
Riemann Sums
Partition P = {x0, x1, . . . , xn} of an interval [a, b].

ck ∈ [xk−1, xk]
R(f, P, a, b) =

∑n
k=1 f(ck)∆xk

As the widths ∆xk of the subintervals approach 0, the Riemann
Sums hopefully approach a limit, the integral of f from a to b, written∫ b

a
f(x) dx.

Fundamental Theorem of Calculus

Theorem 1 (FTC-Part I). If f is continuous on [a, b], then F (x) =∫ x

a
f(t) dt is defined on [a, b] and F ′(x) = f(x).

Theorem 2 (FTC-Part II). If f is continuous on [a, b] and F (x) =∫
f(x) dx on [a, b], then

∫ b

a
f(x) dx = F (x)

∣∣b

a
= F (b)− F (a).

Indefinite Integrals
Indefinite Integral:

∫
f(x) dx = F (x) if and only if F ′(x) = f(x).

In other words, the terms indefinite integral and antiderivative are
synonymous.

Every differentiation formula yields an integration formula.

Substitution Rule
For Indefinite Integrals:
If u = g(x), then

∫
f(g(x))g′(x) dx =

∫
f(u) du.

For Definite Integrals:

If u = g(x), then
∫ b

a
f(g(x))g′(x) dx =

∫ g(b)

g(a)
f( u) du.

Steps in Mechanically Applying the Substitution Rule
Note: The variables do not have to be called x and u.

(1) Choose a substitution u = g(x).

(2) Calculate
du

dx
= g′(x).

(3) Treat
du

dx
as if it were a fraction, a quotient of differentials, and

solve for dx, obtaining dx =
du

g′(x)
.

(4) Go back to the original integral and replace g(x) by u and

replace dx by
du

g′(x)
. If it’s a definite integral, change the limits

of integration to g(a) and g(b).

Steps in Mechanically Applying the Substitution Rule
(5) Simplify the integral.

1
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(6) If the integral no longer contains the original independent vari-
able, usually x, try to calculate the integral. If the integral still
contains the original independent variable, see whether that
variable can be eliminated, possibly by solving the equation
u = g(x) for x in terms of u, or else try another substitution.

Applications of Definite Integrals
• Areas between curves
• Volumes - starting with solids of revolution
• Arc length
• Surface area
• Work
• Probability

Standard Technique for Applications
(1) Try to estimate some quantity Q.
(2) Note that one can reasonably estimate Q by a Riemann Sum

of the form
∑

f(c∗k)∆xk for some function f over some interval
a ≤ x ≤ b.

(3) Conclude that the quantity Q is exactly equal to the definite

integral
∫ b

a
f(x) dx.

Alternate Technique
Recognize that some quantity can be thought of as a function Q(x)

of some independent variable x, try to find the derivative Q′(x), find
that Q′(x) = f(x) for some function f(x), and conclude that Q(x) =∫

f(x) dx + k for some constant k. Note that this is one way the Fun-
damental Theorem of Calculus was proven.

Areas
• The area of the region

{(x, y)|0 ≤ y ≤ f(x), a ≤ x ≤ b} is equal to
∫ b

a
f(x) dx.

• The area of the region

{(x, y)|0 ≤ x ≤ f(y), a ≤ y ≤ b} is equal to
∫ b

a
f(y) dy.

• The area of the region

{(x, y)|f(x) ≤ y ≤ g(x), a ≤ x ≤ b} is equal to
∫ b

a
g(x) −

f(x) dx.
• The area of the region

{(x, y)|f(y) ≤ x ≤ g(y), a ≤ y ≤ b} is equal to
∫ b

a
g(y)−f(y) dy.

Generally: If the cross section perpendicular to the t axis has height

ht(t) for a ≤ t ≤ b then the area of the region is
∫ b

a
ht(t) dt.

Volumes
Consider a solid with cross-sectional area A(x) for a ≤ x ≤ b.
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Assume A(x) is a continuous function.
Slice the solid like a salami.
Each slice, of width ∆xk, will have a volume A(x∗k)∆xk for some

xk−1 ≤ x∗k ≤ xk.
The total volume will be

∑
k A(x∗k)∆xk, i.e. R(f, P, a, b).

Conclusion: The volume is
∫ b

a
A(x) dx.

Example: Tetrahedron
Example: Solid of Revolution – the cross section is a circle, so the

cross sectional area is πr2, where r is the radius of the circle.

Variation: Cylindrical Shells
Take a plane region {(x, y)|0 ≤ y ≤ f(x), 0 ≤ a ≤ x ≤ b} and rotate

the region about the y−axis.
Break the original plane region into vertical strips and note that,

when rotated around, each vertical strip generates a cylindrical shell.
Estimate the volume ∆Vk of a typical cylindrical shell.
∆Vk ≈ 2πx∗kf(x∗k)∆xk, so the entire volume can be approximated by∑
k 2πx∗kf(x∗k)∆xk = R(2πxf(x), P, a, b), so we can conclude that the

volume is

V = 2π
∫ b

a
xf(x) dx.

Arc Length
Problem

Estimate the length of a curve y = f(x), a ≤ x ≤ b, where f is
continuous and differentiable on [a, b].

Solution
(1) Partition the interval [a, b] in the usual way, a = x0 ≤ x1 ≤

x2 ≤ x3 ≤ · · · ≤ xn−1 ≤ xn = b.
(2) Estimate the length ∆sk of each subinterval, for xk−1 ≤ x ≤ xk,

by the lenght of the line segment connecting (xk−1, f(xk−1)) and
(xk, f(xk)). Using the Pythagorean Theorem, we get

∆sk ≈
√

(xk − xk−1)2 + (f(xk)− f(xk−1)2)
(3) Using the Mean Value Theorem, f(xk)− f(xk−1) = f ′(x∗k)(xk −

xk−1) for some xk ∈ (xk−1, xk).

(4) ∆sk ≈
√

[1 + (f ′(x∗k))2](xk − xk−1)2

=
√

1 + (f ′(x∗k))2∆xk, where ∆xk = xk − xk−1.

(5) The total length is ≈
∑

k

√
1 + (f ′(x∗k))2∆xk

= R(
√

1 + f ′2, P, a, b).
(6) We conclude that the total length is∫ b

a

√
1 + (f ′(x))2 dx.
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Heuristics and Alternate Notations

(∆s)2 ≈ (∆x)2 + (∆y)2

(ds)2 = (dx)2 + (dy)2(
ds

dx

)2

= 1 +

(
dy

dx

)2

ds

dx
=

√
1 +

(
dy

dx

)2

s =

∫ b

a

√
1 + [f ′(x)]2 dx

s =

∫ b

a

√
1 +

(
dy

dx

)2

dx

Area of a Surface of Revolution
Problem

Estimate the area of a surface obtained by rotating a curve y = f(x),
a ≤ x ≤ b about the x−axis.

Solution
(1) Partition the interval [a, b] in the usual way, a = x0 ≤ x1 ≤

x2 ≤ x3 ≤ · · · ≤ xn−1 ≤ xn = b.
(2) Estimate the area ∆Sk of the portion of the surface between

xk−1 and xk by the product of the length ∆sk of that portion
of the curve with the circumference Ck of a circle obtained by
rotating a point on that portion of the curve about the x−axis.

(3) Estimate ∆sk by
√

1 + (f ′(x∗k))2∆xk.
(4) Estimate Ck by 2πf(x∗k).

(5) ∆Sk ≈
√

1 + (f ′(x∗k))2∆xk · 2πf(x∗k)

= 2πf(x∗k)
√

1 + (f ′(x∗k))2∆xk.

(6) The total surface area may be approximated as S ≈
∑

k 2πf(x∗k)
√

1 + (f ′(x∗k))2∆xk

= R(2πf(x)
√

1 + (f ′(x))2, P, a, b).

(7) S = 2π
∫ b

a
f(x)

√
1 + (f ′(x))2 dx.

Variation – Rotating About the y−axis
The analysis is essentially the same. The only difference is that the

radius of the circle is x∗k rather than f(x∗k), so in the formula for the
area f(x) simply gets replaced by x and we get

S = 2π
∫ b

a
x
√

1 + (f ′(x))2 dx.
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Work
Problem

An object is moved along a straight line (the x−axis) from x = a to
x = b. The force exerted on the object in the direction of the motion
is given by the force function F (x). Find the amount of work done in
moving the object.

Work – Solution
If F (x) was just a constant function, taking on a constant value k,

one could simply multiply force times distance, getting k(b− a). Since
F (x) is not constant, things are more complicated.

It’s reasonable to assume that F (x) is a continuous function and does
not vary much along a short subinterval of [a, b]. So, partition [a, b] in
the usual way, a = x0 ≤ x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn−1 ≤ xn = b, where
each subinterval [xk−1, xk is short enough so that F (x) doesn’t change
much along it.

Work – Solution
We can thus estimate the work ∆Wk performed along that subinter-

val by F (x∗k)∆xk, where x∗k is some point in the interval and ∆xk =
(xk − xk−1) is the length of the interval. Indeed, there will be some x∗k
for which this will be exactly equal to ∆Wk.

The total amount of work W =
∑n

k=1 ∆Wk =
∑n

k=1 F (x∗k)∆xk =
R(F, P, a, b), so we can conclude

W =

∫ b

a

F (x) dx.

The Natural Logarithm Function

Problem: The formula
∫

xn dx =
xn+1

n + 1
+ c has one problem – it

doesn’t hold for n = −1. On the other hand, we know from the Funda-

mental Theorem of Calculus that
∫ 1

x
dx exists everywhere except at

0.
Solution: Define a function to be that anti-derivative and examine

its properties.

The Natural Logarithm Function

Definition 1. f(x) =
∫ x

1

1

t
dt for x > 0

By the Fundamental Theorem of Calculus, f is well defined and
differentiable for x > 0, with f ′(x) = 1/x. It follows that f ′(x) > 0
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and f is increasing everywhere in the domain of f . It is also fairly

immediately clear that f(x)


< 0 when 0 < x < 1

= 0 when x = 1

> 0 when x > 1.
We need only find f ′′ to analyze the concavity of the graph and

get a pretty good sketch of it. Since f ′(x) = 1/x, it follows that
f ′′(x) = −1/x2 < 0 for x > 0, so the graph of f is concave down in its
entire domain.

Summary
• f defined in the right half plane.
• f is increasing.
• f is concave down.
• f(x) is negative for 0 < x < 1.
• f(1) = 0.
• f(x) is positive for x > 1.

Geometrically, it seems obvious that
limx→0+ f(x) = −∞, but it is not clear whether the graph has a hori-
zontal asymptote or
limx→∞ f(x) = ∞.

Right Hand Limit at 0

Lemma. limx→0+ f(x) = −∞

The proof will use the following

Claim. For n ∈ Z+, f(1/2n)− f(1/2n−1) < −1/2.

Proof. f(1/2n)− f(1/2n−1) =
∫ 1/2n

1/2n−1

1

t
dt = −

∫ 1/2n−1

1/2n

1

t
dt.

Since
1

t
> 2n−1 in the interval of integration, it follows that

∫ 1/2n−1

1/2n

1

t
dt >

2n−1 · 1

2n
=

1

2
and the conclusion follows immediately. �

Proof of the Lemma

Proof. Let n ∈ Z+. Then f(1/2n) = f(1/2n) − f(1) = [f(1/2n) −
f(1/2n−1)] + [f(1/2n−1)− f(1/2n−2)] + [f(1/2n−2)− f(1/2n−3)] + · · ·+
[f(1/2) − f(0)] < n(−1/2) = −n/2 → −∞ as n → ∞. Since f is an
increasing function, it follows that f(x) → −∞ as x → 0+. �

Limit at ∞
Claim. limx→∞ f(x) = ∞
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The proof is similar, depending on the fact claim that f(2n) −
f(2n−1) > 1/2 for all n ∈ Z+.

With this information, we can draw a very good sketch of the graph
of f and can start looking at the algebraic properties of f .

Algebraic Properties of f
The key properties of logarithmic functions are that the log of a

product is the sum of the logs, the log of a quotient is the difference of
logs, and the log of something to a power is the power times the log.
We can show that f has essentially the same properties.

Lemma 3. Let x, y > 0, r ∈ Q.

(1) f(xy) = f(x) + f(y)
(2) f(x/y) = f(x)− f(y)
(3) f(xr) = rf(x)

Both the second and third parts are consequences of the first. The
first part can be proven by defining a new function g(x) = f(xy) for
fixed y and showing that g′(x) = 1/x = f ′(x), so that f(xy) and f(x)
must differ by a constant. Writing f(xy) = f(x) + c and letting x = 1,
we find c = f(y) and the first part follows.

Since f is continuous, limx→0+ f(x) = −∞ and limx→∞ f(x) = ∞,
it follows that f : R+ → R is onto. In particular, f must take on the
value 1 somewhere. Since f is 1− 1, we may define e to be the unique
number such that f(e) = 1. It turns out that f(x) = loge x, that is,
f is a logarithmic function to the base e. It can also be shown that
2 < x < 3.

Claim. If x > 0, then f(x) = loge x.

We will actually prove only that if loge x exists, then f(x) = loge x.

Proof. Let x > 0 have a logarithm y to base e, so y = loge x and ey = x.
Then f(x) = f(ey) = yf(e) = y = loge x. �

Note: In the preceding argument, y had to be a rational number.
We can now eliminate all pretense and rename f to be the Natural

Logarithm Function, generally denoted by ln.

Properties of the Natural Logarithm Function
(1) ln x =

∫ x

1
1/t dt for x > 0

(2) ln : R+ → R
(3) ln is 1− 1 and onto.

(4)
d

dx
(ln x) = 1/x and ln is increasing.



8

(5)
∫

1/x dx = ln |x|

(6)
d2 ln x

dx2
= −1/x2 and the graph of ln is concave down.

(7) ln(xy) = ln x + ln y
(8) ln(x/y) = ln x− ln y
(9) ln(xr) = r ln x

(10) ln(e) = 1
(11) ln = loge

(12) ln x =


< 0 for 0 < x < 1

= 0 for x = 1

> 0 for x > 1

Logarithmic Differentiation

The properties of logarithms come in handy when calculating deriva-
tives, particularly when the function being differentiated has variables
in exponents.

