Different Types of Limits

Besides ordinary, two-sided limits, there are one-sided limits (lefthand limits and right-hand limits), infinite limits and limits at infinity.

One-Sided Limits
Consider $\lim _{x \rightarrow 5} \sqrt{x^{2}-4 x-5}$.
One might think that since $x^{2}-4 x-5 \rightarrow 0$ as $x \rightarrow 5$, it would follow that $\lim _{x \rightarrow 5} \sqrt{x^{2}-4 x-5}=0$.
But since $x^{2}-4 x-5=(x-5)(x+1)<0$ when x is close to 5 but smaller than $5, \sqrt{x^{2}-4 x-5}$ is undefined for some values of x very close to 5 and the limit as $x \rightarrow 5$ doesn't exist.
But we would still like a way of saying $\sqrt{x^{2}-4 x-5}$ is close to 0 when x is close to 5 and $x>5$, so we say the Right-Hand Limit exists, write $\lim _{x \rightarrow 5^{+}} \sqrt{x^{2}-4 x-5}=0$ and say $\sqrt{x^{2}-4 x-5}$ approaches 0 as x approaches 5 from the right.
Sometimes we have a Left-Hand Limit but not a Right-Hand Limit. Sometimes we have both Left-Hand and Right-Hand Limits and they're not the same. Sometimes we have both Left-Hand and Right-Hand Limits and they're equal, in which case the ordinary limit exists and is the same.

Example

$$
f(x)= \begin{cases}x^{2} & \text { if } x<1 \\ x^{3} & \text { if } 1<x<2 \\ x^{2} & \text { if } x>2\end{cases}
$$

$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=1$, so the left and right hand limits are equal and $\lim _{x \rightarrow 1} f(x) 1$.
$\lim _{x \rightarrow 2^{-}} f(x)=8$ while $\lim _{x \rightarrow 2^{+}} f(x)=4$, so the left and right hand limits are different and $\lim _{x \rightarrow 2} f(x)$ doesn't exist.

Limits at Infinity

Suppose we're interested in estimating about how big $\frac{2 x}{x+1}$ is when x is very big. It's easy to see that $\frac{2 x}{x+1}=\frac{2 x}{x\left(1+\frac{1}{x}\right)}=\frac{2}{1+\frac{1}{x}}$ if $x \neq-1$ and thus $\frac{2 x}{x+1}$ will be very close to 2 if x is very big. We write
$\lim _{x \rightarrow \infty} \frac{x+1}{x+1}=2$
and say the limit of $\frac{2 x}{x+1}$ is 2 as x approaches ∞.

Limits at Infinity

Similarly, $\frac{2 x}{x+1}$ will be very close to 2 if x is very small and we write
$\lim _{x \rightarrow-\infty} \frac{2 x}{x+1}=2$
and say the limit of $\frac{2 x}{x+1}$ is 2 as x approaches $-\infty$. Here, small does not mean close to 0 , but it means that x is a negative number with a large magnitude (absolute value).

Calculating Limits at Infinity

A convenient way to find a limit of a quotient at infinity (or minus infinity) is to factor out the largest term in the numerator and the largest term in the denominator and cancel what one can.
$\lim _{x \rightarrow \infty} \frac{5 x^{2}-3}{8 x^{2}-2 x+1}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(5-\frac{3}{x^{2}}\right)}{x^{2}\left(8-\frac{2}{x}+\frac{1}{x^{2}}\right)}=$
$\lim _{x \rightarrow \infty} \frac{5-\frac{3}{x^{2}}}{8-\frac{2}{x}+\frac{1}{x^{2}}}=\frac{5}{8}$
Example
$\lim _{x \rightarrow \infty} \frac{5 x-3}{8 x^{2}-2 x+1}=\lim _{x \rightarrow \infty} \frac{x\left(5-\frac{3}{x}\right)}{x^{2}\left(8-\frac{2}{x}+\frac{1}{x^{2}}\right)}=$
$\lim _{x \rightarrow \infty} \frac{5-\frac{3}{x}}{x\left(8-\frac{2}{x}+\frac{1}{x^{2}}\right)}=0$

Infinite Limits

If x is close to 1 , it's obvious that $\frac{1}{(x-1)^{2}}$ is very big. We write

$$
\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}=\infty
$$

and say the limit of $\frac{1}{(x-1)^{2}}$ is ∞ as x approaches 1 .
Similarly, $\lim _{x \rightarrow 1}-\frac{1}{(x-1)^{2}}=-\infty$.

A Technicality

Technically, a function with an infinite limit doesn't actually have a limit. Saying a function has an infinite limit is a way of saying it doesn't have a limit in a very specific way.

Calculating Infinite Limits

Infinite limits are inferred fairly intuitively. If one has a quotient $\frac{f(x)}{g(x)}$, one may look at how big $f(x)$ and $g(x)$ are. For example:
If $f(x)$ is close to some positive number and $g(x)$ is close to 0 and positive, then the limit will be ∞.
If $f(x)$ is close to some positive number and $g(x)$ is close to 0 and negative, then the limit will be $-\infty$.
If $f(x)$ is close to some negative number and $g(x)$ is close to 0 and positive, then the limit will be $-\infty$.
If $f(x)$ is close to some negative number and $g(x)$ is close to 0 and negative, then the limit will be ∞.

Variations of Limits

One can also have one-sided infinite limits, or infinite limits at infinity.
$\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=\infty$
$\lim _{x \rightarrow 1^{-}} \frac{1}{x-1}=-\infty$

Asymptotes

If $\lim _{x \rightarrow \infty} f(x)=L$ then $y=L$ is a horizontal asymptote.
If $\lim _{x \rightarrow-\infty} f(x)=L$ then $y=L$ is a horizontal asymptote.
If $\lim _{x \rightarrow c^{+}} f(x)= \pm \infty$ then $x=c$ is a vertical asymptote.
If $\lim _{x \rightarrow c^{-}} f(x)= \pm \infty$ then $x=c$ is a vertical asymptote.

