
Parametric Equations

We sometimes have several equations sharing an independent vari-
able. In those cases, we call the independent variable a parameter and
call the equations parametric equations. In many cases, the domain of
the parameter is restricted to an interval.

Example: Motion of a Projectile

Suppose a projectile is launched at an initial speed v0, from a height
h0, at an angle θ with the horizontal. It’s natural to consider the
horizontal distance and the height of the projectile separately. Let

t represent time,
x represent the horizontal distance from the launching spot,
y represent the height, and
g the acceleration due to gravity, in the appropriate units.

In the English system, g ≈ −32.2 and in the metric system g ≈ −9.8.
In each case, g is negative since gravity acts in the downward, or neg-
ative, direction.

Analyzing Horizontal Motion

If one was looking at the projectile from above and had no depth
perception, it would look as if the projectile was travelling in a straight
line at a constant speed equal to v0 cos θ.

Since the speed is constant, it should be clear that

x = v0 cos θt.

Analyzing Vertical Motion

If one looked at the projectile from behind, in the plane of its motion,
and had no depth perception, it would look as if the projectile was first
going straight up and then falling, with an initial upward speed of
v0 sin θ but subject to gravity causing an acceleration g.

If we let vy represent the speed at which the projectile appears to be

rising,
dvy

dt
= g, so vy =

∫
g dt = gt + c for some constant c ∈ R.

Since vy = v0 sin θ when t = 0, we have v0 sin θ = g ·0+c, so c = v0 sin θ
and vy = gt + v0 sin θ.

Since vy =
dy

dt
, it follows that y =

∫
gt + v0 sin θ dt, so y =

1

2
gt2 +

v0 sin θt + k for some k ∈ R.
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Since y = y0 when t = 0, it follows that

y0 =
1

2
g · 02 + v0 sin θ · 0 + k,

so k = y0 and y =
1

2
gt2 + v0 sin θt + y0.

Putting It Together
We thus have the parametric equations:

x = v0 cos t

y =
1

2
gt2 + v0 sin θt + y0

These equations will hold until the projectile strikes something.

The Unit Circle
The unit circle is another natural example of the use of parametric

equations, since the two coordinates of a point on the circle both depend
on the angle with the horizontal made by the radius through the point.

Indeed, by definition, if we let (x, y) be the coordinates of the point on
the unit circle for which the angle referred to above is θ, then x = cos θ
and y = sin θ. Thus,

x = cos θ
y = sin θ
0 ≤ θ ≤ 2π
is a pair of parametric equations describing the circle. Indeed, as θ
goes from 0 to 2π, the point (x, y) traverses the circumference of the
circle.

Slopes of Tangents
Assume we have parametric equations x = f(t), y = g(t), a ≤ t ≤ b

and both f(t) and g(t) are differentiable. If we’re at a point where
f ′(t) 6= 0, then there is some interval containing that point in which
f(t) is monotonic and will have a local inverse. In that interval, we
may write t = f−1(x).

We may use the Chain Rule to obtain
dy

dt
=

dy

dx

dx

dt
, and thus

dy

dx
=

dy

dt
dx

dt

.

This enables us to find the slope of the tangent to the graph of the
parametric equations at any point where f ′(t) 6= 0.

The points where f ′(t) = 0 are points where the tangent lines are
vertical, so that’s not a tremendous problem.

Arc Length
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Given parametric equations x = f(t), y = g(t), a ≤ t ≤ b, {(x, y)|x =
f(t), y = g(t), a ≤ t ≤ b} will generally form a curve. If f(t) and g(t)
are differentiable, we can find its length.

Let
n be a positive integer,

∆t =
b− a

n
,

tk = a + k∆t,
xk = f(tk),
yk = g(tk),
s = the length of the curve,
∆sk = the length of the portion of the curve for tk−1 ≤ t ≤ tk.

Clearly, s =
∑n

k=1
∆sk = ∆s1 + ∆s2 + ∆s3 + · · ·+ ∆sn.

s =
∑n

k=1
∆sk

We can approximate ∆sk by the length of the line segment connect-
ing (xk−1, yk−1) and (xk, yk). Using the distance formula, we approxi-

mate ∆sk ≈
√

(xk − xk−1)2 + (yk − yk−1)2.

This is precisely what was done in approximating arc length when a
curve was the graph of an ordinary function. What will differ for para-
metric curves will be the way we estimate

√
(xk − xk−1)2 + (yk − yk−1)2.

Using the Mean Value Theorem, there is some ξk ∈ [tk−1, tk] such that
xk − xk−1 = f ′(ξk)∆t.

Similarly, there is some ηk ∈ [tk−1, tk] such that yk − yk−1 = g′(ηk)∆t.

Thus,
∆sk ≈

√
(f ′(ξk)∆tk)2 + (g′(ηk)∆t)2 =

√
(f ′(ξk)2 + g′(ηk)2)(∆t)2 =√

f ′(ξk)2 + g′(ηk)2∆t.

There won’t be much difference between g′(ηk) and g′(ξk) if ∆t is small.
Since we’re only approximately the arc length anyway, we may write
∆sk ≈

√
f ′(ξk)2 + g′(ξk)2∆t

We thus can approximate

s ≈
n∑

k=1

√
f ′(ξk)2 + g′(ξk)2∆t.

The sum is a Riemann Sum for the function
√

f ′(t)2 + g′(t)2, so we
may expect

s =

∫ b

a

√
f ′(t)2 + g′(t)2 dt.
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This may also be written in the form

s =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

s =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt

For curves described by ordinary equations, this formula for arc
length reduces to the familiar one. Suppose we have a curve y = f(x),
a ≤ x ≤ b.

Every such function has a Canonical Parametrization:

x = t
y = f(t)
a ≤ t ≤ b

Since
dx

dt
=

d

dt
(t) = 1, while

dy

dt
=

d

dt
(f(t)) = f ′(t), we may write

s =

∫ b

a

√
12 + f ′(t)2 dt =

∫ b

a

√
1 + f ′(t)2 dt.

This is the formula previously derived for curves given by ordinary
functions.

Circumference of a Circle
The arc length formula can be used to derive the formula for the

circumference of a circle.

A circle of radius r, centered at the origin, may be parametrized by

x = r cos t
y = r sin t
0 ≤ t ≤ 2π.

We have
dx

dt
= −r sin t,

dy

dt
= r cos t, so

√(
dx

dt

)2

+

(
dy

dt

)2

=
√

(−r sin t)2 + (r cos t)2 =

√
r2 sin2 t + r2 cos2 t =

√
r2(sin2 t + cos2 t) =

√
r2 · 1 = r, so

s =
∫ 2π

0
r dt = rt

∣∣∣∣2π

0

= r · 2π − r · 0 = 2πr.

This calculation is really circular, since π is defined as the ratio of the
circumference of a circle to its diameter.


