
Equations in One Variable
Definition 1 (Equation).An equation is a state-

ment that two algebraic expressions are equal.

Definition 2 (Solution). A solution or root is

a value which yields a true statement when it

replaces the variable.

Definition 3 (Solution Set). The solutions set

to an equation is the set of solutions to the

equation.

Definition 4 (Equivalent Equations).Two equa-

tions are said to be equivalent if they have the

same solution set.

The process of solving an equation generally

consists of finding a sequence of equations which

are all equivalent until we have an equation for

which the solution set is readily apparent.

Generally – there are some minor exceptions –

we may treat the two sides of an equation the

same way to get an equivalent equation.



Given an equation A = B, where A and B are

algebraic expressions, and a real number C 6=
0, the following equations will all be equivalent

to A = B:

A + C = B + C

A− C = B − C

AC = BC

A
C = B

C

In other words, we can add the same number

to both sides of an equation, or subtract the

same number from both sides of an equation,

or multiply both sides of an equation by the

same number, or divide both sides of an equa-

tion by the same number, and we will get an

equivalent equation.



Rather than adding, subtracting, multiplying

or dividing a real number, we can generally use

an expression as long as we recognize the new

equation we get may have some solutions the

original did not have. This can occur if there

are values of the independent variable for which

the expression is equal to 0. These extra solu-

tions are sometimes called extraneous.

Similarly, we can raise both sides of an equa-

tion to a power, with the understanding we

may be introducing extraneous solutions.

The general principle is that we need to do the

same thing to both sides of an equation.

We will later observe the same principle holds

for inequalities, which may be treated very sim-

ilarly to the way we treat equations.



Types of Equations

Identity – An equation which is satisfied by ev-

ery value for the variable for which either side

may be evaluated is called an identity.

Conditional Equation – An equation which has

at least one solution but is not an identity.

Inconsistent Equation – An equation which has

no solutions.

Solving Linear Equations

The simplest type of equation is a linear equa-

tion, an equation in which the variable only

occurs to the first power.

The most general form of a linear equation is

ax + b = cx + d.



Linear equations may be solved by finding equiv-

alent equations where the variable only occurs

on the left and the constants only on the right,

at which point we can divide both sides by the

coefficient of the variable.

Example: 11x + 3 = 8x + 24

Solution: Get all the terms involving x on the

left by subtracting 8x from both sides to get

3x + 3 = 24. Then get all the terms involving

constants on the right by subtracting 3 from

both sides to get 3x = 21. Finally, divide both

sides by 3, the coefficient of the variable x, to

get x = 7.

This latter equation, equivalent to the first,

clearly has just one solution, 7. We should

write our conclusion in the form the solution

set is {7}, but most people will simply write

x = 7 and the conclusion will be understood

correctly.



Linear Inequalities

Inequalities, like equations, are mathematical

statements which may be true for some values

of a variable and false for other values. In-

equalities may be solved in a manner similar to

the manner in which equations may be solved.

As with equations, we may add the same thing

to both sides, subtract the same thing to both

sides, multiply both sides by the same thing

or divide both sides by the same thing to get

an equivalent inequality. As with equations,

ideally we get a string of equivalent inequalities

until one of them is easy to solve.

Caution: The one thing we must be aware of

is that if we multiply or divide both sides by

a negative number, the sense of the inequality

reverses.

Example: 3x + 1 < 19.



The steps are really the same as for the equa-
tion 3x + 1 = 19:

a. Subtract 1 from both sides to get 3x < 18.

b. Divide both sides by 3 to get x < 6.

So the solution set is {x : x < 6} = (−∞,6).

Example: 5x + 8 > 10x− 20.

Solution:

−5x + 8 > −20

−5x > −28

x < −28
−5

x < 28
5

Note: When dividing by −5, we had to reverse
the sense of the inequality. We finally obtain
the solution set {x : x < 28

5 } = (−∞,−28
5 ).



Equations Involving Rational Ex-
pressions

These may be solved in a manner similar to

the way complex rational expressions are sim-

plified. One can multiply both sides by any

denominator that appears. One can keep do-

ing this until one is left with an equation which

has no denominator.

