
Mathematics 115 SOLUTIONS
Professor Alan H. Stein
Due Friday, April 20, 2007 This problem set is worth 50 points.

1. (a) Define relative minimum.

(b) Define strictly increasing.

(c) Using plain language and avoiding all use of mathematical notation, write down a
strategy for sketching graphs.

(d) Using plain language and avoiding all use of mathematical notation, write down a
strategy for tackling optimization problems.

Solution:

(a) A function f has a relative minimum at c if there is some open interval containing
c such that f(x) ≥ f(c) for all x in the interval.

(b) A function f is strictly increasing on an interval if f(a) < f(b) for every pair a, b of
points in the interval with a < b.

(c) Calculate the first and second derivatives of the function, factor each completely,
analyze their signs and use that analysis to analyze monotonicity and concavity for
the function. Find all critical points (where the derivative is either 0 or undefined)
as well as all points where the second derivative is either 0 or undefined. Find all
values of the function at those points (where they exist) and use the information
about monotonicity and concavity to sketch each portion of the graph between
(and outside) each pair of those points which are adjacent. If necessary, check for
horizontal and vertical asymptotes and, if it’s not clear whether the graph crosses
the y-axis above or below the origin, find the y-intercept.

(d) Read the question carefully. Find all variable and unknown quantities and repre-
sent them by letters. Translate each piece of information, explicit or implied, into
mathematical statements, most often equations or formulas. Solve equations. If
you have the quantity to be maximized written as a function of one or more other
variables, differentiate it and see when the derivative is either 0 or undefined. The
extremum you are looking for must be at one of those points.

2. A function f is continuous and differentiable everywhere except where the information
given implies otherwise. It is strictly increasing on (−∞,−3) ∪ (−3, 4) ∪ (8,∞) and
strictly decreasing on (4, 8). It is concave up on (−∞,−3) ∪ (6,∞) and concave down
on (−3, 6). limx→−∞ f(x) = 5, limx→−3− f(x) = ∞, limx→−3+ f(x) = −∞, f(0) = −3,
f(4) = 7, f(6) = 5, f(8) = 2. Sketch its graph and completely identify all relative and
absolute extrema, all points of inflection, all discontinuities and all asymptotes.

Solution: There is a relative maximum at 4 and a relative minimum at 8. There are
no absolute extrema. There is a point of inflection at 6. There is a discontinuity at −3,
a vertical asymptote at −3 and a horizontal asymptote (on the left) of y = 5.
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3. Let f(x) = x3 − 12x. Sketch its graph and completely identify all relative and absolute
extrema, all points of inflection, all discontinuities and all asymptotes.

Solution:

f ′(x) = 3x2 − 12 = 3(x2 − 4) = 3(x + 2)(x − 2). Clearly f ′(x) = 0 if x = ±2 and
f ′ is positive and f is increasing on (−∞,−2) ∪ (2,∞), while f ′ is negative and f is
decreasing on (−2, 2).

f ′′(x) = 6x. Clearly f ′′(x) < 0 and f is concave down for x < 0 while f ′′(x) > 0 and f
is concave up for x > 0.

We would plot (−2, 16), (0, 0) and (2,−16).

Clearly, f has a relative maximum at −2 and a relative minimum at 2 but has no
absolute extrema. f has a point of inflection at 0. f is continuous everywhere and has
no asymptotes.

4. Let f(x) = sin x + cos x. Sketch its graph and completely identify all relative and
absolute extrema, all points of inflection, all discontinuities and all asymptotes. Extra
Credit: Show how the graph can be sketched without using any Calculus.

