(1-8) Let $f(x)= \begin{cases}x^{2} & \text { for } x<0 \\ 1 & \text { for } x=0 \\ \frac{x^{2}+x-42}{x-6} & \text { for } 0<x<10 \\ \frac{5 x^{2}+3 x-1}{x^{2}-144} & \text { for } x>10 .\end{cases}$
Find the limits indicated. If a limit doesn't exist, show why.

1. $\lim _{x \rightarrow-5} f(x)$

Solution: $\lim _{x \rightarrow-5} f(x)=(-5)^{2}=25$
2. $\lim _{x \rightarrow 0} f(x)$

Solution: This limit doesn't exist, since the left and right hand limits, calculated in the next two questions, are different.
3. $\lim _{x \rightarrow 0^{-}} f(x)$

Solution: $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x^{2}=0$
4. $\lim _{x \rightarrow 0^{+}} f(x)$

Solution: $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{x^{2}+x-42}{x-6}=7$
5. $\lim _{x \rightarrow 6} f(x)$

Solution: $\lim _{x \rightarrow 6} f(x)=\lim _{x \rightarrow 6} \frac{x^{2}+x-42}{x-6}=\lim _{x \rightarrow 6} \frac{(x-6)(x+7)}{x-6}$
$=\lim _{x \rightarrow 6}(x+7)=13$.
6. $\lim _{x \rightarrow 12^{-}} f(x)$

Solution: $\lim _{x \rightarrow 12^{-}} f(x)=\lim _{x \rightarrow 12^{-}} \frac{5 x^{2}+3 x-1}{x^{2}-144}=-\infty$, since the numerator is close to some positive number when $x \approx 12$ while the denominator is close to 0 but negative when x is a little less than 12 .
7. $\lim _{x \rightarrow 12^{+}} f(x)$

Solution: $\lim _{x \rightarrow 12^{+}} f(x)=\lim _{x \rightarrow 12^{+}} \frac{5 x^{2}+3 x-1}{x^{2}-144}=\infty$, since the numerator is close to some positive number when $x \approx 12$ while the denominator is close to 0 but positive when x is a little bigger than 12 .
8. $\lim _{x \rightarrow \infty} f(x)$

Solution: $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{5 x^{2}+3 x-1}{x^{2}-144}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(5+3 / x-1 / x^{2}\right)}{x^{2}\left(1-144 / x^{2}\right)}=$ $\lim _{x \rightarrow \infty} \frac{5+3 / x-1 / x^{2}}{1-144 / x^{2}}=5$
9. Find $\lim _{x \rightarrow 8} \frac{\frac{1}{x+2}-\frac{1}{10}}{x-8}$.

Solution: $\lim _{x \rightarrow 8} \frac{\frac{1}{x+2}-\frac{1}{10}}{x-8}=\lim _{x \rightarrow 8} \frac{\frac{1}{x+2}-\frac{1}{10}}{x-8} \cdot \frac{10(x+2)}{10(x+2)}=$
$\lim _{x \rightarrow 8} \frac{10-(x+2)}{(x-8) \cdot 10(x+2)}=\lim _{x \rightarrow 8} \frac{8-x}{(x-8) \cdot 10(x+2)}=\lim _{x \rightarrow 8} \frac{-1}{10(x+2)}=-\frac{1}{100}$
10. Find $\lim _{x \rightarrow 5} \frac{\sqrt{x+4}-3}{x-5}$.

Solution: $\lim _{x \rightarrow 5} \frac{\sqrt{x+4}-3}{x-5}=\lim _{x \rightarrow 5} \frac{\sqrt{x+4}-3}{x-5} \cdot \frac{\sqrt{x+4}+3}{\sqrt{x+4}+3}=$
$\lim _{x \rightarrow 5} \frac{x-5}{(x-5)(\sqrt{x+4}+3)}=\lim _{x \rightarrow 5} \frac{1}{\sqrt{x+4}+3}=\lim _{x \rightarrow 5} \frac{1}{6}$
11. Find $\lim _{x \rightarrow 5} \frac{|x-10|-5}{x-5}$.

Solution: $\lim _{x \rightarrow 5} \frac{|x-10|-5}{x-5}=\lim _{x \rightarrow 5} \frac{(10-x)-5}{x-5}=\lim _{x \rightarrow 5} \frac{5-x}{x-5}=\lim _{x \rightarrow 5}(-1)=$ -1
12. Find some $\delta>0$ such that $|f(x)-19|<.01$ when $|x-3|<\delta$, where $f(x)=4 x+7$.

Solution: Each of the following inequalities is equivalent to each of the others:
$|f(x)-19|<.01$
$|(4 x+7)-19|<.01$
$|4 x-12|<.01$
$|4(x-3)|<.01$
$4|x-3|<.01$
$|x-3|<\frac{.01}{4}$
We may thus take $\delta=\frac{.01}{4}$.
13. Use the Bisection Method, starting with the interval [0,1], to find an interval of width no greater than 0.1 which contains a zero of the polynomial $x^{5}+x^{2}-1$.
Solution: Letting $f(x)=x^{5}+x^{2}-1$, the following matrix shows the values of $f(x)$ at the endpoints of each interval along with the value at the midpoint. Each interval