The Method:

• Assume you have a function f(x).
Write y = f(x).

• Take logs of both sides:
ln y = ln f(x)

• Use the properties of logarithms simplify ln f(x).
• Differentiate implicitly.

Example of Logarithmic Differentiation

Suppose we wish to find the derivative of (sin x)2x+1.

• Write y = (sin x)2x+1

• Take logs of both sides to get ln y = ln[(sin x)2x+1]
• Use the properties of logs to get ln y = (2x + 1) ln sin x

• Differentiate implictly:
d

dx
(ln y) =

d

dx
((2x + 1) ln sin x)

(
dy

dx
)

y
= (2x + 1) · cos x

sin x
+ (ln sin x) · 2

dy

dx
= y[(2x + 1) cot x + 2 ln sin x]

dy

dx
= (sin x)2x+1[(2x + 1) cot x + 2 ln sin x]

Inverse Functions

Consider a function f : A → B. For each element a ∈ A there is
some element b ∈ B such that f(a) = b.
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Question: Given an arbitrary element b ∈ B, is there always a unique
element a ∈ A such that f(a) = b?

For the answer to be yes, two conditions must hold:

(1) For each element b ∈ B, there must be some a ∈ A for which
f(a) = b. In other words, B must actually be the range of
f . We sometimes write f(A) = B and say that the function
f : A → B is onto.

(2) The element a ∈ A such that f(a) = b must be unique. In other
words, there cannot be two distinct elements, a1, a2 ∈ A with
a1 6= a2, such that f(a1) = f(a2). Such a function is said to be
one-to-one or 1− 1.

If f : A → B is 1 − 1 and onto, then we can define a function
f−1 : B → A by defining f−1(b) to be the unique a ∈ A such that
f(a) = b. f−1 is called the inverse of f .

Properties of Inverse Functions
• f : A → B, f−1 : B → A
• f(a) = b if and only if f−1(b) = a
• For each a ∈ A, f−1 ◦ f(a) = f−1(f(a)) = a. In other words,

f−1 ◦ f is the identity function on A.
• For each b ∈ B, f ◦ f−1(b) = f(f−1(b)) = b. In other words,

f ◦ f−1 is the identity function on B.

Examples
Let f : R → R be defined by f(x) = 2x.
f is 1−1 and onto and has inverse f−1 : R → R defined by f−1(x) =

x

2
.

Question: How does one find an inverse?
Solution:

(1) Write down the formula y = f(x) for the original function.
(2) Treat it as an equation and solve for x in terms of y. This gives

a formula x = f−1(y).
(3) (Optional) If you want, interchange x and y to write the formula

for the inverse in the form y = f−1(x).

Important: If one is using a notation using independent and depen-
dent variables, things can get very confusing.

Question: What if f : A → B is 1− 1 but not onto?
Theoretical Answer: Define a new function g : A → f(A) by letting

g(x) = f(x)∀x ∈ A. g will be 1− 1 and onto and hence invertible.

Practical Answer: Pretend B is really f(A).
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Properties of Inverse Functions
• If an invertible function is continuous and is defined on an in-

terval, then its inverse is continuous.
• If a is in the range of an invertible function f and f ′(f−1(a)) 6=

0, then f−1 is differentiable at a and (f−1)′(a) =
1

f ′(f−1(a))
.

This can be thought of as
dx

dy
=

1(
dy
dx

) .

Alternate Notation: (f−1)′ =
1

f ′ ◦ f−1
.

The Exponential Function
Since ln is 1− 1 and onto, it has an inverse function.

Definition 2 (The Exponential Function). exp = ln−1

Lemma 4. If x ∈ Q, then exp(x) = ex.

Proof. Since exp = ln−1, it follows that
ln(exp(x)) = x.

By the properties of the ln function, ln(ex) = x ln(e) = x.
Since ln is 1− 1, the conclusion follows. �

Definition of Irrational Exponents
More generally, for any x ∈ Q and a > 0, suppose we let y = ax, using

the classical definition of an exponent. Then ln y = ln(ax) = x ln(a).
But then y = exp(ln y) = exp(x ln a), so we must have ax = exp(x ln a).
Since the expression on the right is defined for all x ∈ R, a > 0, it’s
natural to use this for a general definition of an exponential.

Definition 3. For a > 0, x ∈ R, ax = exp(x ln a).

As a special case, we have ex = exp(x ln e) = exp(x).
We may thus write:

• ex = exp(x)
• ax = exp(x ln a) = ex ln a

Claim 1.
dex

dx
= ex

Proof. Let y = ex. Then ln y = x. Differentiating, we get y′/y = 1,so
y′ = y = ex. �

Using the fact that exp = ln−1 and the properties of the ln function,
one can show that exp has the properties of an exponential function.
We can then summarize.

Properties of the Exponential Function



11

• exp = ln−1

• exp : R → R+

• exp is 1− 1 and onto.

• d

dx
(ex) =

d

dx
(exp x) = ex,

∫
ex dx = ex

• exp is increasing and concave up.
• exp(0) = 1, exp(1) = e.
• exey = ex+y

• ex/ey = ex−y

• (ex)y = exy

Exponential Growth and Decay
The exponential function satisfies the differential equation y′ = y.

We may ask whether this is the only such function. Obviously, it’s
not, since any constant multiple of the exponential function satisfies
the same differential equation, so we modify the question to whether
any other family of functions satisfies that differential equation. More
generally, we obtain the following result.

Exponential Growth and Decay

Theorem. If f ′(x) = kf(x) for some k ∈ R on some interval, then
f(x) = aekx for some a ∈ R on that interval.

Proof. Note: There is a hole in this proof. See whether you can find it.
Even better, see whether you can fix it

Suppose f ′(x) = kf(x) on some interval. Dividing both sides by

f(x), we get
f ′(x)

f(x)
= k. Since the left hand side is the derivative of

ln |f(x)|, it follows that ln |f(x)| = kx + c for some c ∈ R.
Exponentiating both sides, we get |f(x)| = ekx+c = c′ekx, where

c′ = ec.

Letting a =

{
c′ if f ′(x) > 0

−c′ if f ′(x) < 0,
, we have f(x) = aekx. �

This theorem effectively shows that every function which changes at
a rate proportional to its size must be an exponential function.

Examples
• Continuous Interest
• Radioactive Decay
• Population Growth

Mathematically, each of these situations is the same, with only the
terminology being different. In most cases, the independent variable
represents time and is denoted by t, so we have functions of the form
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y = aebt.
We generally have to find a and b before we can do anything else and

we usually use known values of y, sometimes given subtly, in order to
find a and b.

Newton’s Law of Cooling

Modeling Newton’s Law of Cooling leads to another differential equa-
tion whose solution involves exponential functions.

Newton’s Law of Cooling is an empirical law which says the rate at
which an object changes temperature is proportional to the difference
between the temperature of the object and the ambient temperature.

To start, let’s determine the relevant variables. Let:

• T be the temperature of the object,
• Ta be the ambient temperature,
• t be time, and let
• T0 be the initial temperature of the object.

Newton’s Law of Cooling

Since the derivative measures rate of change, Newton’s Law of Cool-

ing implies
dT

dt
∝ T − T0. This may be written

dT

dt
= b(T − T0), where

b ∈ R is the constant of proportionality.
To solve this separable differential equation, divide both sides by

T − T0 to get
1

T − T0

dT

dt
= b.

Integrate to get:∫ 1

T − T0

dT =
∫

b dt.

ln |T − T0| = bt + k
|T − T0| = ebt+k = ebtek = cebt, where c = ek

Newton’s Law of Cooling

|T − T0| = ebt+k = ebtek = cebt, where c = ek

Since T − T0 is both differentiable and therefore continuous, and
cebt is never 0, it follows from the Intermediate Value Theorem that
either T − T0 is always positive or always negative. If we let a ={

c if T − T0 > 0

−c if T − T0 < 0
, we can write

T − T0 = aebt, which we may then solve for T to get
T = T0 + aebt.

Separable Differential Equations



13

A differential equation is essentially an equation involving deriva-
tives. Differential equations arise naturally in many applications and
it is important to be able to solve them.

When we integrate
∫

f(x) dx, we are essentially solving the differen-

tial equation
dy

dx
= f(x).

A slightly more general class of differential equations which are solv-
able in a similar manner is the class of separable differential equations.

Definition 4 (Separable Differential Equation). A separable differen-
tial equation is one which can be rewritten in the form g(y)y′ = h(x).

Solutions of Separable Differential Equations
The general solution of a separable differential equation of the form

g(y)y′ = h(x) is given by
∫

g(y) dy =
∫

h(x) dx.
Why?

• g(y)y′ = h(x)
•

∫
g(y)y′ dx =

∫
h(x) dx

• Using the Substitution Technique, and substituting y = f(x),
the left side reduces to

∫
g(y) dy.

Additional Evidence
If the argument given isn’t sufficiently convincing, one may sim-

ply observe that if one takes a function y = f(x) which satisfies the
equation

∫
g(y) dy =

∫
h(x) dx and differentiates implicitly, one gets

g(y)y′ = h(x), which shows the function y = f(x) satisfies the differ-
ential equation.

Inverse Trigonometric Functions
Let’s start by looking at the sin function. Technically, since sin is

not 1 − 1, it does not have an inverse. We get around this problem
with a technicality.

We define a new function, called the principal sine function and
denoted by Sin, by restricting the domain. If one starts at 0, one sees
the sin function starts repeating values once π/2 is reached. In order
to get values of sin which are negative, one needs to go to the left of
0. As one goes left, one again starts duplicating values when −π/2 is
reached.

Definition 5 (Principal Sine Function). Sin x : [−π/2, π/2] → [−1, 1]
is defined by Sin x = sin x.

Definition of arcsin
Since the Principal Sine function is 1− 1, it has an inverse.
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Definition 6 (Arcsin Function). arcsin = Sin−1.

We can think of arcsin x as the angle between −π/2 and π/2 whose
sin is x.

Derivative of arcsin
We can use formulas obtained for derivatives of inverse functions to

get a formula for the derivative of arcsin, but it’s easier and better
practice to use implicit differentiation as follows.

Let y = arcsin x. We know that x = sin y. Differentiating implicitly,

we get
d

dx
(x) =

d

dx
(sin y), 1 = cos y

dy

dx
,

dy

dx
=

1

cos y
.

We know sin y = x, so if we use the basic trigonometric identity
cos2 y + sin2 y = 1, we get cos2 y + x2 = 1, so cos2 y = 1 − x2, cos y =
±
√

1− x2.
However, since y = arcsin x is in the interval [−π/2, π/2], it follows

that cos y must be positive, so cos y =
√

1− x2.

We conclude
dy

dx
=

1√
1− x2

, so
d

dx
(arcsin x) =

1√
1− x2

.

Definition of arccos
We can define arccos in a manner similar to the way arcsin was

defined. The natural interval to define the Principal Cosine function
is [0, π]. So we define

Definition 7. Cos : [0, π] → [−1, 1] by Cos x = cos x.

We naturally define arccos = Cos−1.
It follows that y = arccos x if and only if x = Cos y, so we may think

of arccos x as the angle between 0 and π whose cosine is x.

Derivative of arccos
Let y = arccos x. It follows that x = cos y. We may differentiate:
d

dx
(x) =

d

dx
(cos y)

1 = − sin y
dy

dx
dy

dx
= − 1

sin y
Since cos y = x, we may write cos2 y + sin2 y = 1, x2 + sin2 y = 1,

sin2 y = 1− x2, sin y = ±
√

1− x2.
Since y = arccos x, it follows that y ∈ [0, π], so sin y ≥ 0 and sin y =

+
√

1− x2.

It follows that
dy

dx
= − 1√

1− x2
.
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We thus have the formula
d

dx
(arccos x) = − 1√

1− x2
.

arcsin and arccos are Complementary
From the formulas for the derivatives of arcsin and arccos, we have

d

dx
(arccos x + arcsin x) =

d

dx
(arccos x) +

d

dx
(arcsin x) = − 1√

1− x2
+

1√
1− x2

= 0.

Since only constant functions have a derivative of 0, it follows that
arccos x + arcsin x = k for some constant k.

To find k, we may plug in any angle for which we know arcsin and
arccos. The simplest choice is 0, giving

arccos 0 + arcsin 0 = k
π/2 + 0 = k
k = π/2
arccos x + arcsin x = π/2
In other words, arcsin and arccos are complementary angles. This is

obviously true when both are acute angles, in which case they are both
angles of the same right triangle, but it’s also true if they are obtuse
or even negative!

Definition of Arctangent

Definition 8 (Principal Tangent). Tan : [−π/2, π/2] → R is defined
by Tan x = tan x.

Definition 9 (Arctangent). arctan = Tan−1.

We can think of arctan x as the angle between−π

2
and

π

2
whose tangent

is x.

Derivative of Arctangent
Let y = arctan x. Then x = tan y.
d

dx
(x) =

d

dx
(tan y)

1 = sec2 y
dy

dx
dy

dx
=

1

sec2 y

Since 1 + tan2 y = sec2 y, 1 + x2 = sec2 y, so
dy

dx
=

1

1 + x2
.

We thus get the formula
d

dx
(arctan x) =

1

1 + x2
.
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Definition of Arcsecant

Definition 10 (Principal Secant). Sec : [0, π/2)∪(π/2, π] → (−∞,−1]∪
[1,∞) is defined by Secx = sec x.

Definition 11 (Arcsecant). arcsec = Sec−1.

We may think of arcsec x as the angle between 0 and π whose secant
is x.

Derivative of Arcsecant
Let y = arcsec x.
Then x = sec y.
d

dx
(x) =

d

dx
(sec y).

1 = sec y tan y
dy

dx
.

dy

dx
=

1

sec y tan y
.

Since 1 + tan2 y = sec2 y and sec y = x, it follows that tan2 y =
sec2 y − 1, tan2 y = x2 − 1, tan y = ±

√
x2 − 1.

It follows that
dy

dx
= ± 1

x
√

x2 − 1
.