Solution: It suffices to analyze f on [0, 2π], since f is clearly periodic with period 2π.

f ′(x) = cos x − sin x. f ′(x) = 0 when sin x = cos x, which occurs at π/4 and 5π/4.
Between 0 and π/4, cos x > sin x, so f ′(x) > 0 and f is increasing. Between π/4 and
5π/4, cos x < sin x, so f ′(x) < 0 and f is decreasing. Between 5π/4 and 2π, cos x > sin x
again, so f ′(x) > 0 and f is increasing. f(0) = cos 0 + sin 0 = 1. Similarly, f(2π) = 1.
f(π/4) = cos(π/4) + sin(π/4) = 1/

√
2 + 1

sqrt2 = 2/
√

2 =
√

2, while f(5/pi/4) = cos(5π/4) + sin(5π/4) = −1/
√

2 + (−1
√

2) =
−2/

√
2 = −

√
2

f ′′(x) = − sin x − cos x. f ′′(x) = 0 when sin x = − cos x, which occurs at 3π/4 and
7π/4. Between 0 and π/4, both sin x and cos x are positive, so f ′′(x) must be negative.
Between π/4 and 3π/4, sin x > | cos x|, so f ′′(x) is negative, and thus f ′′(x) is negative
and the graph is concave down on (0, 3π/4). Between 3π/4 and 5π/4, |cosx| > | sin x|
and cos x < 0, so f ′′(x) > 0. Between 5π/4 and 7π/4, |sinx| > | cos x| and sin x < 0,
so f ′′(x) > 0. Thus f ′′(x) is positive and the graph is concave up between 3π/4 and
7π/4. Between 7π/4 and 2π, cos x > | sin x|, so f ′′(x) < 0 and the graph is concave
down. f(3π/4) = cos(3π/4) + sin(3π/4) = −1/

√
2 + 1/

√
2 = 0, while f(7π/4) =

cos(7π/4) + sin(7π/4) = 1/
√

2 + (−1/
√

2) = 0.

Clearly f has an absolute and relative maximum at π/4 and an absolute and relative
minimum at 5π/4, while it has points of inflection at 3π/4 and 7π/4. These repeat every
2π. There are no discontinuities or asymptotes.

Extra Credit: f(x) = cos x + sin x =
√

2[(sin x)(1/
√

2) + (cos x)(1/
√

2)] =√
2[sin x cos π/4+cos x sin π/4] =

√
2(sin(x+π/4)). Thus the graph of f will be just like

the graph of sin, just shifted left by π/4 and stretched vertically by a factor of
√

2.
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5. An automobile is traveling at a speed of 80 feet per second when the driver sees a young
child in the road 195 feet in front. It takes a half second before he steps on the brakes
as fast as he can, at which point the car slows down 20 feet per second each second until
it stops. Does it hit the car? Use only the tools of Calculus; do not use any formulas
you may have memorized from other courses such as physics.

Solution: Let s represent the distance the car travels from the time the driver sees the
young child. Let t represent the time that has elapsed since then. Let v represent the
speed of the car and let a represent its acceleration. Once the brakes are applied, we

know a = −20 and
dv

dt
= a, so v =

∫
a dt =

∫
(−20) dt = −20t + k for some constant

k. Since the car only starts slowing down from its original speed of 80 feet per second
when t = 1

2
, we know v = 80 when t = 1

2
, so 80 = −20(1

2
) + k, 80 = −10 + k, k = 90

and thus v = −20t + 90 when t ≥ 1
2
.

Similarly, once the brakes are applied, s =
∫

v dt =
∫

(−20t + 90) dt = −10t2 + 90t + c
for some constant c. In the half second before the brakes are applied, the car will travel
40 feet, so s = 40 when t = 1

2
. Thus 40 = −10(1

2
)2 + 901

2
+ c, 40 = −5

2
+ 45 + c, c = −5

2

and s = −10t2 + 90t− 5
2

when t ≥ 1
2
.

The car will stop when v = 0. Solving −20t + 90 = 0, we get 20t = 90, t =
90

20
=

9

2
. So

it takes four and a half seconds before the car stops.

When t =
9

2
, s = −10(9

2
)2 + 90(9

2
)− 5

2
= 200.

Thus the car goes 200 feet before it stops. Since the youth is only 195 feet down the
road, the car hits the child.
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6. Find the point on the hyperbola xy = 1 which is closest to the origin. The conclusion
may seem obvious, but it must be justified.

Solution: By the distance formula, the distance between a point (x, y) on the graph
and the origin is

√
x2 + y2. Since a distance is minimal precisely when its square is

minimal, it suffices to minimize z = x2 + y2.