Example: 2x+3
x+2 = 13

7

One may multiply both sides by x + 2 to get

2x +3 = 13x+26
7 , and then multiply both sides

by 7 to get 14x+21 = 13x+26. This is now an

ordinary linear equation, which may be solved

as follows: x + 21 = 26, x = 5.



Inequalities Involving Rational Ex-
pressions

As with linear inequalities and linear equations,

inequalities involving rational expressions may

be solved in a manner analogous to the way

equations involving rational expressions are solved.

Example: 2x+3
x+2 < 13

7

If we had the equation 2x+3
x+2 = 13

7 , we might

start by multiplying both sides by 7(x + 2) to

eliminate the denominators. For the inequal-

ity, we may do the same, but we have to pay

attention to whether x +2 is positive or nega-

tive. This forces us to divide the process into

two cases: x > −2 and x < −2.

Case 1: x > −2. Here, when multiplying by

7(x + 2) we get:

14x + 21 < 13x + 26



x + 21 < 26

x < 5.

We thus observe that when x > −2, x will be

a solution if x < 5. In other words, we have

obtained the information that every number x

such that −2 < x < 5 is a solution.

Case 2: x < −2. Here, since x + 2 is negative,

when multiplying by 7(x+2) we have to reverse

the sense of the inequality to get:

14x + 21 > 13x + 26

x + 21 > 26

x > 5.

We thus observe that when x < −2, x will be

a solution if x > 5. Obviously, there is no such

value of x.



We conclude the solution set is {x : −2 < x <

5}.

Alternative Method of Solving Rational
Inequalities

We may use the following fact about inequal-

ities to solve rational inequalities. It will also

yield a very nice method for solving inequalities

involving polynomials.

Theorem 1. The solution set to an inequality

consists of a union of intervals, with each end

point of each interval being a point at which

either the two sides of the inequality are equal

or at least one of the sides does not exist.

Example: 2x+3
x+2 < 13

7

We know the two sides are equal only when

x = 5, while the left side is not defined when

x = −2. Thus, the only possible endpoints



of intervals in the solution set are −2 and 5

and the only intervals we need to consider are

(−∞,−2), (−2,5) and (5,∞). Each of those

intervals must be either totally within the so-

lution set or totally disjoint from the solution

set.

We may determine which possibility is the ac-

tual case by looking at a single point in each

interval.

Looking at the intervals one-by-one:

(−∞,−2): We can take any point in that inter-

val. For example, take x = −3. The inequality

would become 2(−3)+3
−3+2 < 13

7 , 3 < 13
7 . Since this

is clearly false, −3 is not in the solution set and

thus (−∞,−2) is disjoint from the solution set.

(−2,5): Again, we can take any point in that

interval. For example, take x = 0. The in-

equality would become 2·0+3
0+2 < 13

7 , 3
2 < 13

7 .



Since this is true, 0 is in the solution set and

thus the entire interval (−2,5) is in the solution

set.

(5,∞): Again, we can take any point in that

interval. For example, take x = 12. The in-

equality becomes 2·12+3
12+2 < 13

7 , 27
14 < 13

7 . Since
13
7 = 26

14, this is clearly false, so 12 is not in the

solution set and thus the entire interval (5,∞)

is disjoint from the solution set.

We conclude the solution set is (−2,5).



Equations Involving Absolute Value

One can almost always solve basic equations

involving absolute value by using the definition

of absolute value, |x| =

x if x ≥ 0

−x if x < 0.
.

This sometimes gets rather involved and one

can often solve equations more simply by look-

ing into the meaning of it.

|x− 10| = 3

One can use the definition of absolute value to

recognize that |x−10| = x−10 when x−10 ≥ 0,

which occurs when x ≥ 10. Thus, for x ≥ 10,

the equation may be written as

x− 10 = 3.

This may be solved easily, obtaining x = 13,

so clearly 13 is a solution.



On the other hand, when x−10 < 0, |x−10| =
−(x− 10) = 10− x. Thus, in the case x < 10,

the equation may be written as

10− x = 3.

This may also be solved easily, obtaining x =

7, so clearly 7 is a solution and the original

equation has solution set {7,13}.

On the other hand, one may observe |x−10| =
3 if x− 10 is either 3 or −3.

