
Vector Functions
A vector function is simply a function whose codomain is Rn. In

other words, rather than taking on real values, it takes on vector values.

We will often use the notation x = x(t) to denote a vector function.
Note: The text generally uses r(t) rather than x(t), but your instructor
is used to the former.

Suppose x : R → R3. We may write x(t) =< f(t), g(t), h(t) > or
x(t) = f(t)i + g(t)j + h(t)k.

The functions f(t), g(t), h(t) are referred to as the component func-
tions. The independent variable t is also referred to as the parameter.

Limits, Continuity, Differentiation and Integration
The definitions of limits, continuity, derivatives and integrals of vec-

tor functions are straighforward generalizations of the corresponding
definitions for ordinary functions.

In practice, we deal with these calculations and the concept of conti-
nuity through the component functions.

Limits
Recall:

Definition 1 (Limit). limx→x0 f(x) = L if for every ε > 0 there is
some δ > 0 such that |f(x)− L| < ε whenever 0 < |x− x0| < δ.

We can get a definition for the limit of a vector function by changing
the function to a vector function and the limit to a vector. We’ll simply
take the definition above, replace x by t, f by x, x by t and L by x0.

Definition 2 (Limit). limt→t0 x(t) = x0 if for every ε > 0 there is
some δ > 0 such that |x(t)− x0| < ε whenever 0 < |t− t0| < δ.

Effectively, limt→t0 < f(t), g(t) >=< limt→t0 f(t), limt→t0 g(t) >.

Continuity
For ordinary functions:

Definition 3 (Continuity). A function f is continuous at x0 if limx→x0 f(x) =
f(x0).

For vector functions:

Definition 4 (Continuity). A vector function f is continuous at x0 if
limx→x0 f(x) = f(x0).

Or, using our usual notation:
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Definition 5 (Continuity). A vector function x is continuous at t0 if
limt→t0 x(t) = x(t0).

Derivatives
Recall the definition of a derivative of an ordinary function:

Definition 6 (Derivative). f ′(x) = limh→0
f(x+h)−f(x)

h
wherever the

limit exists.

For vector functions,

Definition 7 (Derivative). f ′(x) = limh→0
f(x+h)−f(x)

h
wherever the

limit exists.

Or, using our usual notation,

Definition 8 (Derivative). x′(t) = limh→0
x(t+h)−x(t)

h
wherever the limit

exists.

In practice, if x(t) =< f(t), g(t) >, then x′(t) =< f ′(t), g′(t) >.

Space Curves
The graph of a vector function x(t) is the set of tips of the vectors

x(t) when the initial point is placed at the origin and t ranges over the
domain.

If x′(t) is continuous and non-zero, we say the curve is a smooth curve.

If x(t) = f(t)i + g(t)j + h(t)k, then the same curve may be described
by the scalar parametric equations:

x = f(t)

y = g(t)

z = h(t)

Velocity, Speed and Arc Length
Suppose x(t) represents the position of a particle at time t. x(t)

traces out a space curve. Since the derivative represents rate of change,
the velocity v = v(t) of the particle will equal the derivative x′(t).

The speed of the particle is equal to the magnitude |v| of the velocity.

We often denote the speed by
ds

dt
.

Since distance may be obtained by integrating speed, the distance trav-

elled by the particle as t goes from t1 to t2 would equal

∫ t2

t1

|v(t)| dt.
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The distance traversed is the same as the length of a portion of the

curve. If we denote the arc length by s, we get s =

∫ t2

t1

ds

dt
dt.

Back to the Past
Consider an ordinary curve y = f(x), a ≤ x ≤ b. We can parametrize

it, using the canonical parametrization, as x(t) =< t, f(t) >, for a ≤
t ≤ b. Then v =< 1, f ′(t) >, so

ds

dt
=

√
1 + f ′(t)2, so we get s =∫ b

a

√
1 + f ′(t)2 dt.

This should look familiar; it’s the old formula for arc length.

Parametrization With Respect to Arc Length
We may look at the arc length s as a function s = α(t), where α(t)

is the length of the portion of the curve between a fixed initial point
and t.

Since s obviously increases as t increases, α(t) is one-to-one and hence
has an inverse.

Thus, we may write t = α−1(s), so x(t) = x(α−1(s)) may be thought
of a parametrization of the same curve with respect to arc length.

We rarely actually write out the parametrization, but it still comes in
handy.

We also always have the relationship |v| =
ds

dt
.

Unit Tangent
v is tangent to the curve. Try to convince yourself of this. We won’t

prove it. In fact, try to come up with a definition of tangency when
dealing in three or more dimensions!

Definition 9 (Unit Tangent). T = v
|v| is called the unit tangent.

Obvious Properties:

• |T| = 1

• v =
ds

dt
T In other words, the velocity vector is in the direction

of the unit tangent and its length is the speed.

Theorem 1 (Claim). T′⊥T

Proof. Since |T| = 1, T · T = 1. Differentiating,
d

dt
(T ·T) =

d

dt
(1).

2T ·T′ = 0. T ·T′ = 0. �
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Definition 10 (Unit Normal). N =
T′

|T′|
Thus N is a unit vector orthogonal to T.

Definition 11 (Binormal). B = T×N

The binormal is a unit vector orthogonal to both T and N.

Curvature
Since the unit tangent doesn’t change its length, any change has to

do with how fast the curve is curving. We thus use the rate at which
the unit tangent changes to measure curvature. In order to make it
independent of the parametrization of the curve, we define curvature
to be the magnitude of the rate at which the unit tangent changes when
the parametrization is with respect to arc length.

Definition 12 (Curvature). κ =

∣∣∣∣dT

ds

∣∣∣∣
Using the Chain Rule,

dT

dt
=

dT

ds

ds

dt
, so

dT

ds
=

dT

dt
ds

dt

, so κ =

∣∣∣∣dTds

∣∣∣∣ =

∣∣∣∣dTdt

∣∣∣∣
ds

dt

.

Acceleration

Definition 13 (Acceleration). a =
dv

dt

Since v =
ds

dt
T, we get a =

d2s

dt2
T +

ds

dt

dT

dt
.

Since
dT

dt
=

∣∣∣∣dTdt

∣∣∣∣N = κ
ds

dt
N, we get

a =
d2s

dt2
T + κ

(
ds

dt

)2

N.

This tells us that the tangential component of acceleration is equal to
the rate at which the speed is changing, while the normal component of
acceleration is jointly proportional to the curvature and the square of
the speed. Recall that kinetic energy is also proportional to the square
of the speed.