The equation xy = 1 of the hyperbola defines y implicitly as a function of x. Differenti-

ating implicitly, we get
d

dx
(xy) =

d

dx
(1), x

dy

dx
+ y · 1 = 0, x

dy

dx
+ y = 0.

From z = x2 + y2, we get
dz

dx
=

d

dx
(x2 + y2) = 2x + 2x

dy

dx
. Since any extremum must

occur where the derivative is 0 or undefined, we look for points where 2x + 2x
dy

dx
= 0,

or x + x
dy

dx
= 0.

From x
dy

dx
+ y = 0 and x + x

dy

dx
= 0, we immediately see x = y. Plugging y = x into

the equation xy = 1, we get x2 = 1, x = ±1.

Thus the only possible extrema occur at (−1,−1) and (1, 1). Those two points are
obviously tied for being closest to the origin, since traveling from either one in either
possible direction clearly brings one arbitrarily far from the origin.
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7. An open rectangular box has a square base and a capacity of 250 cubic inches. The
material used for the bottom costs one cent per square inch, while the material used for
the sides only costs half a cent per square inch. The box was designed so the cost for
the material would be as little as possible. How much did the material cost?

Solution: Let x be the length of the square base and let y be the height. Since the
volume is 250 square inches, we know x2y = 250.

Let C be the cost.

The bottom has an area x2. Since the bottom costs one cent per square inch, the cost
of the bottom is also numerically equal to x2.

Each side has an area xy. Since each side costs a half cent per square inch, the cost of
each side is numerically equal to 1

2
xy. Since there are four sides, the total cost for the

sides is 4(1
2
xy) = 2xy.

We thus have C = x2 + 2xy.

We could solve x2y = 250 for y and get C explicitly in terms of x alone, but it’s easier
to use implicit differentiation, treating y as a function of x.

Differentiating implicitly, we get
d

dx
(x2y) =

d

dx
(250), x2 dy

dx
+2xy = 0, x(x

dy

dx
+2y) = 0.

Since x = 0 is impossible, it follows that x
dy

dx
+ 2y = 0.

We also calculate
d

dx
(C) =

d

dx
(x2 + 2xy) = 2x + 2x

dy

dx
+ 2y. Since, at an extrema, we

must have
dC

dx
= 0, we get 2x + 2x

dy

dx
+ 2y = 0, or x + x

dy

dx
+ y = 0.

We therefore must have x2y = 250, x
dy

dx
+ 2y = 0, x + x

dy

dx
+ y = 0.

The latter two equations imply x = y, so we have x2 · x = 250, x3 = 250, x = 3
√

250 =
5 3
√

2. We thus also have y = 5 3
√

2 and the cost is C = x2+2xy = (5 3
√

2)2+2(5 3
√

2)(5 3
√

2) =
3(5 3

√
2)2 = 75 3

√
4 ≈ 119.055078898 cents, or approximately $1.19.
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8. Calculate
∫

sin4 θ cos θ dθ.

Solution: Using Substitution, let u = sin θ,
du

dθ
= cos θ, dθ =

du

cos θ
, so

∫
sin4 θ cos θ dθ =∫

u4 cos θ · du

cos θ
=

∫
u4 du =

u5

5
=

sin5 θ

5
+ k.

9. Calculate

∫ π/3

π/6

sin x dx.

Solution:

∫ π/3

π/6

sin x dx = − cos x
∣∣π/3

π/6
= − cos(π/3)−(− cos π/6) = cos(π/6)−cos(π/3)

=

√
3

2
− 1

2
=

√
3− 1

2
.

10. Let f(x) =

∫ x2

5

sin t

t4 + 9
dt. Find f ′(x).

Solution: Let y = f(x). To use the Chain Rule, we may write y =

∫ u

5

sin t

t4 + 9
dt, u = x2,

so
dy

dx
=

dy

du

du

dx
.

Using the Fundamental Theorem of Calculus, we get
dy

dx
=

sin u

u4 + 9
· 2x, so f ′(x) =

2x sin(x2)

x8 + 9
.