Since sec y and tan y always have the same sign, it follows that
dy

dx

is always positive, so
dy

dx
=

1

|x|
√

x2 − 1
.

Derivative of Arcsecant

We thus have the formula
d

dx
(arcsec x) =

1

|x|
√

x2 − 1
.

Integration By Parts
Integration by Parts is a technique that enables us to calculate inte-

grals of functions which are derivatives of products. Its genesis can be
seen by differentiating a product and then fiddling around.

• Write out the formula for the derivative of a product f(x)g(x).
d

dx
(f(x)g(x)) = f(x)g′(x) + f ′(x)g(x)

• Treat the formula as an equation and solve for f(x)g′(x).

f(x)g′(x) =
d

dx
(f(x)g(x))− f ′(x)g(x)

Integration By Parts
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• Find a formula for the integral of f(x)g′(x) by integrating the
formula for f(x)g′(x).∫

f(x)g′(x) dx =
∫ d

dx
(f(x)g(x)) dx−

∫
f ′(x)g(x) dx

• Simplifying, we get the Integration by Parts formula:∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx

Alternate Notation
Letting u = f(x) and v = g(x), so du = f ′(x) dx and dv = g′(x) dx,

we can write the Integration by Parts formula in either of the forms∫
uv′ dx = uv −

∫
u′v dx∫

u dv = uv −
∫

v du

Example: Calculating
∫

x2 ln x dx

Let f(x) = ln x, g′(x) = x2. Then f ′(x) =
1

x
, g(x) =

x3

3
.

Plugging that into the Integration by Parts formula, we obtain

∫
x2 ln x dx = (ln x) · x3

3
−

∫
1

x
· x3

3
dx

=
x3 ln x

3
− 1

3

∫
x2 dx

=
x3 ln x

3
− x3

9
.

Integration By Parts – Determining f(x) and g′(x)
Ideally, f(x) will be a function which is easy to differentiate and

whose derivative is simpler than f(x) itself, while g′(x) is a function
that’s easy to integrate, since if we can’t find g(x) it will be impossible
to continue with Integration By Parts.

Trigonometric functions such as sin x, cos x and sec2 x are good can-
didates for g′(x), as are exponential functions.

Logarithmic functions are good candidates for f(x), since they are
difficult to integrate but easy to differentiate and their derivatives do
not involve logarithms.

Integrating Powers of Trigonometric Functions

Integrals of the form

∫
sinm x cosn x dx can always be calculated

when m and n are positive integers.

The techniques used also sometimes, but not always, work when the
exponents are not positive integers.
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Integrals involving other trigonometric functions can always, if neces-
sary, be written in terms of sin and cos.

Odd Powers
The simplest case is if either sin or cos occurs to an odd power in an

integrand. In this case, substitute for the other. We can do this even
the other doesn’t occur!

After making the substitution and simplifying, the trigonometric func-
tion that occurred to an odd power may still occur to an even power,
but we can make use of the basic identity cos2 x+sin2 x = 1 to eliminate
its presence.

Example –
∫

cos3 x dx
Here, cos occurs to an odd power, so we substitute u = sin x, even

though sin x doesn’t appear in the integrand.

Continuing, we get
du

dx
= cos x, du = cos x dx, dx =

du

cos x
.

We can now substitute into the integral to get
∫

cos3 x dx =
∫

cos3 x ·
du

cos x
=

∫
cos2 x du.

cos still appears, but to an even power, so we make use of the basic
trigonometric identity to write:∫

cos2 x du =
∫

(1− sin2 x) dx =
∫

(1− u2) du.

The rest of the calculation is routine:∫
(1− u2) du = u− u3

3
= sin x− sin3 x

3
.

We conclude
∫

cos3 x dx = sin x− sin3 x

3
+ k.

Even Powers of sin and cos
When we have only even powers of sin and cos, the substitution for

one of them doesn’t work. In this case, there are two alternatives.

• Use Integration By Parts or, equivalently, Reduction Formulas.
• Use Double Angle Formulas

We will pursue the latter alternative.

Review of Double Angle Formulas
The formulas about the values of trigonometric functions at sums and

differences of angles come in handy. The seminal formula is the formula
for the cosine of a difference: cos(u− v) = cos u cos v + sin u sin v.

This formula may be derived by drawing a unit circle in standard
position (with center at the origin) along with central angles u, v



19

and u− v terminating in the points P (cos u, sin u), Q(cos v, sin v) and
R(cos(u− v), sin(u− v)).

If one notes the chord joining P and Q has the same length as the
chord joining R and (1, 0), uses the distance formula to observe the
consequence

(cos u−cos v)2 +(sin u−sin v)2 = (cos(u−v)−1)2 +(sin(u−v)−0)2,
and simplifies, one obtains the formula

cos(u− v) = cos u cos v + sin u sin v.

Cosine of a Sum
The key here is the observation u + v = u − (−v). We take the

formula cos(u − v) = cos u cos v + sin u sin v and replace v by −v as
follows:

cos(u + v) = cos(u− (−v)) = cos u cos(−v) + sin u sin(−v).

Using the identities cos(−v) = cos v and sin(−v) = − sin v, we get

cos(u + v) = cos u cos v + sin u(− sin v) = cos u cos v − sin u sin v.

This is the basis of the formulas we need for integration, but we will
review the formulas for the sin of a sum or difference as well.

The Sine of a Sum
The key observation here is that the sine of an angle is equal to the

cosine of its complement. We thus calculate

sin(u+v) = cos(π/2−[u+v]) = cos([π/2−u]−v) = cos(π/2−u) cos v+
sin(π/2− u) sin v = sin u cos v + cos u sin v.

The Sine of a Difference
We can get this from the sine of a sum by recognizing u−v = u+(−v)

and calculating as follows:

sin(u− v) = sin(u + (−v)) = sin u cos(−v) + cos u sin(−v).

Again using the identities cos(−v) = cos v and sin(−v) = − sin v, we
get:

sin(u− v) = sin u cos v + (cos u)(− sin v) = sin u cos v − cos u sin v.

Summary of the Formulas
cos(u− v) = cos u cos v + sin u sin v
cos(u + v) = cos u cos v − sin u sin v
sin(u + v) = sin u cos v + cos u sin v
sin(u− v) = sin u cos v − cos u sin v

The Double Angle Formulas



20

It’s easy to use the formulas for sums to get double angle formulas
for sin and cos, by observing 2u = u + u:

cos(2u) = cos(u + u) = cos u cos u− sin u sin u = cos2 u− sin2 u

sin(2u) = sin(u + u) = sin u cos u + cos u sin u = 2 sin u cos u

The Double Angle Formulas We Use
The double angle formula for cosine has two variations which we

obtain using the basic trigonometric identity:

cos 2u = cos2 u− sin2 u = cos2 u− (1− cos2 u) = cos2 u− 1 + cos2 u =
2 cos2 u− 1

cos 2u = cos2 u− sin2 u = (1− sin2 u)− sin2 u = 1− 2 sin2 u

We don’t actually use these formulas directly in integration, but take
them and solve one for cos2 u and the other for sin2 u.

cos2 u
We take the formula cos 2u = 2 cos2 u − 1 and solve for cos2 u as

follows:

cos 2u = 2 cos2 u− 1,
2 cos2 u = 1 + cos 2u,

cos2 u =
1 + cos 2u

2
.

sin2 u
We take the formula cos 2u = 1 − 2 sin2 u and solve for sin2 u as

follows:

cos 2u = 1− 2 sin2 u,
2 sin2 u = 1− cos 2u,

sin2 u =
1− cos 2u

2
.

Integrating Even Powers of Sine and Cosine
To integrate even powers, we simply write any even power as a

power of a square and replace cos2 x by
1 + cos 2x

2
and replace sin2 x

by
1− cos 2x

2
. This effectively reduces the power, although we wind

up with more terms in the integrand.

We may have to repeat this process many times, so the integration gets
extremely messy.

Example:
∫

cos2 x dx
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We calculate
∫

cos2 x dx =
∫ 1 + cos 2x

2
dx =

∫ 1

2
+

1

2
· cos 2x dx =

1

2
· x +

1

2
· sin 2x

2
=

x

2
+

sin 2x

4
+ c.

Note we needed to make a substitution u = 2x, or a guess, to integrate
the second term.

Example:
∫

sin2 x cos2 x

We calculate
∫

sin2 x cos2 x dx =
∫ 1− cos 2x

2
·1 + cos 2x

2
dx =

1

4

∫
1−

cos2 2x dx =
1

4

∫
1− 1 + cos 4x

2
dx =

1

4

∫
1− 1

2
− cos 4x

2
dx =

1

4

∫ 1

2
−

cos 4x

2
dx =

1

8

∫
1− cos 4x dx =

1

8
(x− sin 4x

4
) + c.

Obviously, the calculations can get very messy very quickly.

Trigonometric Substitutions
Integrals involving sums and differences of squares can often be cal-

culated using trigonometric substitutions. These are technically substi-
tutions involving inverse trigonometric functions, such as θ = arcsin x
or θ = arctan x, but these explicit substitutions don’t need to be writ-
ten down.

The key to trigonometric substitutions is the Pythagorean Theorem:

If the legs of a right triangle have lengths a and b and the hypotenuse
has length c, then a2 + b2 = c2.

This can also be written as c2 − a2 = b2 or c2 − b2 = a2.

The way we choose a substitution depends on whether the integrand
contains a sum or a difference of squares.

Sum of Squares
If the integrand contains a sum of squares, such as a2 + b2, then we

consider a triangle with legs a and b and hypotenuse
√

a2 + b2. We
may call one of the acute angles θ. For the sake of definiteness, assume
a is adjacent to θ and b is opposite θ, although this may be reversed.
Also, assume a is constant, while b, and thus

√
a2 + b2 as well, includes

the variable of integration.

We will undoubtedly need
√

a2 + b2, so we observe cos θ =
a√

a2 + b2
,

so
√

a2 + b2 =
a

cos θ
.

We may need b, in which case we observe tan θ =
b

a
, so b = a tan θ.
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Sum of Squares

Assuming the variable of integration is x, we will need dx. If we

differentiate
d

dθ
(b) =

d

dθ
(a tan θ) = a sec2 θ and then multiply by dθ

to get
d

dθ
(b) · dθ = a sec2 θ · dθ, we will be able to solve for dx.

Difference of Squares

If the integrand contains a difference of squares, such as c2−a2, then
we consider a triangle with hypotenuse c and legs a and

√
c2 − a2. We

may call one of the acute angles θ. For the sake of definiteness, assume
a is adjacent to θ and

√
c2 − a2 is opposite θ, although this may be

reversed.

We will undoubtedly need
√

c2 − a2.

If a is constant, we observe tan θ =

√
c2 − a2

a
, so

√
c2 − a2 = a tan θ.

If c is constant, observe sin θ =

√
c2 − a2

c
, so

√
c2 − a2 = a sin θ.

Notice the idea: Combine the side that is needed with the constant
side.

Difference of Squares

If a involves the variable of integration, we note cos θ =
a

c
, so a =

c cos θ. To find dx, we’d then differentiate this.
skippause If c involves the variable of integration, we still note cos θ =

a

c
, but then sove c =

a

cos θ
. We again differentiate to find dx.

Then What?

Once we’ve solved for all the sides of the triangle and for dx, we
substitute for each in the original integrand.

If we’re lucky, and this will happen most of the time unless we’ve
missed seeing something obvious, we will wind up with an integral we
can evaluate.

Once we’ve evaluated that integral, which gives us a result in terms of
θ, we look at the triangle and rewrite the result in terms of the original
variable.

Example:

∫
1

x2 + 4
dx



23

Note: This can be evaluated by guessing, or using the substitution
u = x/2, motivated by trying to get the denominator in the form
(something)2 + 1, but illustrates the use of a trigonometric substitu-
tion.

Since x2 + 4 = x2 + 22, we let the legs be x and 2 and the hypotenuse√
x2 + 4. We let one acute angle be θ and let x be opposite θ and 2

adjacent to θ. These choices for the legs may be reversed and everything
will still work.

Example:

∫
1

x2 + 4
dx

We need x2 + 4, so first we find
√

x2 + 4. Since
√

x2 + 4 is the
hypotenuse and the constant side 2 is the adjacent side, we use the

cosine function, observing cos θ =
2√

x2 + 4
, so

√
x2 + 4 =

2

cos θ
.

We actually need x2 + 4. Since x2 + 4 =
(√

x2 + 4
)2

, we get x2 + 4 =(
2

cos θ

)2

=

(
4

cos2 θ

)
.

Example:

∫
1

x2 + 4
dx

We don’t need x for itself, but we need it to find dx. Since x is the
opposite side and the constant side 2 is the adjacent side, we use the

tangent function and observe tan θ =
x

2
, so x = 2 tan θ.

We can now differentiate to get
dx

dθ
= 2 sec2 θ and then multiply both

sides by dθ to get dx = 2 sec2 θdθ.

We can now substitute into the original integral to get

∫
1

x2 + 4
dx =∫

1

4/ cos2 θ
· 2 sec2 θ dθ =

∫
cos2 θ

4
· 2 sec2 θ dθ =

1

2

∫
1 dθ =

1

2
θ.

Example:

∫
1

x2 + 4
dx

We can now look at the triangle, observe that θ is the angle whose

tangent is x/2, so that θ = arctan(x/2), and conclude

∫
1

x2 + 4
dx =

1

2
arctan(x/2) + c.
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Example:

∫
1√

x2 − 1
dx

Here we have a difference of squares. We draw a triangle and let
x be the hypotenuse and let 1 and

√
x2 − 1 be the legs. Call one of

the acute angles θ, let 1 be the leg adjacent to θ and
√

x2 − 1 the leg
opposite θ.

We need
√

x2 − 1, which is the opposite side. Since the constant 1 is

the adjacent side, we use the tangent and note tan θ =

√
x2 − 1

1
, so

√
x2 − 1 = tan θ.

To get dx, we start by getting x. Since x is the hypotenuse and the
constant leg 1 is the adjacent side, we use the cosine function. We

observe cos θ =
1

x
, so x =

1

cos θ
= sec θ. Differentiating, we get

dx

dθ
=

sec θ tan θ, so dx = sec θ tan θdθ.

