’s Theorem). If f,, and f,, are both continuous on a disk containing
(a,b), then fiy(a,b) = f,.(a,b).

924/1, 13, 15, 35, 41, 45, 53
924/17, 19, 37, 47, 57

15.4 Tangent Planes and Linear Approximations

Tangent Plane: z — 2o = f.(xo, y0)(x — x0) + f,(z0,y0)(y — yo) (If partial derivatives are
continuous.)

Linear or Tangent Plane Approximation

Definition: f dilerentiable if Az = f,(a, b))Azx + f,(a, b)Ay + e;Ax + e;Ay where ¢, — 0 and
e — 0 as (Az, Ay) — (0,0).

Theorem 2. Partials continuous nearby implies function differentiable.

Total dilerential: dz = f,(z,y)dx + f,(z,y)dy
935/1, 3, 7, 11, 17, 23, 29, 31
935/5, 13, 25, 33

15.5 Chain Rule
dz _ Ozdx 8z dy 0z _ 0z 8x 0z 8y 0z _ 0z 8x 0z 8y

dt ~ Oz dt ay it 0s 0w 0s dyds' ot Oz ot 8y3t
Implicit Di [erentiation:

oF
_ OF dx 8de dy _ 9r _ to
y = f(x) defined by F'(x,y) = 0 implies e dx oy dr = 0 implies T O F,
EN
0z F,

z = f(z,y) defined by F(x,y,2) =0 = — = ——

943/1, 3, 7, 13, 21, 35
943/5, 9, 11, 23, 45
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15.6 Directional Derivatives and the Gradient Vector

Definition 2 (Directional Derivative). Unit vector u =< a,b >,
. + h + hd) —
D, f (@0, yo) = limy_g f(o 4 Yo - ) — J (o, yo)'

Theorem 3. D, f(z,y) = f.(x,y)a+ f,(z,y)b

Duf(x7y) =< fac(x’y)7fy(xgy) > -u.

Definition 3 (Gradient). gradf =</ f =< fa, f, >

Theorem 4. Mazimum value of directional derivative is | <7 f| and occurs in the direction

of Vf.

Tangent plane to level surface F'(z,y,2) =k: VF- <z — 20,y — Yo, 2 — 20 >=0

Tangent plane to z = f(x,y): 2 — 20 = fo(z — 20) + f,(y — y0)
956/1, 5, 7, 11, 13, 21, 27
956/9, 15, 23, 29

15.7 Maximum and Minimum Values

Definition: local maximum, local minimum, absolute maximum, absolute minimum
Theorem 5. f has local extremum and partials exist == partials equal 0.

Critical point (stationary point) - partials are 0 or a partial doesn’t exist
Second Derivative Test: Critical point, second partials continuous, D = f,.f,, — (fzy)?.

e D >0, f.. >0 implies local minimum
e D >0, f.. <0 implies local maximum
e D < 0 implies saddle point

f continuous on closed set implies f has absolute extrema
966/1, 5, 7, 27, 35, 37, 43
966/9, 15, 29, 39, 45, 48

15.8 Lagrange Multipliers

Find extrema for f(z,y, z) subject to constraint g(x,y, z) = k.

Solve: vf =A< g, 9(x,y,2) = k.

Two constraints g(x,y,z2) =k, h(z,y,z) =c: Solve yf = Ay g+ us/ h
976/3, 7

976/5, 9
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16 Multiple Integrals

16.1 Double Integrals Over Rectangles

Riemann Sum -7, 370 | (@7, v )AA;

Definition: [ [, f(z,y) dA = 1iMy, oo 3300 D00 f(255, 4i) DA
Application: Volume

Numerical calculation: Midpoint Rule

Properties: [ [, f(z,y) £ g(x,y)dA, [ [, kf(z,y)dA

fla,y) > gz, y) == [ [ fl@,y)dA> [ [,9(z,y)dA

994/1, 3, 11

994/13, 14

16.2 Iterated Integrals

Iterated Integral

Theorem 6 (Fubini’s Theorem). If f is continuous on a rectangle R, ffR f(x,y)dA =
I @y dyde = [ f° f(x,y) dedy.

100071, 3, 11, 13
1000/5, 9, 15

16.3 Double Integrals over General Regions

fl@y) if(zr,y)eRr

0 if (z,y) ¢ R.

Type | Region: Between two functions, vertical sides - convert to iterated integral

Type Il Region: Horizontal sides

Properties: Sum or dilerence, multiplication by constant, f(x,y) > g¢(z,y), integral over
union of non-overlapping regions, m < f(z,y) < M

1008/1, 7, 9, 19

100873, 11, 13, 37

If region D lies in a rectangle R, define F'(z,y) =

16.4 Double Integrals in Polar Coordinates

[Jz flz,y)dA = ff fabf(fr’cosﬁ,rsinﬁ)'r’drdﬁ
1014/1-3, 7, 9, 17, 21, 29
1014/4-6, 11, 15, 19, 23, 31, 33



Page 8 of 12

16.5 Applications of Double Integrals

Density and mass

Moments and center of mass
Moment of inertia

1024/3, 5, 11

1024/7, 15

16.6 Triple Integrals

Definition

Turn into iterated integral

Applicatons:

Volume = [f[, dV

Mass, center of mass, moments, centroid, moment of inertia
1035/1, 3, 7, 9, 17

1035/5, 11, 25, 27

16.7 Triple Integrals in Cylindrical Coordinates

dV — rdzdrdf
1040/1,3, 7,9, 15, 23
1040/5, 17, 19, 25, 27

16.8 Triple Integrals in Spherical Coordinates

AV — p?singdpdf do
1046/1,3,6, 7,9,11, 15, 21
1046/5,13, 17, 19, 33, 39
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16.9 Change of Variables in Multiple Integrals

Transformation 7'(u,v) = (x,y)
z = g(u,v), y = h(u,v) or x = z(u,v), y = y(u, v)
Let S be rectangle with sides (Au, Av). Image R = T'(S) is approximately a rectangle with

. oxr Oy oxr Oy
sides < 90 Du > Au, < 0’ Do > Av.

or o
Area is approximately the Jacobian o.y) _ g’fé g??j DAulv.

a(u,v)_ gy oy
9. y) ou Ov
~ oY
So AA ~ 8(u,v)AUAU'
0r on
[Jg ) dA= [[g f(g(u,v), h(u,v)) u G| dudv.
ou v

Example: Change to polar coordinates.
Triple Integrals

1057/1, 7, 11, 15, 17

1057/3, 5, 9, 13, 23, 35

17 Vector Calculus

17.1 Vector Fields
Definition 4 (Vector Field). Vector function F assigning (x,y) — F(x,y).

Examples: velocity field, gravitational field, force field, gradient vector field

Definition 5 (Conservative Vector Field). F is conservative if F = <7 f for some potential
function f.

106871, 11-14, 21
1068/3, 15-18, 25
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17.2 Line Integrals

Definition: [, f(x,y) ds in terms of Riemann Sum.
dz? 4 dy?

dt - dt
Example: Mass of wire, center of mass

Variations: [, f(z,y)dz, [, f(z,y)dy, [, P(z,y)dz+ Q(z,y) dy
Line integrals in space
Line integrals of vector fields: Work = [, F - T ds

Calculation: ds =

Definition 6 (Line Integral of F along C). [, F -dr = fab F(r(t)) -r'(t)dt = [, F - Tds.
1079/1, 3, 9, 17, 19, 31

1079/5, 7, 11, 21, 39

17.3 Fundamental Theorem for Line Integrals

Theorem 7. [,/ f-dr = f(r(b)) — f(r(a))

Definition: Independence of path
Independent of path if and only if integral along any closed path is 0.
Theorem: [ F - dr independent of path == F is a conservative vector field.

. P
Theorem: F =< P, > conservative — 8_ = %
y Oz
Simple curve, simply connected
. : opP 0 .
Theorem: F =< P, > on open simply-connected region and Em = a—Q = Fis
Yy T

conservative.
1089/1, 3, 5, 13, 15, 19
1089/7, 17, 21, 33

17.4 Green’s Theorem
Theorem 8 (Green’s Theorem). [, Pdz+Qdy= [[, % dA

109671, 7, 13
1096/3, 9, 15
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17.5 Curl and Divergence

i i Kk
o o0 0
CUF|F—VXF—% a_y &
P Q R

Theorem 9. If f has continuous second-order partial derivatives, 7 X (\7f) =0

Corollary: If F is conservative, then 7 x F = 0.

Definition 7 (Divergence). div F =<7 -F = or + 8_@ oRr
Jxr Oy 0z

Theorem 10. 7 -7 x F =0

Vector Form of Green’s Theorem: ¢ F -dr = [[, (v x F) - kdA.
$-F -nds= [[ v -FdA

1104/1, 3, 13, 23

1104/5, 7, 31

17.6 Parametric Surfaces and their Areas

Parametric Surface z = z(u,v), y = y(u,v), z = z(u, v)
Surface of revolution - from y = f(z): v =z, y = f(x)cos6, z = f(x)sind.

Tangent planes: use tangent vectors < o, 04 9% 0% Oy 0z
e 0 9w g du o v B

Surface area - of surface given by r(u, v)
Areais [[ |r, x r,|dA

1114/1, 11-16, 19, 35

111473, 23, 39

17.7 Surface Integrals
[[fs f(z,y,2)dS as a Riemann Sum

For surface z = g(z,y), [[s f(x,y,2)dS = [, f(z,y, g(z, y))\/_ + 2= +1dA

In general, dS — |r, x r,|dA

Surface integral of vector field [[,F-dS = [[,F-ndS. Called flux of F across S.
1127/5, 7, 19

1127/9, 11, 21

17.8 Stokes’ Theorem
Theorem 11 (Stokes’ Theorem). [[(vV x F)-dS= [, F - dr.

1133/3, 7, 13
1133/5, 9, 17
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17.9 Divergence Theorem

Theorem 12 (Divergence Theorem). [[, . F-dS= [[[, 7 -FdV.

1139/1, 3, 7, 22
1139/5, 9, 23



