

## Derivatives of Trigonometric Functions

Let  $f(x) = \sin x$ . From the definition of a derivative,

$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} =$$

$$\lim_{h \rightarrow 0} \frac{\sin(x+h) - \sin x}{h}.$$

Conveniently, we have a trigonometric identity that enables us to rewrite  $\sin(x+h)$  as  $\sin x \cos h + \cos x \sin h$ , so we have

$$f'(x) = \lim_{h \rightarrow 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h} =$$

$$\lim_{h \rightarrow 0} \frac{\sin x \cos h - \sin x + \cos x \sin h}{h} =$$

$$\lim_{h \rightarrow 0} \frac{\sin x(\cos h - 1) + \sin h \cos x}{h} =$$

$$\lim_{h \rightarrow 0} \left( \sin x \frac{\cos h - 1}{h} + \cos x \frac{\sin h}{h} \right) =$$

$$\sin x \lim_{h \rightarrow 0} \frac{\cos h - 1}{h} + \cos x \lim_{h \rightarrow 0} \frac{\sin h}{h}.$$

### Two Important Limits

We will show that  $\lim_{h \rightarrow 0} \frac{\sin h}{h} = 1$  and  $\lim_{h \rightarrow 0} \frac{1 - \cos h}{h} = 0$ , from which it will follow that

$$f'(x) = (\sin x) \cdot 0 + (\cos x) \cdot 1 = \cos x.$$

We thus have the formula  $\frac{d}{dx}(\sin x) = \cos x$  subject to proving the claims about the limits of  $\frac{\sin h}{h}$  and  $\frac{1 - \cos h}{h}$ .

$$\lim_{h \rightarrow 0} \frac{\sin h}{h} = 1$$

**Claim 1.**  $\lim_{h \rightarrow 0} \frac{\sin h}{h} = 1$ .

**Proof:** First consider  $0 < h < \pi/2$ , draw the unit circle with center at the origin, and consider the sector with central angle  $h$  where one side lies along the  $x$ -axis and the other side lies in the first quadrant. Since the area of the circle is  $\pi$  and the ratio of the area of the sector to the area of the circle is  $\frac{h}{2\pi}$ , the area of the sector is  $\frac{h}{2\pi} \cdot \pi = \frac{h}{2}$ .

Now consider the right triangle where the hypotenuse coincides with the side of the sector lying in the first quadrant and the base lies along

the  $x$ -axis. The vertices will be  $(0, 0)$ ,  $(\cos h, 0)$ ,  $(\cos h, \sin h)$ , so its legs will be of length  $\cos h$ ,  $\sin h$  and its area will be  $\frac{1}{2} \cdot \cos h \sin h$ .

Since the triangle is contained within the sector, its area will be smaller than the area of the sector. Hence  $\frac{1}{2} \cdot \cos h \sin h < \frac{h}{2}$ .

Multiplying both sides by  $\frac{2}{h \cos h}$  yields the inequality  $\frac{\sin h}{h} < \frac{1}{\cos h}$ .

Now consider the right triangle with one leg coinciding with the side of the sector lying along the  $x$ -axis and the hypotenuse making an angle  $h$  with that leg. Its vertices are  $(0, 0)$ ,  $(1, 0)$ ,  $(1, \tan h)$ , so its legs will be of length  $1$ ,  $\tan h$  and its area will be  $\frac{1}{2} \cdot \tan h$ .

Since the sector is contained within this triangle, its area will be smaller than the area of the triangle. Hence  $\frac{h}{2} < \frac{1}{2} \cdot \tan h$ .

Multiplying both sides by  $\frac{2 \cos h}{h}$  and making use of the identity

$\tan h \cos h = \sin h$  yields the inequality  $\cos h < \frac{\sin h}{h}$ .

Combining the two inequalities we have obtained yields

$$(1) \quad \cos h < \frac{\sin h}{h} < \frac{1}{\cos h}$$

if  $0 < h < \pi/2$ .

Now, suppose  $-\pi/2 < h < 0$ . Then  $0 < -h < \pi/2$  and the double inequality (1) yields

$$(2) \quad \cos(-h) < \frac{\sin(-h)}{-h} < \frac{1}{\cos(-h)}.$$

Since  $\cos(-h) = \cos h$  and  $\sin(-h) = -\sin h$ , it follows that  $\frac{\sin(-h)}{-h} = \frac{-\sin h}{-h} = \frac{\sin h}{h}$  and (2) becomes

$$(3) \quad \cos h < \frac{\sin h}{h} < \frac{1}{\cos h}.$$

We thus see (1) holds both for  $0 < h < \pi/2$  and for  $-\pi/2 < h < 0$ .

Since  $\lim_{h \rightarrow 0} \cos h = \lim_{h \rightarrow 0} \frac{1}{\cos h} = 1$ , by the *Squeeze Theorem* it follows that  $\lim_{h \rightarrow 0} \frac{\sin h}{h} = 1$  QED

**Claim 2.**  $\lim_{h \rightarrow 0} \frac{1 - \cos h}{h} = 0$ .

We make use of the identity involving sin and an algebraic manipulation reminiscent of rationalization, enabling us to prove the claim with a fairly routine calculation.

Proof

$$\begin{aligned}
 \textit{Proof.} \quad & \lim_{h \rightarrow 0} \frac{1 - \cos h}{h} = \lim_{h \rightarrow 0} \frac{1 - \cos h}{h} \cdot \frac{1 + \cos h}{1 + \cos h} = \\
 & \lim_{h \rightarrow 0} \frac{1 - \cos^2 h}{h(1 + \cos h)} = \lim_{h \rightarrow 0} \frac{\sin^2 h}{h(1 + \cos h)} = \\
 & \lim_{h \rightarrow 0} \frac{\sin h}{h} \cdot \frac{\sin h}{1 + \cos h} = \\
 & \lim_{h \rightarrow 0} \frac{\sin h}{h} \cdot \lim_{h \rightarrow 0} \frac{\sin h}{1 + \cos h} = 1 \cdot 0 = 0. \quad \square
 \end{aligned}$$