Example:

∫
1√

x2 − 1
dx

We can now substitute back into the integral:

∫
1√

x2 − 1
dx =∫

1

tan θ
· sec θ tan θdθ =

∫
sec θ dθ.

We have previously found

∫
sec θ dθ = ln | sec θ + tan θ|, so we get∫

1√
x2 − 1

dx = ln | sec θ + tan θ|.

We now look at the triangle and note sec θ =
x

1
= x, while tan θ =

√
x2 − 1

1
=
√

x2 − 1, so

∫
1√

x2 − 1
dx = ln |x +

√
x2 − 1|+ c.

Example:

∫
1√

5 + 4x− x2
dx

This is a little more complicate than other examples. At first glance,
it may not seem to involve either a sum or difference of squares, but
completing the squares demonstrates otherwise. This just goes to show
the most difficult aspects of calculus involve algebra.

It’s probably easier to look at the additive inverse of the quadratic
inside the radical, so consider x2−4x−5. Since (x−2)2 = x2−4x+4,
we have x2 − 4x − 5 = (x2 − 4x + 4) − 4 − 5 = (x − 2)2 − 9. So
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we may write 5 + 4x − x2 = 9 − (x − 2)2 and write the integral as∫
1√

9− (x− 2)2
dx.

Example:

∫
1√

5 + 4x− x2
dx

We thus draw a triangle where the hypotenuse is 3 and the legs are
x − 2 and

√
9− (x− 2)2. Let θ be one of the acute angles. We’ll let

x− 2 be the opposite leg and
√

9− (x− 2)2 be the adjacent leg.

We need
√

9− (x− 2)2. Since that’s the adjacent leg and the constant
side 3 is the hypotenuse, we use the cosine function and write cos θ =√

9− (x− 2)2

3
, so

√
9− (x− 2)2 = 3 cos θ.

Example:

∫
1√

5 + 4x− x2
dx

We don’t need x for itself, but we need dx. First we find x−2. Since
that’s the opposite side and the constant side 3 is the hypotenuse, we

use the sine function and write sin θ =
x− 2

3
, so x− 2 = 3 sin θ.

To find dx, we differentiate implicitly:
d

dθ
(x− 2) =

d

dθ
(3 sin θ), so

dx

dθ
= 3 cos θ and dx = 3 cos θdθ.

Example:

∫
1√

5 + 4x− x2
dx

We’re now ready to substitute in the integral:

∫
1√

9− (x− 2)2
dx =∫

1

3 cos θ
3 cos θ dθ =

∫
1 dθ = θ.

Looking at the triangle, we observe θ is an angle whose sine is
x− 2

3
,

so θ = arcsin

(
x− 2

3

)
and so we conclude

∫
1√

5 + 4x− x2
dx =

arcsin

(
x− 2

3

)
+ c.

Integration of Rational Functions
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A rational function is a quotient of polynomials. Through the use of
the algebraic technique of partial fraction decomposition, it is theoreti-
cally possible to rewrite any rational function as a sum of terms which
may be integrated using techniques we’ve studied.

The algebraic theorem behind partial fraction decomposition requires
that the numerator of the rational function have lower degree than the
denominator. This is not a significant problem, since through the use
of long division any rational function can be written as a polynomial,
which is easily integrated, plus a rational function where the degree of
the numerator is smaller than the degree of the denominator.

From now on, we will assume that our rational functions have numer-
ators of lower degree than their denominators.

Partial Fraction Decomposition
The partial fraction decomposition also depends on rewriting the

denominator as a product of powers of distinct first and second de-
gree polynomials. It also requires the second degree polynomials be
unfactorable. In theory, every polynomial can be so written.

According to the partial fraction decomposition, once a rational func-
tion has been so written, it can be expressed as a sum of terms where
the denominators of the terms are the individual factors of the denomi-
nators of the rational function raised to integer powers up to the power
each appears in the original rational function and the numerators are
one degree lower than the polynomials in the denominators.

What does this mean?

The Meaning of Partial Fractions Decomposition
If the denominator contains a linear factor occurring to given power,

the partial fractions decomposition will contain terms with the same
linear factor, raised to every integer power up to the power it occurs
in the original denominator. The numerator of each term will be a
constant.

In other words, if the denominator contains a factor (ax + b)p, the

partial fractions decomposition will contain terms
α1

ax + b
+

α2

(ax + b)2
+

α3

(ax + b)3
+ · · ·+ αp

(ax + b)p
.

The Meaning of Partial Fractions Decomposition
If the denominator contains a quadratic factor occurring to given

power, the partial fractions decomposition will contain terms with the
same quadratic factor, raised to every integer power up to the power it
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occurs in the original denominator. The numerator of each term will
be a linear function.

In other words, if the denominator contains a factor (ax2 + bx + c)p,

the partial fractions decomposition will contain terms
α1x + β1

ax2 + bx + c
+

α2x + β2

(ax2 + bx + c)2
+

α3x + β3

(ax2 + bx + c)3
+ · · ·+ αpx + βp

(ax2 + bx + c)p
.

Examples
If the original denominator contains a factor (5x + 3)4, the par-

tial fractions decomposition will contain terms
a

5x + 3
+

b

(5x + 3)2
+

c

(5x + 3)3
+

d

(5x + 3)4
.

If the original denominator contains a factor (x2 + 2x + 3)3, the partial

fractions decomposition will contain terms
ax + b

x2 + 2x + 3
+

cx + d

(x2 + 2x + 3)2
+

ex + f

(x2 + 2x + 3)3
.

Computing the Constants
Once we know the form of the partial fractions decomposition, we

still have to find the constants involved. These can be determined in
at least two different ways. Often, a combination of the two ways is
the most efficient.

With either method, the first step is to rewrite the expression in the par-
tial fractions decomposition by getting a common denominator, which
will be the same as the original denominator, and adding the numer-
ators. This numerator must be equal to the original denominator for
all values of the independent variable. We may write L = R, where
L represents the numerator of the original rational function and R
represents the numerator we get after adding the terms of the partial
fractions decomposition together. For convenience, we will refer to the
independent variable as x.

Calculating the Constants
One method for calculating the constants is to choose values for x

which make individual terms of R 0. This will often enable us to quickly
evaluate at least some of the constants in R.

A second method is to equate the individual coefficients of L and R.
This will give a system of linear equations which can be solved to find
all the constants of R.
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The first method will work when all the factors in the original denom-
inator are linear and all occur to the first power.

One optimal strategy is to get all the information one can using the
first method, and then equate some coefficients to get the rest of the
constants.

Example:
x + 23

x2 + x− 20

x2 +x−20 = (x−4)(x+5), so we may write
x + 23

x2 + x− 20
=

a

x− 4
+

b

x + 5
.

Getting a common denominator:
a

x− 4
+

b

x + 5
=

a

x− 4

x + 5

x + 5
+

b

x + 5

x− 4

x− 4
=

a(x + 5) + b(x− 4)

(x + 5)(x− 4)
.

Equating numerators, we know a(x + 5) + b(x− 4) = x + 23.

Finding the Constants Using the First Method

We know a(x + 5) + b(x− 4) = x + 23.

Since x− 4 = 0 when x = 4, we plug x = 4 into the equation and get
a(4 + 5) + b(4− 4) = 4 + 23, 9a = 27, a = 3.

Since x + 5 = 0 when x = −5, we plug x = −5 into the equation to get
a(−5 + 5) + b(−5− 4) = −5 + 23, −9b = 18, b = −2.

We conclude
x + 23

x2 + x− 20
=

3

x− 4
+

−2

x + 5
, or

x + 23

x2 + x− 20
=

3

x− 4
−

2

x + 5
.

Finding the Constants Using the Second Method

We know a(x + 5) + b(x− 4) = x + 23.

Multiplying out the numerator from the partial fractions expansion and
combining like terms, we get a(x + 5) + b(x− 4) = ax + 5a + bx− 4b =
(a + b)x + (5a− 4b). We may thus write (a + b)x + (5a− 4b) = x + 23.

Equating coefficients, we get

a + b = 1
5a− 4b = 23.

Finding the Constants Using the Second Method
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a + b = 1
5a− 4b = 23

We can solve this many ways. For example, we can solve for a in
the first equation a = 1 − b and plug it into the second equation:
5(1 − b) − 4b = 23. We can then solve 5 − 5b − 4b = 23, 5 − 9b = 23,
−9b = 18, b = −2.

We can now use the fact a = 1− b to get a = 1− (−2) = 3.

We have again found
x + 23

x2 + x− 20
=

3

x− 4
− 2

x + 5

Remember: We still have to calculate the integral!

The Actual Integration
After finding partial fractions expansion, we still have to carry out

the integration.

Some terms will have linear denominators raised to powers. These are
easily integrated using a substitution of the form u = (the linear factor).

For example, to integrate

∫
12

(5x + 3)4
, dx, the substitution u = 5x + 3

will work quickly.

Terms with quadratic denominators raised to powers are somewhat
more involved, but may be integrated using trigonometric substitu-
tions.

Quadratic Denominators
The key is that an unfactorable quadratic can always be written as

a sum of squares using the method of completing the square. Once the
denominator is written as a sum of squares, perhaps raised to a power,
a trigonometric substitution may be used.

Example:

∫
2x− 5

(x2 − 6x + 25)3
dx.

We may start by completing the square on x2 − 6x + 25 as follows:

Since half of −6 is −3, we note (x − 3)2 = x2 − 6x + 9, so x2 − 6x =
(x− 3)2 − 9 and x2 − 6x + 25 = [(x− 3)2 − 9] + 25 = (x− 3)2 + 16.

We can now rewrite the integral in the form

∫
2x− 5

((x− 3)2 + 16)3
dx.∫

2x− 5

((x− 3)2 + 16)3 dx
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We may draw a right triangle with acute angle θ, hypotenuse
√

x2 − 6x + 25 =√
(x− 3)2 + 16, and legs x − 3 and 4. Let x − 3 be the opposite side

and 4 be the adjacent side.

To find
√

(x− 3)2 + 16, since that is the hypotenuse and the con-
stant leg 4 is the adjacent side, we use the cosine. We write cos θ =

4√
(x− 3)2 + 16

, so
√

(x− 3)2 + 16 = 4 sec θ.

To find x, we note x − 3 is the opposite side, so we use the tangent.

We write tan θ =
x− 3

4
, so x− 3 = 4 tan θ and x = 3 + 4 tan θ.

We can now find dx using differentiating:
dx

dθ
= 4 sec2 θ, dx = 4 sec2 θdθ.∫

2x− 5

((x− 3)2 + 16)3 dx

Using:√
(x− 3)2 + 16 = 4 sec θ

x = 3 + 4 tan θ
dx = 4 sec2 θdθ,
we can substitute in the original integral:∫

2x− 5

((x− 3)2 + 16)3
dx =

∫
2 · (3 + 4 tan θ)− 5

(4 sec θ)6
·4 sec2 θdθ =

1

45

∫
8 tan θ + 1

sec4 θ
dθ =

1

45

∫
(8 tan θ + 1) cos4 θ dθ =

1

45

∫
8 sin θ cos3 θ + cos4 θ dθ.

Both terms involve powers of sine and cosine, which can be integrated
using standard methods.

General Integration Strategy
Based on the methods learned in class, which do not constitute a

complete set of methods, we can use the following strategy to calculate
indefinite integrals.

This strategy, or a variation personalized by the student, will enable
a student to integrate most of the integrals run across in elementary
calculus for which the calculation of an indefinite integral is feasible.

General Integration Strategy
Start by integrating term-by-term. For each individual term, use the

following strategy:

• Check whether the integral can be evaluated immediately, ei-
ther because the integrand is the derivative of an elementary
function of an algebraic or trigonometic manipulation can put
it in a form which is.
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• Look for a relatively straightforward substitution.
• Look to see whether the integrand fits into one of the special

situations studied, including:
– A product of powers of trigonometric functions
– A sum or difference of squares
– A rational function

• Try Integration By Parts
• As a last resort, try integration by parts with g′(x) = 1

Indeterminate Forms and L’Hôpital’s Rule

Limits involving indeterminates of the form limx→c
f(x)

g(x)
can often

be calculated using a convenient theorem known as L’Hôpital’s Rule.
There are really approximately sixty different cases of L’Hôpital’s rule,
but they are all variations of the following.

Theorem 5 (L’Hôpital’s Rule). If limx→c f(x) = limx→c g(x) = 0 and

limx→c
f ′(x)

g′(x)
= L, then limx→c

f(x)

g(x)
= L.

About L’Hôpital’s rule
• The text includes additional hypotheses, but these are implied

by the requirement limx→c
f ′(x)

g′(x)
= L.

• The rule is stated for ordinary limits as x → c for some real
number c, but the conclusion also holds for one-sided limits
and for limits at ∞ and −∞ also hold.

• The rule is stated for the numerator and denominator both→ 0,
but the conclusion also holds if both approach either ±∞. This
includes the possibility that one →∞ and the other → −∞.

• The rule is stated for a finite limit, but the conclusion also holds
for infinite limits.

Indeterminates Other Than Quotients
The indeterminates L’Hôpital’s Rule deals may be thought of sym-

bolically as the
0

0
and

∞
∞

cases. There are other types of indetermi-

nates to which L’Hôpital’s Rule doesn’t directly apply but which can
be transformed so that L’Hôpital’s Rule can be made use of indirectly.

These cases may be thought of symbolically as the following cases.
0 · ∞
∞0

00

1∞
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Indeterminate Products
If we have a product, we may transform it into a quotient by dividing
one factor by the reciprocal of the other. Symbolically, we may think

of it as rewriting 0 ·∞ as either
0

1/∞
or

∞
1/0

. The former becomes the

0

0
case and the latter becomes the

∞
∞

case.

Indeterminate Exponentials
If we have one of the exponential indeterminates, we may use the

definition ab = eb ln a. If we can calculate the limit of b ln a, we can use
that to find the limit of ab. If the limit of b ln a is L, then the limit of
ab = eb ln a will be eL.

Since the exponential function is continuous everywhere, this follows
from the theorem about continuous functions that if a function f is
continuous at L and limx→c g(x) = L, then limx→c f ◦ g(x) = f(L).

