SOLUTIONS

Mathematics 1132 Professor Alan H. Stein Due Thursday, July 7, 2009

Let C_1 be the portion of the graph of $y = x^2 + 5x - 1$ between the two points where the graphs of y = 9x - 4 and $y = x^2 + 5x - 1$ intersect. Let C_2 be the portion of the graph of y = 9x - 4 between the two points where the graphs of y = 9x - 4 and $y = x^2 + 5x - 1$ intersect. Let \mathcal{D} be the plane region bounded by C_1 and C_2 .

For each question, sketch the relevant curve or region, which may be a plane region, solid or surface, and set up a definite integrals whose value will give the quantity indicated and, unless instructed otherwise, evaluate the integral.

Solution: First, we will obviously need to know where the curves intersect, so we solve the equations y = 9x - 4 and $y = x^2 + 5x - 1$ simultaneously. Using substitution, we have $x^2 + 5x - 1 = 9x - 4$, $x^2 - 4x + 3 = 0$, (x - 1)(x - 3) = 0, giving solutions x = 1 and x = 3. The curves therefore intersect at the points (1, 5) and (3, 23) and, in between, the line y = 9x - 4 is obviously above the parabola $y = x^2 + 5x - 1$, since the parabola is always concave up.

1. The area of \mathcal{D} .

Solution: Area =
$$\int_{1}^{3} (9x-4) - (x^2+5x-1) dx = \int_{1}^{3} -x^2+4x-3 dx = -\frac{x^3}{3}+2x^2-3x \Big|_{1}^{3} = -\frac{3^3}{3}+2\cdot 3^2-3\cdot 3 - (-\frac{1^3}{3}+2\cdot 1^2-3\cdot 1) = -9+18-9 - (-\frac{1}{3}+2-3) = \frac{4}{3}.$$

2. The volume of the solid obtained by rotating \mathcal{D} about the x-axis.

Solution: Volume =
$$\pi \int_{1}^{3} (9x-4)^2 - (x^2+5x-1)^2 dx = \pi \int_{1}^{3} -x^4 - 10x^3 + 58x^2 - 62x + 15 dx = \pi \left[-\frac{1}{5}x^5 - \frac{5}{2}x^4 + \frac{58}{3}x^3 - 31x^2 + 15x - \frac{64}{27} \right]_{1}^{3} = \frac{544\pi}{15}$$

3. The volume of the solid obtained by rotating \mathcal{D} about the line y = 2.

Solution: Volume =
$$\pi \int_{1}^{3} (9x - 4 - 2)^2 - (x^2 + 5x - 1 - 2)^2 dx$$

= $\pi \int_{1}^{3} -x^4 - 10x^3 + 62x^2 - 78x + 27 dx = \pi \left[-\frac{1}{5}x^5 - \frac{5}{2}x^4 + \frac{62}{3}x^3 - 39x^2 + 27x \right]_{1}^{3} = \frac{464\pi}{15}.$

4. The volume of the solid obtained by rotating \mathcal{D} about the *y*-axis.

Solution: Volume = $2\pi \int_{1}^{3} x[(9x-4) - (x^2 + 5x - 1)] dx = 2\pi \int_{1}^{3} -x^3 + 4x^2 - 3x dx = 2\pi \left[-\frac{1}{4}x^4 + \frac{4}{3}x^3 - \frac{3}{2}x^2 \right]_{1}^{3} = \frac{16\pi}{3}.$

5. The length of C_1 . Do not evaluate the integral. Solution: Length $= \int_1^3 \sqrt{1 + (\frac{d}{dx}(x^2 + 5x - 1))^2} \, dx = \int_1^3 \sqrt{1 + (2x + 5)^2} \, dx.$ 6. The area of the surface obtained by rotating C_1 about the x-axis. Do not evaluate the integral.

Solution: Surface Area = $2\pi \int_{1}^{3} (x^2 + 5x - 1)\sqrt{1 + (2x + 5)^2} dx$.

7. The area of the surface obtained by rotating C_1 about the line y = 2. Do not evaluate the integral.

Solution: Surface Area = $2\pi \int_{1}^{3} (x^2 + 5x - 1 - 2)\sqrt{1 + (2x + 5)^2} dx$.

8. The area of the surface obtained by rotating C_1 about the *y*-axis. Do not evaluate the integral.

Solution: Surface Area = $2\pi \int_1^3 x \sqrt{1 + (2x+5)^2} dx$.