Clearly, x − 10 = 3 if x = 13, while x − 10 =

−3 if x = 7, so we more easily get the same

solution set.

Alternatively, one may observe that |x−10| = 3

if x lies exactly 3 units from 10 on a number

line. Clearly, this is the case for two numbers,

7 and 13, and they comprise the same solution

set.



Note the basic ideas behind the three meth-

ods. One was to look at the absolute value of

a difference as the distance, on a number line,

between the two numbers; one was to recog-

nize that the absolute value of a number can

take on a particular value if that number equals

either that value or its negative; one was to use

the definition of absolute value.



Inequalities Involving Absolute Value

Each of the three ideas for solving equations

involving absolute value works in a similar way

for inequalities involving absolute value. Con-

sider the following similar example.

Example: |x− 10| < 3.

Method 1: Using the idea that the absolute

value of a difference is the distance between

the points on the number line.

With this interpretation, |x−10| < 3 translates

to the distance between x and 10 is less than

3.

This may also be expressed as x is less than 3

units from 10.

With the latter interpretation, it’s clear that,

since 7 is 3 units to the left of 10 and 13 is



3 units to the right of 10, x will be within 3

units of 10 if it’s between 7 and 13. We thus

conclude the solution set is {x : 7 < x < 13} =

(7,13).

Method 2: Just thinking of |x−10| in terms of

absolute value, we can translate |x−10| < 3 to

the absolute value of x− 10 is less than 3.

If we think about the numbers whose abso-

lute values are less than 3, it’s clear that the

numbers between −3 and 3 have absolute val-

ues less than 3, so that the absolute value of

x − 10 will be less than 3 if x − 10 is between

−3 and 3.

In other words, x will be a solution if −3 <

x− 10 < 3, which is shorthand for −3 < x− 10

and x− 10 < 3. Adding 10 to all parts, we get

−3+10 < x− 10+10 < 3+10, or 7 < x < 13,

so we again get the solution set {x : 7 < x <

13} = (7,13).



Method 3: We may use the definition of abso-

lute value to observe |x−10| = x−10 if x ≥ 10

while x − 10 = −(x − 10) = 10 − x if x < 10.

We thus divide the calculations into two cases.

Case 1: x ≥ 10. In this case, the inequality

may be written x − 10 < 3, so x < 13. We

thus see that when x ≥ 10, x is a solution if

x < 13. In other words, all numbers x such

that 10 ≤ x < 13 are solutions.

Case 2: x < 10. In this case, the inequality

may be written 10− x < 3, so −x < −7, x > 7.

We thus see that when x < 10, x is a solution

if x > 7. In other words, all numbers x such at

7 < x < 10 are solutions.

Putting the two cases together, we see that x

is a solution if 7 < x < 13, obtaining the same

solution set we obtained with the other two

methods.



Caution Regarding Notation

In most of the examples so far, one could be

somewhat sloppy about the notation used in

describing the solution without confusing any-

one. That is not always the case, as is shown

in the following example. In other words, it’s

always a good idea to use correct notation.

Example: |2x− 8| > 20.

We may solve this as follows:

|2(x− 4)| > 20

2|x− 4| > 20

|x− 4| > 10.

If we read the last inequality as x is more than

10 units from 4, it’s clear that x is a solution if

either x is bigger than 14 or x is less than −6.



Using set notation, the solution set may be

expressed as {x : x < −6 or x > 14}.

Using interval notation, the solution set may

be expressed as (−∞,−6) ∪ (14,∞).

Either is correct and unambiguous.

Almost anything else would likely be interpreted

in a way different from what is intended. As

just one example, if one writes, x < −6, x >

14, the only reasonable interpretation would

be {x : x < −6, x > 14}. Another way of writ-

ing that is {x : x < −6 and x > 14}, which is

clearly ∅, the empty set, which is clearly not

the solution set.



Constructing Models to Solve Prob-
lems

Strategy for Word Problems

Mathematics, including algebra, may be used

to solve a variety of problems of a type some-

times called word problems or verbal problems

or applications, which effectively call taking a

problem expressed in ordinary language, mod-

elling it with mathematics (building a mathe-

matical model) and using the tools of mathe-

matics to solve it.