Symbolically, we write:

∞0 = e0 ln∞, 00 = e0 ln 0+
and 1∞ = e∞·ln 1.

In each case, we are left with the 0 · ∞ case in the exponent.

Improper Integrals
We have four different basic types of improper integrals, two with

limits of integration at either ∞ or −∞ and two with discontinuities
at a finite limit of integration.

(1)
∫∞

a
f(x) dx = limt→∞

∫ t

a
f(x) dx

(2)
∫ b

−∞ f(x) dx = limt→−∞
∫ b

t
f(x) dx

(3) If a < b and f is not continuous at b,
∫ b

a
f(x) dx = limt→b−

∫ t

a
f(x) dx

(4) If a < b and f is not continuous at a,
∫ b

a
f(x) dx = limt→a+

∫ b

t
f(x) dx

We can often use the definition to evaluate improper integrals.

Convergence, Divergence and Notation
If an improper integral has a numerical value, we say it converges; if

an improper integral does not converge, we say it diverges.

Suppose f(x) ≥ 0.

• If
∫∞

a
f(x) dx converges, we write

∫∞
a

f(x) dx < ∞.

• If
∫∞

a
f(x) dx diverges, we write

∫∞
a

f(x) dx = ∞.

We use an analogous notation for other types of improper integrals
with non-negative integrands.

Variations
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Some integrals have problems at both limits of integration or inside
their intervals of integration.

We deal with that by splitting the integral into a sum of integrals, each
of with has a problem at just one endpoint.

For such an integral to converge, each of the individual integrals needs
to converge.

The P-Test

Improper integrals where the integrand is of the form
1

xp
turn out

to be particularly important. It turns out the case p = 1 is a dividing
line between integrals which converge and integrals which diverge.

Consider
∫∞

1

1

xp
dx.

By definition,
∫∞

1

1

xp
dx = limt→∞

∫ t

1

1

xp
dx. We’ll consider the case

p = 1 separately.

The P-Test

For p = 1, we get
∫∞

1

1

xp
dx = limt→∞

∫ t

1

1

x
dx = limt→∞ ln t = ∞.

For p 6= 1, we get
∫∞

1

1

xp
dx = limt→∞

∫ t

1
x−p dx = limt→∞

x1−p

1− p

∣∣∣t

1
=

limt→∞
t1−p

1− p
− 1

1− p
=

∞ if p < 1
1

p− 1
if p > 1

We thus get
∫∞

1

1

xp
dx

{
= ∞ if p ≤ 1

< ∞ if p > 1

Integral from 0

Consider
∫ 1

0

1

xp
dx. Once again, p = 1 is a dividing line.

By definition,
∫ 1

0

1

xp
dx = limt→0+

∫ t

1

1

xp
dx. We’ll consider the case

p = 1 separately.

For p = 1, we get
∫ 1

0

1

xp
dx = limt→0+

∫ 1

t

1

x
dx = − limt→0+

∫ t

1

1

x
dx =

− limt→0+ ln t = ∞.

For p 6= 1, we get
∫ 1

0

1

xp
dx = limt→0+

∫ 1

t
x−p dx = limt→0+

x1−p

1− p

∣∣∣1
t

=

limt→0+

1

1− p
− t1−p

1− p
=

{
1

1− p
if p < 1∞ if p > 1
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We thus get
∫ 1

0

1

xp
dx

{
< ∞ if p < 1

= ∞ if p ≥ 1

The P-Tests Generalized
The arguments used to develop the P-Tests can be used in more

general settings to give four different variations.

Let a < α.
∫∞

α

1

(x− a)p
dx

{
= ∞ if p ≤ 1

< ∞ if p > 1

Let β < b.
∫ β

−∞
1

(b− x)p
dx

{
= ∞ if p ≤ 1

< ∞ if p > 1

Let a < b.
∫ b

a

1

(x− a)p
dx

{
< ∞ if p < 1

= ∞ if p ≥ 1

Let a < b.
∫ b

a

1

(b− x)p
dx

{
< ∞ if p < 1

= ∞ if p ≥ 1

These can be considered prototypes that are used in conjunction
with the Comparison Test.

The Comparison Tests
The Comparison Tests (there are several related tests) essentially

state that smaller functions are more likely to have integrals which
converge.

The Comparison Tests are used to determine whether improper inte-
grals converge or diverge without having to actually calculate the inte-
grals themselves.

The most basic Comparison Test is the following.

Theorem 6 (Comparison Test). Let 0 ≤ f(x) ≤ g(x) for x ≥ a.

(1) If
∫∞

a
g(x) dx < ∞, then

∫∞
a

f(x) dx < ∞.

(2) If
∫∞

a
f(x) dx = ∞, then

∫∞
a

g(x) dx = ∞.

It is really only necessary that there be some α ∈ R such that 0 ≤
f(x) ≤ g(x) for x ≥ α.

Variations of the Comparison Test
Suppose 0 ≤ f(x) ≤ g(x) for x ≥ α for some α ∈ R. Then:

(1) If
∫∞

a
g(x) dx < ∞, then

∫∞
a

f(x) dx < ∞.

(2) If
∫∞

a
f(x) dx = ∞, then

∫∞
a

g(x) dx = ∞.

Suppose 0 ≤ f(x) ≤ g(x) for x ≤ β for some β ∈ R. Then:

(1) If
∫ b

−∞ g(x) dx < ∞, then
∫ b

−∞ f(x) dx < ∞.
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(2) If
∫ b

−∞ f(x) dx = ∞, then
∫ b

−∞ g(x) dx = ∞.

Variations of the Comparison Test

Suppose
∫ b

a
f(x) dx and

∫ b

a
g(x) dx are improper integrals at a and

0 ≤ f(x) ≤ g(x) for a < x < β for some β ≤ b. Then:

(1) If
∫ b

a
g(x) dx < ∞, then

∫ b

a
f(x) dx < ∞.

(2) If
∫ b

a
f(x) dx = ∞, then

∫ b

a
g(x) dx = ∞.

Suppose
∫ b

a
f(x) dx and

∫ b

a
g(x) dx are improper integrals at b and

0 ≤ f(x) ≤ g(x) for α < x < b for some α ≥ a. Then:

(1) If
∫ b

a
g(x) dx < ∞, then

∫ b

a
f(x) dx < ∞.

(2) If
∫ b

a
f(x) dx = ∞, then

∫ b

a
g(x) dx = ∞.

Using the Comparison Test
We’ll consider integrals of the form

∫∞
a

f(x) dx, where f(x) > 0.
Other types of improper integrals are analyzed similarly. The Compar-
ison Test is generally used as follows.

One starts by finding some function g(x) > 0 which is similar in size to
f(x) but whose convergence is easier to analyze. Functions of the form

g(x) =
1

xp
are among the most frequent candidates, since the P-Test

can be used.

Showing Convergence
Suppose after deciding on g(x) we observe

∫∞
a

g(x) dx < ∞.

One then expects that
∫∞

a
f(x) dx < ∞.

If we’re lucky, f(x) ≤ g(x) and we can immediately apply the Com-
parison Test to prove

∫∞
a

f(x) dx < ∞.
If f(x) is not smaller than g(x), we need to find another function

g∗(x) with f(x) < g∗(x) for which
∫∞

a
g∗(x) dx < ∞. If we can find such

a function, we can use the Comparison Test to prove
∫∞

a
f(x) dx < ∞.

Showing Divergence
Suppose, after deciding on g(x), we observe

∫∞
a

g(x) dx = ∞.

One then expects that
∫∞

a
f(x) dx = ∞.

We we’re lucky, f(x) ≥ g(x) and we can immediately apply the Com-
parison Test to prove

∫∞
a

f(x) dx = ∞.

If f(x) is smaller than g(x), we need to find a function g∗(x) with
f(x) ≥ g∗(x) for which

∫∞
a

g∗(x) dx = ∞.

We can then use the Comparison Test to prove
∫∞

a
f(x) dx = ∞.
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Trapezoid Rule

The Trapezoid Rule is used to estimate an integral
∫ b

a
f(x) dx.

Let:

h = ∆x =
b− a

n
xk = a + kh
yk = f(xk)∫ b

a
f(x) dx ≈ h

2
(y0 + 2y1 + 2y2 + · · ·+ 2yn−1 + yn)∫ b

a
f(x) dx ≈ b− a

2n
(y0 + 2y1 + 2y2 + · · ·+ 2yn−1 + yn)

Area Under a Parabola
It will be shown that the integral of a quadratic function depends

only on the width of the interval over which it’s integrated and the
values of the function at the midpoint and endpoints.

To simplify the calculations, assume that the interval is of the form
[−h, h] and that the quadratic function is of the form f(x) = ax2 +

bx + c.
∫ h

−h
f(x) dx may be integrated easily using the Fundamental

Theorem of Calculus.

∫ h

−h

f(x) dx =

∫ h

−h

ax2 + bx + c dx

= ax3/3 + bx2/2 + cx|h−h

= ah3/3 + bh2/2 + ch

− {a(−h)3/3 + b(−h)2/2 + c(−h)}
= ah3/3 + bh2/2 + ch + ah3/3− bh2/2 + ch

= 2ah3/3 + 2ch

=
h

3
· (2ah2 + 6c)

Let

y−h = f(−h) = ah2 − bh + c

y0 = f(0) = c

yh = f(h) = ah2 + bh + c

Since y−h + yh = 2ah2 + 2c, it is easily seen that 2ah2 + 6c = y−h +

4y0 + yh, and thus I =
h

3
· (y−h + 4y0 + yh).

Simpson’s Rule
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Simpson’s Rule may be used to approximate
∫ b

a
f(x) dx. It takes the

idea of the Trapezoid Rule one level higher.

Rationale

Partition the interval [a, b] evenly into n subintervals, where n is

even, so that each subinterval has width h =
b− a

n
and let yk = f(xk).

Estimate the integral over adjacent pairs of integrals by the integral
of a quadratic function agreeing with f at the midpoint and endpoints
of the interval.

Simpson’s Rule∫ x2

x0
f(x) dx ≈ h

3
· (y0 + 4y1 + y2)∫ x4

x2
f(x) dx ≈ h

3
· (y2 + 4y3 + y4)∫ x6

x4
f(x) dx ≈ h

3
· (y4 + 4y5 + y6)

. . .∫ xn

xn−2
f(x) dx ≈ h

3
· (yn−2 + 4yn−1 + yn)

If everything is added together, we obtain the estimate∫ b

a
f(x) dx ≈ h

3
·(y0 +4y1 +2y2 +4y3 +2y4 + · · ·+2yn−2 +4yn−1 +yn).

This is known as Simpson’s Rule.

Midpoint Rule∫ b

a
f(x) dx ≈ h ·

(
f

(
x0+x1

2

)
+ f

(
x1+x2

2

)
+ · · ·+ f

(
xn−1+xn

2

))
Trapezoid Rule∫ b

a
f(x) dx

≈ h

2
(y0 + 2y1 + 2y2 + · · ·+ 2yn−1 + yn)

=
b− a

2n
(y0 + 2y1 + 2y2 + · · ·+ 2yn−1 + yn)

Simpson’s Rule∫ b

a
f(x) dx

≈ h

3
· (y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2yn−2 + 4yn−1 + yn)

=
b− a

3n
· (y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2yn−2 + 4yn−1 + yn)

Error Estimates
Let ET be the error in the Trapezoid Rule.
Let EM be the error in the Midpoint Rule.
Let ES be the error in Simpson’s Rule.
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Let K be a bound on the second derivative.
Let K∗ be a bound on the fourth derivative.

|ET | ≤
K(b− a)3

12n2

|EM | ≤
K(b− a)3

24n2

|ES| ≤
K∗(b− a)5

180n4

Sequences
A sequence is essentially just a list.

Definition 12 (Sequence of Real Numbers). A sequence of real num-
bers is a function Z ∩ (n,∞) → R for some real number n.

Don’t let the description of the domain confuse you; it’s just a fancy
way of saying the domain consists of a set of consecutive integers start-
ing with some integer but never ending.

In most cases, the domain will be either the set of positive integers or
the set of non-negative integers.

Try to recognize that the entire definition is just a fancy, but precise,
way of saying a sequence is a list of numbers.

We can have sequences of objects other than real numbers, but in this
course we will restrict ourselves to sequences of real numbers and will
from now on just refer to sequences.

Notation
We generally use the notation {an} to denote a sequence, just as we

often use the notation f(x) to denote a function.

n is the independent variable, but when studying sequences we refer to
it as the index.

We’ll often define a sequence by giving a formula for an, just as we
often define an ordinary function f(x) by giving a formula.

Example: an =
1

n
. This sequence can also be described by 1,

1

2
,
1

3
,
1

4
, . . . .

Example: bn = n2. This sequence can also be described by 1, 4, 9, 16, 25, . . .
.

Convergence of a Sequence
We often want to know whether the terms of a sequence {an} ap-

proach some limit as n →∞. This is analogous to an ordinary limit at
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infinity, so we define a limit of a sequence by appropriately modifying
the definition of an ordinary limit at infinity. Recall:

Definition 13 (Limit at Infinity). limx→∞ f(x) = L if for every ε > 0
there is some real number N such that |f(x)−L| < ε whenever x > N .

We get a definition of a limit of a sequence by replacing f(x) by an and
replacing x by n, obtaining:

Definition 14 (Limit of a Sequence). lim an = L if for every ε > 0
there is some real number N such that |an − L| < ε whenever n > N .

Convergence of a Sequence
Note: We may write limn→∞ an, but it is acceptible to simply write

lim an since there is no reasonable interpretation other than for n →∞.

If a sequence has a limit, we say it converges; otherwise, we say it
diverges.

Properties of Limits of Sequences
Limits of sequences share many properties with ordinary limits. Each

of the following properties may be proven essentially the same way the
analogous properties are proven for ordinary limits. (Each of these
properties depends on the limit on the right side existing.)

• lim(an ± bn) = lim an ± lim bn

• lim kan = k lim an

• lim k = k
• lim anbn = lim an lim bn

• If lim bn 6= 0, lim
an

bn

=
lim an

lim bn

Sequences Through Ordinary Functions
The similarity of the definitions of limits of sequences and limits at

infinity yield the following corollary:

Theorem 7. Consider a sequence {an} and an ordinary function f .
If an = f(n) and limx→∞ f(x) = L, then lim an = L.

Proof. Suppose the hypotheses are satisfied and let ε > 0. Since
limx→∞ f(x) = L, if follows there must be some N ∈ R such that
|f(x) − L| < ε whenever x > N . Since an = f(n), it follows that
|an − L| < ε whenever n > N . �

Applying the Analogy
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This theorem implies each of the following limits, which can also be
proven independently.

• lim
1

n
= 0

• lim n
√

n = 1
• lim(1 + 1/n)n = e

• lim
ln n

n
= 0

• lim
n

2n
= 0

A similarly flavored limit which needs to be proven separately is

lim
2n

n!
= 0.

Using L’Hôpital’s Rule
L’Hôpital’s Rule cannot be used directly to find limits of sequences,

but it can be used indirectly.

We can often find lim an by finding a function f(x) such that an = f(n)
and then using L’Hôpital’s Rule to find limx→∞ f(x).

Example

We want to find lim
n ln n

n2 + 1
. We let f(x) =

x ln x

x2 + 1
. We can then use

L’Hôpital’s Rule to find

lim
x→∞

f(x) = lim
x→∞

x ln x

x2 + 1
= lim

x→∞

x · 1

x
+ (ln x) · 1

2x

= lim
x→∞

1 + ln x

2x
= lim

x→∞

1/x

2
= 0,

so lim
n ln n

n2 + 1
= 0.

Monotonic Sequences
Sometimes it is possible and even necessary to determine whether a

sequence converges without having to find what it converges to. This
is often the case with monotonic sequences.

Definition 15 (Increasing). A sequence {an} is increasing if ak ≤ ak+1

for all k in its domain.

Definition 16 (Strictly Increasing). A sequence {an} is strictly in-
creasing if ak < ak+1 for all k in its domain.
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Definition 17 (Decreasing). A sequence {an} is decreasing if ak ≥
ak+1 for all k in its domain.

Definition 18 (Strictly Decreasing). A sequence {an} is strictly de-
creasing if ak > ak+1 for all k in its domain.

Monotonic Sequences

Definition 19 (Monotonicity). If a sequence is either increasing or
decreasing, it is said to be monotonic.

Definition 20 (Boundedness). A sequence {an} is said to be bounded
if there is a number B ∈ R such that |an| ≤ B for all n in the domain
of the sequence. B is referred to as a bound.

Theorem 8 (Monotone Convergence Theorem). A monotonic sequence
converges if and only if it is bounded.

The Monotone Convergence Theorem becomes very important in de-
termining the convergence of infinite series.

The Completeness Axiom
The proof of the Monotone Convergence Theorem depends on:

The Completeness Axiom: If a nonempty set has a lower bound, it
has a greatest lower bound; if a nonempty set has an upper bound, it
has a least upper bound.

The terms lower bound, greatest lower bound, upper bound and least
upper bound mean precisely what they sound like.

Exercise: Write down precise definitions.

We will give a proof of the Monotone Convergence Theorem for an
increasing sequence. A similar proof can be created for a decreasing
sequence.

Proof of the Monotone Convergence Theorem

Proof. If a sequence is increasing and has a limit, it is clearly bounded
below by its first term and bounded above by its limit and thus must
be bounded, so we’ll just show that a sequence which is increasing and
bounded must have a limit.

So suppose {an} is increasing and bounded. It must have an upper
bound and thus, by the Completeness Axiom, must have a least upper
bound B. Let ε > 0. There must be some element aN of the sequence
such that B − ε < aN ≤ B. aN ≤ B since B is an upper bound. If
B − ε < aN was false for all elements of the sequence, B − ε would be
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an upper bound smaller than B, so B would not be the least upper
bound.

It follows that if n > N , B − ε < aN < an ≤ B, so |an −B| < ε and it
follows from the definition of a limit that lim an = B. �

Infinite Series

Definition 21 (Infinite Series). An expression a1 + a2 + a3 + · · · =∑∞
k=1 ak is called an infinite series.

The terms of a series form a sequence, but in a series we attempt to
add them together rather than simply list them.

We don’t actually have to start with k = 1; we could start with any
integer value although we will almost always start with either k = 1 or
k = 0.

Convergence of Infinite Series
We want to assign some meaning to a sum for an infinite series. It’s

naturally to add the terms one-by-one, effectively getting a sum for
part of the series. This is called a partial sum.

Definition 22 (Partial Sum). Sn =
∑n

k=1 ak is called the nth partial
sum of the series

∑∞
k=1 ak.

If the sequence {Sn} of a series converges to some number S, we say
the series converges to S and write

∑∞
k=1 ak = S. We call S the sum

of the series.

If the series doesn’t converge, we say it diverges.

The Series 0.33333 . . .
With the definition of a series, we are able to give a meaning to

a non-terminating decimal such as 0.33333 . . . by viewing it as 0.3 +

0.03 + 0.003 + 0.0003 + · · · =
3

10
+

3

102
+

3

103
+ · · · =

∑∞
k=1

3

10k
.

Using the definition of convergence and a little algebra, we can show

this series converges to
1

3
as follows.

The Series 0.33333 . . .

The nth partial sum Sn =
∑n

k=1

3

10k
=

3

10
+

3

102
+

3

103
+ · · ·+ 3

10n−1
.

Multiplying both sides by 10, we get 10Sn =
∑n

k=1

3

10k−1
= 3 +

3

10
+

3

102
+ · · ·+ 3

10n−2
.
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Subtracting, we get 10Sn − Sn = 3 − 3

10n−1
, so 9Sn = 3 − 3

10n−1
and

Sn =
1

3
− 1/3

10n−1
.

Clearly, lim Sn =
1

3
, so the series

∑∞
k=1

3

10k
converges to

1

3
.

Geometric Series

A similar analysis may be applied to any geometric series.

Definition 23 (Geometric Series). A geometric series is a series which
may be written in the form

∑∞
k=1 ark−1 = a + ar + ar2 + ar3 + . . . .

In other words, ak = ark−1. The first term is generally referred to as a
and r is called the common ratio.

We can obtain a compact formula for the partial sums as follows:

Geometric Series

Letting Sn = a+ar+ar2+ar3+. . . arn−1, we can multiply both sides
by the common ratio r to get rSn = ar + ar2 + ar3 + . . . arn−1 + arn.

Subtracting, we get Sn − rSn = a− arn

(1− r)Sn = a(1− rn)

Sn =
a(1− rn)

1− r
if r 6= 1.

Geometric Series

Sn =
a(1− rn)

1− r
if r 6= 1.

If |r| < 1, it is clear that rn → 0 as n →∞, so Sn →
a

1− r
.

If |r| > 1, then |rn| → ∞ as n →∞, so {Sn} clearly diverges.

If r = −1, then Sn oscillates back and forth between 0 and 2a, so {Sn}
clearly diverges.

If r = 1, then Sn = a + a + a + · · ·+ a = na, so {Sn} clearly diverges.

We may summarize this information by noting the geometric series∑∞
k=1 ark−1 converges to

a

1− r
if |r| < 1 but diverges if |r| ≥ 1.

Note on an Alternate Derivation
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We could have found Sn differently by noting the factorization 1 −
rn = (1− r)(1 + r + r2 + . . . rn−1), which is a special case of the general
factorization formula an−bn = (a−b)(an−1+an−2b+an−3b2+. . . abn−2+
bn−1).

It immediately follows that 1 + r + r2 + . . . rn−1 =
1− rn

1− r
.

Positive Term Series

Definition 24 (Positive Term Series). A series
∞∑

k=1

ak is called a Pos-

itive Term Series is ak ≥ 0 for all k.

Theorem 9. A positive term series converges if and only if its sequence
of partial sums is bounded.

Proof. Looking at the sequence of partial sums, Sn+1 =
n+1∑
k=1

ak =
n∑

k=1

ak+

an+1 = Sn + an+1 ≥ Sn, since an+1 ≥ 0. Thus {Sn} is monotonic and,
by the Monotone Convergence Theorem, converges is and only if it’s
bounded. �

Note and Notation
This can be used to show a series converges but its more important

purpose is to enable us to prove the Comparison Test for Series.

Notation: When dealing with positive term series, we may write
∞∑

k=1

ak <

∞ when the series converges and
∞∑

k=1

ak = ∞ when the series diverges.

This is analogous to the notation used for convergence of improper
integrals with positive integrands.

Example:
∞∑

k=1

1

k2 Converges

Proof. Let Sn =
n∑

k=1

1

k2
. Since, for k ≥ 2,

1

k2
≤ 1

x2
if k − 1 ≤ x ≤ k, it

follows that
1

k2
=

∫ k

k−1

1

k2
dx ≤

∫ k

k−1

1

x2
dx.
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Thus 0 ≤ Sn =
n∑

k=1

1

k2
= 1 +

n∑
k=2

1

k2
≤ 1 +

n∑
k=2

∫ k

k−1

1

x2
dx = 1 +∫ n

1

1

x2
dx = 1 +

[
−1

x

]n

1

= 1 +

[
− 1

n

]
− (−1) = 2− 1/n ≤ 2.

Since the sequence of partial sums is bounded, the series converges.
�

Estimating the Error

Estimating
∞∑

k=1

1

k2
by

n∑
k=1

1

k2
leaves an error

∞∑
k=n+1

1

k2
.

Using the same type of reasoning used to show the series converges

shows this sum is no greater than

∫ ∞

n

1

x2
dx, which can be evaluated

as follows:∫ ∞

n

1

x2
dx = lim

t→∞

∫ t

n

1

x2
dx = lim

t→∞

[
−1

x

]t

n

= lim
t→∞

[
−1

t

]
−

[
− 1

n

]
= lim

t→∞

[
1

n
− 1

t

]
=

1

n

We thus see estimating the series by the nth partial sum leaves an error

no larger than
1

n
, which can be made as small as desired by making n

large enough.

The Comparison Test
Recall:

Theorem 10 (Comparison Test for Improper Integrals). Let 0 ≤
f(x) ≤ g(x) for x ≥ a.

(1) If
∫∞

a
g(x) dx < ∞, then

∫∞
a

f(x) dx < ∞.

(2) If
∫∞

a
f(x) dx = ∞, then

∫∞
a

g(x) dx = ∞.

The Comparison Test
The Comparison Test for Improper Integrals has a natural analogue

for Positive Term Series:

Theorem 11 (Comparison Test for Positive Term Series). Let 0 ≤
an ≤ bn for sufficiently large n.

(1) If
∞∑

n=1

bn < ∞, then
∞∑

n=1

an < ∞.
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(2) If
∞∑

n=1

an = ∞, then
∞∑

n=1

bn = ∞.

The Comparison Test for Positive Term Series is used analogously to
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Proof. Suppose the integral converges. For convenience, we will assume
α = 1. The proof can easily be modified if the integral is defined for
some other α, but the argument is made most clearly without that
complication.

Since f(x) is clearly decreasing, ak ≤ f(x) for k − 1 ≤ x ≤ k, so

ak ≤
∫ k

k−1
f(x) dx and Sn =

∑n
k=1 ak ≤ a1 +

∫ n

1
f(x) dx.

Since the improper integral converges, the integral on the right is
bounded. Thus the sequence of partial sums is bounded and the series
must converge.

If the integral diverges, we may use the observation
Sn ≥

∫ n+1

1
f(x) dx to show the sequence of partial sums is not bounded

and the series must diverge. �

Error Estimation
The proof of the Integral Test provides a clue about the error involved

if one uses a partial sum to estimate the sum of an infinite series.

If one estimates the sum of a series
∞∑

k=1

ak by its nth partial sum sn =

n∑
k=1

ak, the error will equal the sum
∞∑

k=n+1

ak of the terms not included

in the partial sum.

If the series is a positive term series and ak = f(k) for a decreasing
function f(x), the analysis used in proving the Integral Test leads to
the conclusion that this error is bounded by

∫∞
n

f(x) dx.

Example

Suppose we estimate the sum
∞∑

k=1

1

k2
by s100 and want a bound on

the error.

The error will be bounded by

∫ ∞

100

1

x2
dx = limt→∞

∫ t

100

1

x2
dx = limt→∞

[
−1

x

]t

100

= limt→∞

[
−1

t

]
−

[
− 1

100

]
=

1

100
.

Determining a Number of Terms to Use
We can also figure out how many terms are needed to estimate a

sum to within a predetermined tolerance ε. Using the same notation
as before, this can be guaranteed if
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(1)

∫ ∞

n

f(x) dx ≤ ε.

We can look at (1) as an inequality in n and solve for n.

This may be easier said than done.

Example

Suppose we want to estimate
∞∑

k=1

1

k3
to within 10−8. We need to find

n such that

∫ ∞

n

1

x3
dx ≤ 10−8.

Integrating:

∫ ∞

n

1

x3
dx = lim

t→∞

∫ t

n

1

x3
dx = limt→∞

[
− 1

2x2

]t

n

= limt→∞

[
− 1

2t2

]
−

[
− 1

2n2

]
=

1

2n2
.

So we need
1

2n2
≤ 10−8, which may be solved as follows:

108 ≤ 2n2

5 · 107 ≤ n2√
5 · 107 ≤ n

Since
√

5 · 107 ≈ 7071.07, we need to add 7072 terms to estimate the
sum to within 10−8.

Standard Series
P-Test for Series
∞∑

k=1

1

kp

{
< ∞ if p > 1

= ∞ if p ≤ 1.

Geometric Series
∞∑

k=0

ark

{
converges if |r| < 1

diverges if |r| ≥ 1.

Absolute Convergence

Definition 25 (Absolute Convergence).
∑∞

k=1 ak is said to be abso-
lutely convergent if

∑∞
k=1 |ak| is convergent.

Theorem 13. A series which is absolutely convergent is convergent.

Clearly, if this theorem wasn’t true, the terminology of absolute con-
vergence would be very misleading.

Proof of Absolute Convergence Theorem
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Proof. Suppose
∑∞

k=1 ak is absolutely convergent.

Let a+
k =

{
ak if ak ≥ 0

0 if ak < 0.

Let a−k =

{
−ak if ak ≤ 0

0 if ak > 0.

The terms of the positive term series
∑∞

k=1 ak+ and
∑∞

k=1 ak− are
both bounded by the terms of the convergent series

∑∞
k=1 |ak|. It follows

immediately that
∑∞

k=1 ak =
∑∞

k=1(a
+
k −a−k ) =

∑∞
k=1 a+

k −
∑∞

k=1 a−k also
converges. �

Definition 26 (Conditional Convergence). A convergent series which
is not absolutely convergent is said to be conditionally convergent.

Testing for Absolute Convergence
All the tests devised for positive term series automatically double as

tests for absolute convergence.

We will study one more test for convergence, the Ratio Test.

Ratio Test
The Ratio Test is useful for series which behave almost like geometric

series but for which it can be difficult to use the Comparison Test. It is
not very useful for series that ordinarily would be compared to P-series.

The ratio test is usually stated as a test for absolute convergence, but
can also be thought of as a test for convergence of positive term se-
ries. We state both versions below and use whichever version is more
convenient.

Ratio Tests

Theorem 14 (Ratio Test for Positive Term Series). Consider a positive

term series
∑∞

k=1 ak and let r = limk→∞
ak+1

ak

.

If r < 1, then the series converges.
If r > 1, then the series diverges.
If r = 1 or the limit doesn’t exist, the ratio test is inconclusive.

Theorem 15 (Ratio Test for Absolute Convergence). Consider a se-

ries
∑∞

k=1 ak and let r = limk→∞

∣∣∣∣ak+1

ak

∣∣∣∣.
If r < 1, then the series converges absolutely.
If r > 1, then the series diverges.
If r = 1 or the limit doesn’t exist, the ratio test is inconclusive.

Proof of the Ratio Test
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We prove the ratio test for positive term series.

Proof. If r > 1, the terms of the series eventually keep getting larger,
so the series clearly must diverge. Thus, we need only consider the
case r < 1. Choose some R ∈ R such that r < R < 1. There must
be some N ∈ Z such that

ak+1

ak

< R whenever k ≥ N . We thus have

aN+1 < aNR, aN+2 < aN+1R < aNR2, aN+3 < aN+2R < aNR3, and so
on. Since aN + aNR + aNR2 + aNR3 + . . . is a geometric series which
common ratio 0 < R < 1, it must converge. By the Comparison Test,
the original series must converge as well. �

Strategy For Testing Convergence
It’s important to have a strategy to determine whether a series∑∞
k=1 ak converges. The following is one reasonable strategy.

• Begin by making sure the individual terms converge to 0, since
if the terms don’t approach 0 then we know the series must
diverge and there’s no reason to check further.

• Next, check whether the series is one of the standard series, such

as a P-Series
∞∑

k=1

1

kp
or a Geometric Series

∞∑
k=1

ark−1. If so, we

can immediately determine whether it converges. Otherwise,
we continue.

• We start by testing for absolute convergence.

Strategy For Testing Convergence
• Find a reasonable series to compare it to. One way is to look

at the different terms and factors in the numerator and de-
nominator, picking out the largest (using the general criteria
powers of logs << powers << exponentials << factorials), and
replacing anything smaller than the largest type by, as appro-
priate, 0 (for terms) or 1 (for factors). If we are lucky, we can

use the resulting series along with the comparison test to de-
termine whether our original series is absolutely convergent. If
we’re not lucky, we have to try something else.

• If the series seems to almost be geometric, the Ratio Test is
likely to work.

• As a last resort, we can try the Integral Test.
• If the series is not absolutely convergent, we may be able to

show it converges conditionally either by direct examination or
by using the Alternating Series Test.

Strategy for Analyzing Improper Integrals
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Essentially the same strategy may be used to analyze convergence of
improper integrals.

Morphing Geometric Series Into Power Series
Suppose we take the geometric series 1 + r + r2 + r3 + . . . , which we

know converges to
1

1− r
for |r| < 1, and replace r by x:

1 + x + x2 + x3 + . . . converges to
1

1− x
for |x| < 1.

We haven’t really changed anything, but 1 + x + x2 + x3 + . . . looks a
little like a polynomial. It’s an example of a power series.

Power Series

Definition 27 (Power Series). An expression
∞∑

n=0

an(x− c)n is called a

power series centered at c.

Note: When we write
∞∑

n=0

an(x−c)n, we really mean a0 +
∞∑

n=1

an(x−c)n,

since a0(x − c)0 isn’t defined when x = c, but it’s more convenient to
just write the sum starting from n = 0.

Power Series
We will mostly consider power series centered at 0, written in the

form
∞∑

n=0

anxn, but most of the facts about such series apply to series

centered elsewhere.

Within their intervals of convergence, power series can be manipulated
like polynomials. They can be added, subtracted and multiplied in
the natural way and they can be differentiated and integrated term by
term.

Radius of Convergence

Theorem 16. Given a power series
∞∑

n=0

an(x−c)n, there is some R ≥ 0,

possibly ∞, such that the series is absolutely convergent for |x− c| < R
and divergent for |x− c| > R.

R is called the radius of convergence. If R = ∞, then the series is
absolutely convergent for all x.
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The interval (c−R, c + R) is referred to as the interval of convergence,
although it’s possible the interval of convergence contains one or both
of the endpoints.

Proof

We will prove the theorem for c = 0 by showing that if the series
converges for x = x0, it must converge whenever |x| < |x0|.

So assume the series converges for x = x0. It follows that anxn
0 → 0 as

n → ∞, since otherwise the series could not converge. It follows that
there is some bound B such that |anxn

0 | < B for all n.

Proof (Continued)

Now let |x| < |x0| and examine the magnitude of anxn. |anxn| =

|anxn
0 | ·

∣∣∣∣ x

x0

∣∣∣∣n

≤ B

∣∣∣∣ x

x0

∣∣∣∣n

.

Since
∞∑

n=0

B

∣∣∣∣ x

x0

∣∣∣∣n

is a geometric series with common ratio

∣∣∣∣ x

x0

∣∣∣∣ < 1, it

must converge. By the Comparison Test,
∞∑

n=0

|anxn| < ∞, and thus

∞∑
n=0

anxn is absolutely convergent.

Finding the Radius of Convergence

For most power series, the easiest way to determine the radius of
convergence is to use the ratio test.

Given a series
∞∑

n=0

anxn, we calculate

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ =

∣∣∣∣an+1

an

x

∣∣∣∣.
We find the limit as n →∞ and find the values of x for which the limit
is less than or equal to 1.

One complication that can occur is that some coefficients an equal 0.
In this case, we look at the ratios of the adjacent terms that actually
appear.

Algebra and Calculus of Power Series

Within their intervals of convergence, although possibly not at the
endpoints, power series may be added, subtracted, multiplied, differ-
entiated and integrated in the natural way. Specifically:
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Let A(x) =
∞∑

n=0

anxn and B(x) =
∞∑

n=0

bnxn in some open interval,

in the sense that the power series converge to A(x) and B(x) in the
interval. Then:

Algebra and Calculus of Power Series

• A(x) + B(x) =
∞∑

n=0

(an + bn)xn

• A(x)−B(x) =
∞∑

n=0

(an − bn)xn

• A(x)B(x) =
∞∑

n=0

(
∑n

i=0 aibn−i)x
n

• A′(x) =
∞∑

n=1

nanxn−1

•
∫

A(x) dx =
∞∑

n=0

anxn+1

n + 1
+ k

Example: ln(1 + x)

Each of the following calculations can be done, based on the prop-
erties of power series, whenever |x| < 1:

Start with 1 + x + x2 + x3 + · · · =
1

1− x
.

Replace x by −x to get 1− x + x2 − x3 + · · · =
1

1 + x
.

Integrate to get (x− x2

2
+

x3

3
− x4

4
+ . . . ) + k = ln(1 + x).

Plugging in x = 0, we find k = 0 to obtain ln(1 + x) = x− x2

2
+

x3

3
−

x4

4
+ . . . .

The power series also converges (by the Alternating Series Test) for
x = 1, giving ln 2 as the sum of the Alternating Harmonic Series:

ln 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . .

arctan
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We can also obtain a power series converging to the arctangent func-

tion by starting with the power series 1 − x + x2 − x3 + · · · =
1

1 + x
.

All the following calculations again hold for |x| < 1.

Replacing x by x2 gives 1− x2 + x4 − x6 + x8 − x10 + · · · =
1

1 + x2
.

Integrating: (x− x3

3
+

x5

5
− x7

7
+ . . . ) + k = arctan x.

Plugging in x = 0 yields k = 0, so arctan x = x− x3

3
+

x5

5
− x7

7
+ . . .

for |x| < 1.

Calculation of π

arctan x = x− x3

3
+

x5

5
− x7

7
+ . . . for |x| < 1.

Here, too, the series actually converges for x = 1 and converges to

arctan 1. Since arctan 1 =
π

4
, we get the interesting series expansion:

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ . . . .

Obtaining a Series Which Converges to a Given Function
Suppose we have a function f(x) and want to find a power series∑∞
n=0 an(x− c)n which converges to f(x) in some interval. It turns out

there’s just one possible choice, which is called the Taylor Series cen-
tered at x = c. To see this, assume f(x) possesses as many derivatives
as we need and f(x) =

∑∞
n=0 anxn = a0 + a1x + a2x

2 + a3x
3 + . . . .

Obtaining a Power Series
f(x) =

∑∞
n=0 anxn = a0 + a1x + a2x

2 + a3x
3 + . . . .

If we try to evaluate the series for x = 0, we obviously get a0, so
f(0) = a0 or a0 = f(0). In other words, there’s just one possibility for
a0.

Differentiating, f ′(x) = a1 + 2a2x + 3a3x
2 + 4a4x

3 + . . . , so f ′(0) = a1

or a1 = f ′(0).

Differentiating again, f ′′(x) = 2a2 + 3 ·2a3x + 4 ·3a4x
2 + 5 ·4a5x

3 + . . . ,

so f ′′(0) = 2a2 or a2 =
f ′′(0)

2
.

Going one step further, f ′′′(x) = 3 · 2a3 + 4 · 3 · 2a4x + 5 · 4 · 3a5x
2 + 6 ·

5 · 4a6a
3 + . . . , so f ′′′(0) = 3 · 2a3 or a3 =

f ′′′(0)

3 · 2
.

The Taylor Series



55

Summarizing the results so far:

a0 = f(0)

a1 = f ′(0)

a2 =
f ′′(0)

2

a3 =
f ′′′(0)

3 · 2

One suspects a4 =
f (4)(0)

4 · 3 · 2
, which may be written as a4 =

f (4)(0)

4!
.

One thus suspects that, in general, an =
f (n)(0)

n!
and this is indeed the

case. This leads to the following definition of a Taylor Series:

Taylor Series

Definition 28 (Taylor Series). The Taylor Series for a function f(x),

centered at x = c, is defined as T (x) = Tf (x) =
∞∑

n=0

f (n)(c)

n!
(x− c)n.

Most of the time, we will center Taylor Series at 0, in which case the

formula simplifies to T (x) =
∞∑

n=0

f (n)(0)

n!
xn. These series are also known

as Maclaurin Series.

Taylor Series
We have shown that if a power series converges to a function, it

must be the Taylor Series. On the other hand, the Taylor Series for a
function does not always have to converge to that function although it
often will . . . otherwise we wouldn’t bother with them.

The series previously shown to converge to
1

1− x
, ln(1+x) and arctan x

for |x| < 1 therefore must be the Taylor Series, centered at 0, for those
functions.

Taylor Series for the Exponential Function
Let f(x) = exp(x) = ex. Since all the derivatives of the exponential

function are the same, we have f (n)(x) = ex for all n and thus f (n)(0) =
e0 = 1 for all n.

The Taylor Series is thus T (x) =
∞∑

n=0

f (n)(0)

n!
xn =

∞∑
n=0

1

n!
xn =

∞∑
n=0

xn

n!
.
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We will show this converges for all x and it converges to ex for all x,
so we may write

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ . . . .

Radius of Convergence

To show where the Taylor Series for ex converges, we use the Ratio
Test.

∣∣∣∣(n + 1)st term

nth term

∣∣∣∣ =

∣∣∣∣xn+1/(n + 1)!

xn/n!

∣∣∣∣
=

∣∣∣∣ xn+1

(n + 1)!
· n!

xn

∣∣∣∣ =

∣∣∣∣ x

n + 1

∣∣∣∣ → 0

as n →∞.

By the Ratio Test, it follows that the series converges for all x.

Another Derivation of the Taylor Series

There’s a second way of coming up with the formula for a Taylor
Series which naturally leads to an estimate for the error if one estimates
the value of the function by a partial sum of the Taylor Series.

Definition 29 (Taylor Polynomial). The nth partial sum of a Taylor
Series T (x) is denoted by Tn(x) and is called a Taylor Polynomial.

Consider
∫ x

0
f ′(t) dt. Using the Fundamental Theorem of Calculus,∫ x

0
f ′(t) dt = f(t)

∣∣∣∣x

0

= f(x)− f(0).

It follows we can write f(x) = f(0) +
∫ x

0
f ′(t) dt.

If we repeatedly integrate by parts, we can obtain the terms of the
Taylor Series.

Integrating By Parts

f(x) = f(0) +
∫ x

0
f ′(t) dt

We’ll use the version
∫

uv′ dt = uv −
∫

u′v dt, taking
u = f ′(t), v′ = 1,
so u′ = f ′′(t), v = t− x.

Note the trick here: We could take v = t, but it turns out that doesn’t
work well, while taking v = t− x works very nicely, and we obtain:
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0

f ′(t) dt = f ′(t)(t− x)

∣∣∣∣x

0

−
∫ x

0

f ′′(t)(t− x) dt

= f ′(0)x−
∫ x

0

f ′′(t)(t− x) dt,

so

f(x) = f(0) + f ′(0)x−
∫ x

0
f ′′(t)(t− x) dt.

Continuing
In order to have a sum rather than a difference, we’ll rewrite that as

f(x) = f(0) + f ′(0)x +
∫ x

0
f ′′(t)(x− t) dt.

Now integrate by parts again, taking u = f ′′(t), v′ = x− t, so

u′ = f ′′′(t), v = −(x− t)2

2
, and

∫ x

0

f ′′(t)(x− t) dt

= f ′′(t)

(
−(x− t)2

2

)∣∣∣∣x

0

−
∫ x

0

f ′′′(t)

(
−(x− t)2

2

)
dt

=
f ′′(0)x2

2
+

1

2

∫ x

0

f ′′′(t)(x− t)2 dt

.

Continuing
We thus have

f(x) = f(0) + f ′(0)x +
f ′′(0)x2

2
+

1

2

∫ x

0
f ′′′(t)(x− t)2 dt.

If we carry out another step, we obtain:

f(x) = f(0)+f ′(0)x+
f ′′(0)x2

2
+

f ′′′(0)x3

3 · 2
+

1

3 · 2
∫ x

0
f (4)(t)(x− t)3 dt.

We can continue indefinitely, obtaining the following following result.

Taylor’s Theorem

Theorem 17 (Taylor’s Theorem). If f(x) has sufficient derivatives in
an interval to evaluate all the terms needed, then f(x) = Tn(x)+Rn(x),
where Tn(x) is the nth degree Taylor Polynomial for f(x) centered at

x = c and Rn(x) =
1

n!

∫ x

c
f (n+1)(t)(x− t)n dt.

Rn(x) is called the remainder term and can be thought of as the error
involved if one uses Tn(x), the nth degree Taylor Polynomial, to esti-
mate f(x). It gives us a way of determining whether the Taylor Series
for a function converges to that function, since
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Convergence

Corollary 18. The Taylor Series converges to f(x) if and only if
limn→∞ Rn(x) = 0.

Suppose we can find a bound B on |f (n+1)(t)| on the interval [c, x]. We
are tacitly assuming c < x, but the result we get will still hold if x < c.
It follows that∣∣∫ x

c
f (n+1)(t)(x− t)n dt

∣∣ ≤ B
∫ x

c
(x−t)n dt = B

[
−(x− t)n+1

n + 1

]x

c

= B
(x− c)n+1

n + 1
.

It follows that |Rn(x)| ≤ 1

n!
·B (x− c)n+1

n + 1
=

B(x− c)n+1

(n + 1)!
.

The Remainder Term
We have shown:

Theorem 19. If |f (n+1)| is bounded by B on an interval containing c

and x, then |Rn(x)| ≤ B|x− c|n+1

(n + 1)!
.

Corollary 20. If there is a uniform bound on all the derivatives of a
function on an interval, then the Taylor Series for that function must
converge to that function at all points on that interval.

One immediate consequence is that the Taylor Series for ex, sin x and
cos x all converge to those functions everywhere!

Parametric Equations
We sometimes have several equations sharing an independent vari-

able. In those cases, we call the independent variable a parameter and
call the equations parametric equations. In many cases, the domain of
the parameter is restricted to an interval.

Example: Motion of a Projectile
Suppose a projectile is launched at an initial speed v0, from a height

h0, at an angle θ with the horizontal. It’s natural to consider the
horizontal distance and the height of the projectile separately. Let

t represent time,
x represent the horizontal distance from the launching spot,
y represent the height, and
g the acceleration due to gravity, in the appropriate units.

In the English system, g ≈ −32.2 and in the metric system g ≈ −9.8.
In each case, g is negative since gravity acts in the downward, or neg-
ative, direction.
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Analyzing Horizontal Motion
If one was looking at the projectile from above and had no depth

perception, it would look as if the projectile was travelling in a straight
line at a constant speed equal to v0 cos θ.

Since the speed is constant, it should be clear that

x = v0 cos θt.

Analyzing Vertical Motion
If one looked at the projectile from behind, in the plane of its motion,

and had no depth perception, it would look as if the projectile was first
going straight up and then falling, with an initial upward speed of
v0 sin θ but subject to gravity causing an acceleration g.

If we let vy represent the speed at which the projectile appears to be

rising,
dvy

dt
= g, so vy =

∫
g dt = gt + c for some constant c ∈ R.

Analyzing Vertical Motion
Since vy = v0 sin θ when t = 0, we have v0 sin θ = g · 0 + c, so

c = v0 sin θ and vy = gt + v0 sin θ.

Since vy =
dy

dt
, it follows that y =

∫
gt + v0 sin θ dt, so y =

1

2
gt2 +

v0 sin θt + k for some k ∈ R.

Since y = y0 when t = 0, it follows that

y0 =
1

2
g · 02 + v0 sin θ · 0 + k,

so k = y0 and y =
1

2
gt2 + v0 sin θt + y0.

Putting It Together
We thus have the parametric equations:

x = v0 cos t

y =
1

2
gt2 + v0 sin θt + y0

These equations will hold until the projectile strikes something.

The Unit Circle
The unit circle is another natural example of the use of parametric

equations, since the two coordinates of a point on the circle both depend
on the angle with the horizontal made by the radius through the point.

Indeed, by definition, if we let (x, y) be the coordinates of the point on
the unit circle for which the angle referred to above is θ, then x = cos θ
and y = sin θ. Thus,
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x = cos θ
y = sin θ
0 ≤ θ ≤ 2π
is a pair of parametric equations describing the circle. Indeed, as θ
goes from 0 to 2π, the point (x, y) traverses the circumference of the
circle.

Slopes of Tangents
Assume we have parametric equations x = f(t), y = g(t), a ≤ t ≤ b

and both f(t) and g(t) are differentiable. If we’re at a point where
f ′(t) 6= 0, then there is some interval containing that point in which
f(t) is monotonic and will have a local inverse. In that interval, we
may write t = f−1(x).

We may use the Chain Rule to obtain
dy

dt
=

dy

dx

dx

dt
, and thus

dy

dx
=

dy

dt
dx

dt

.

This enables us to find the slope of the tangent to the graph of the
parametric equations at any point where f ′(t) 6= 0.

The points where f ′(t) = 0 are points where the tangent lines are
vertical, so that’s not a tremendous problem.

Arc Length
Given parametric equations x = f(t), y = g(t), a ≤ t ≤ b, {(x, y)|x =

f(t), y = g(t), a ≤ t ≤ b} will generally form a curve. If f(t) and g(t)
are differentiable, we can find its length.

Let
n be a positive integer,

∆t =
b− a

n
,

tk = a + k∆t,
xk = f(tk),
yk = g(tk),
s = the length of the curve,
∆sk = the length of the portion of the curve for tk−1 ≤ t ≤ tk.

Clearly, s =
∑n

k=1
∆sk = ∆s1 + ∆s2 + ∆s3 + · · ·+ ∆sn.

Arc Length
We can approximate ∆sk by the length of the line segment connect-

ing (xk−1, yk−1) and (xk, yk). Using the distance formula, we approxi-

mate ∆sk ≈
√

(xk − xk−1)2 + (yk − yk−1)2.
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This is precisely what was done in approximating arc length when a
curve was the graph of an ordinary function. What will differ for para-
metric curves will be the way we estimate

√
(xk − xk−1)2 + (yk − yk−1)2.

Using the Mean Value Theorem, there is some ξk ∈ [tk−1, tk] such that
xk − xk−1 = f ′(ξk)∆t.

Similarly, there is some ηk ∈ [tk−1, tk] such that yk − yk−1 = g′(ηk)∆t.

Thus,
∆sk ≈

√
(f ′(ξk)∆tk)2 + (g′(ηk)∆t)2

s =
∑n

k=1
∆sk

∆sk ≈
√

(f ′(ξk)∆tk)2 + (g′(ηk)∆t)2 =
√

(f ′(ξk)2 + g′(ηk)2)(∆t)2 =√
f ′(ξk)2 + g′(ηk)2∆t.

There won’t be much difference between g′(ηk) and g′(ξk) if ∆t is small.
Since we’re only approximately the arc length anyway, we may write
∆sk ≈

√
f ′(ξk)2 + g′(ξk)2∆t

We thus can approximate

s ≈
n∑

k=1

√
f ′(ξk)2 + g′(ξk)2∆t.

s ≈
n∑

k=1

√
f ′(ξk)2 + g′(ξk)2∆t

The sum is a Riemann Sum for the function
√

f ′(t)2 + g′(t)2, so we
may expect

s =

∫ b

a

√
f ′(t)2 + g′(t)2 dt.

This may also be written in the form

s =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

s =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt

For curves described by ordinary equations, this formula for arc
length reduces to the familiar one. Suppose we have a curve y = f(x),
a ≤ x ≤ b.

Every such function has a Canonical Parametrization:
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x = t
y = f(t)
a ≤ t ≤ b

Since
dx

dt
=

d

dt
(t) = 1, while

dy

dt
=

d

dt
(f(t)) = f ′(t), we may write

s =

∫ b

a

√
12 + f ′(t)2 dt =

∫ b

a

√
1 + f ′(t)2 dt.

This is the formula previously derived for curves given by ordinary
functions.

Circumference of a Circle
The arc length formula can be used to derive the formula for the

circumference of a circle.

A circle of radius r, centered at the origin, may be parametrized by

x = r cos t
y = r sin t
0 ≤ t ≤ 2π.

We have
dx

dt
= −r sin t,

dy

dt
= r cos t, so

√(
dx

dt

)2

+

(
dy

dt

)2

=
√

(−r sin t)2 + (r cos t)2 =

√
r2 sin2 t + r2 cos2 t =

√
r2(sin2 t + cos2 t) =

√
r2 · 1 = r.

Circumference of a Circle√(
dx

dt

)2

+

(
dy

dt

)2

= r

s =
∫ 2π

0
r dt = rt

∣∣∣∣2π

0

= r · 2π − r · 0 = 2πr.

This calculation is really circular, since π is defined as the ratio of the
circumference of a circle to its diameter.

The Dot Product

< a, b > · < c, d >= ac + bd

< a, b, c > · < d, e, f >= ad + be + cf

The Dot Product and Angle Between Vectors
Look at a triangle formed by vectors u, v and v − u going from the

tip of u to the tip of v.
Write u =< a, b >, v =< c, d >, so v − u =< c− a, d− b >, and let

θ be the angle between u and v.
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Apply the Law of Cosines:
|v − u|2 = |u|2 + |v|2 − 2|u| · |v| cos θ.
We get (c− a)2 + (d− b)2 = (a2 + b2) + (c2 + d2)− 2|u| · |v| cos θ.
Simplifying, (c2 − 2ac + a2) + (d2 − 2bd + b2) = a2 + b2 + c2 + d2 −

2|u| · |v| cos θ, so
−2ac− 2bd = −2|u| · |v| cos θ.
Dividing both sides by −2, we get ac + bd = |u| · |v| cos θ. From

this, we see that the connection between the dot product and the angle
between the vectors:

u · v = |u| · |v| cos θ.
Extra Credit: Show that this is also true in three dimensions.

Orthogonality
Orthogonal is a way of saying perpendicular.

The dot product gives an easy way of determining whether two vec-
tors are orthogonal–just calculate the dot product of the vectors and
check whether it’s equal to 0.

Properties of the Dot Product
• Closure: No. The dot product of two vectors is a scalar, not a

vector.
• Commutative Law: Yes. u · v = v · u.
• Associative Law: No.
• Existence of an identity: No.
• Existence of an inverse: No.
• Distributive Law: Yes.

u · (v + w) = u · v + u ·w.

The Standard Basis Vectors
The unit (length 1) vectors in the directions of the coordinate axis

are called the standard basis vectors and denoted by i, j and k.

In two dimensions: i =< 1, 0 >, j =< 0, 1 >.

In three dimensions: i =< 1, 0, 0 >, j =< 0, 1, 0 >, k =< 0, 0, 1 >.
Any vector can be written in terms of the standard basis vectors:
< a, b >= ai + bj, < a, b, c >= ai + bj + ck.
The Dot Product: (ai + bj + ck) · (di + ej + fk) = ad + be + cf .

The Cross Product
The Cross Product u× v is designed so that (a) the product of two

unit vectors is a unit vector orthogonal to the two multiplicands and
(b) the three vectors u, v, u × v form a right hand triple. It’s also
designed to satisfy the distributive law u× (v + w) = u× v + u×w.

Cross Products of Standard Basis Vectors



64

• i× j = k, j× i = −k
• j× k = i, k× j = −i
• k× i = j, i× k = −j
• i× i = 0, j× j = 0, k× k = 0

Formula for the Cross Product
To derive a formula for the cross product in general, repeatedly apply
the distributive law to the product.

(ai + bj + ck)× (di + ej + fk) =
(ai + bj + ck)× di + (ai + bj + ck)× ej + (ai + bj + ck)× fk =
ai× di + ai× ej + ai× fk + bj× di + bj× ej + bj× fk + ck× di +

ck× ej + ck× fk =
adi× i + aei× j + af i× k + bdj× i + bej× j + bf j× k + cdk× i +

cek× j + cfk× k =
ad0 + aek− af j− bdk + be0 + bf i + cdj− cei + cf0 =
(bf − ce)i + (cd− af)j + (ae− bd)k

Definition of the Cross Product

Definition 30 (Cross Product). (ai + bj + ck) × (di + ej + fk) =
(bf − ce)i + (cd− af)j + (ae− bd)k.

Symbolically:

(ai + bj + ck)× (di + ej + fk) =

∣∣∣∣∣∣
i j k
a b c
d e f

∣∣∣∣∣∣
Properties of the Cross Product

• Closure. Yes. The cross product of vectors is a vector.
• Commutative Law. No. The cross product is anti-commutative:

w × v = −v ×w.
• Associative Law. No. But u · (v × w) = (u × v) · w. This

is called the Triple Product and its absolute value is equal to
the volume of the parallelopiped determined by the vectors u,
v and w.

• Existence of an Identity. No.
• Existence of an Inverse. No.
• Distributive Law. Yes.

u× (v + w) = u× v + u×w
(u + v)×w = u×w + v ×w

Other Properties of the Cross Product
• u× v is orthogonal to both u and v.
• |u× v|2 = |u|2|v|2 − (u · v)2.
• |u× v| = |u||v| sin θ.