In this course, the major tools will involve meth-

ods for solving equations or systems of equa-

tions; in other courses, the tools may differ but

the approach is always the same.



Guidelines

• Read the question!

• Read the question!

• Read the question!

Has the point been made? Everything that

must be done generally becomes apparent if

one reads the question!



Questions to Ask Yourself

• What do I know?

• What don’t I know?

• What can I figure out or infer?

• What do I want?

This is actually the least important!



What I Know

Every fact translates into a mathematical state-

ment, generally a formula, equation or state-

ment that a particular variable takes on a cer-

tain value when another variable takes on a

certain value.

The key to writing down an appropriate for-

mula corresponding to a given fact is to write

down that fact in plain language and then rewrite

the fact using the descriptions of variables al-

ready defined and a verb such as is or equals

which indicates that two quantities are equal.



What I Don’t Know

This is often the key. Any unknown quantity

can often be profitably represented by a vari-

able.

Related to unknown quantities are variable quan-

tities. These almost always need to be repre-

sented by variables.



What I Want

This needs to be kept in the back of your mind.

One common mistake is to concentrate too

hard on what you want; it’s generally more ad-

vantageous to concentrate on what you know,

what you don’t know and what you can figure

out from what you know.

Just remember to notice when you’ve actually

figured out what you ultimately want.



Suggestions

• Draw pictures, charts, graphs or anything

visual that may help you understand the

problem. The key is understanding and

translating facts to mathematics.

• Look for variables and unknowns. Repre-

sent them by symbols. Write down what

each stands for and make sure you don’t

use the same symbol to represent two dif-

ferent quantities.

• Write down known facts in terms of the

variables and unknowns you’ve defined. These

will generally be in the form of equations

and formulas.

• Solve equations where possible.



Equations and Graphs in Two
Variables

The Coordinate Plane

Points in a plane may be located using a co-

ordinate system. The most common is the

Cartesian Coordinate System, also called the

Rectangular Coordinate System.

Two axes, one horizontal (generally but not al-

ways called the x− axis) and one vertical (gen-

erally but not always called the y− axis) are

drawn. The location of a point is determined

by two numbers, called coordinates.

The first coordinate, called the abscissa, rep-

resents the (signed) horizontal distance from

the vertical axis.



The second coordinate, called the ordinate,

represents the (signed) vertical distance from

the horizontal axis.

The two coordinates are placed in parentheses,

separated by a comma.

Example: (5,−3) would indicate a point five

units to the right of the vertical axis and three

units below the horizontal axis.

Note: This is very similar to the system of

longitude and latitude used to locate points

on the planet we reside on.



Distance Between Two Points

The distance between two points may be found

using the Pythagorean Theorem. When the

calculation is done in the abstract, we obtain

the Distance Formula.

Suppose we have two points, P1(x1, y1), P −
2(x2, y2). For convenience, assume P2 is above

and to the right of P1, so x1 < x2 and y1 <

y2. This makes the derivation of the Distance

Formula easier; the actual formula is correct in

general.

If you draw a horizontal line through P1 and

a vertical line through P2, along with the line

connecting P1 and P2, you get a right triangle,

with the hypotenuse being the line segment

from P1 to P2.

The length of the horizontal side will be x2 −
x1, while the length of the vertical leg will be



y2 − y1, so if we call the length of the hy-

potenuse d the Pythagorean Theorem implies

(x2−x1)
2+(y2−y1)

2 = d2. In effect, this is the

Distance Formula, which may also be written

in the following ways:

d2 = (x2 − x1)
2 + (y2 − y1)

2

or

d =
√

(x2 − x1)
2 + (y2 − y1)

2.



Midpoints

The midpoint of the line segment joining two

points is the point midway between the two

points on the line segment connecting them.

In order to get the coordinates of the midpoint,

effectively we just average the coordinates of

the endpoints.

In other words, suppose we have two points,

(x1, y1), (x2, y2).

The average of the first coordinates is x1+x2
2 .

The average of the second coordinates is y1+y2
2 .

So the midpoint is
(

x1+x2
2 , y1+y2

2

)
.

Example: The midpoint between (5,8) and

(−23,14) is (−9,11), since the average of 5

and −23 is 5+(−23)
2 = −18

2 = −9 and 8+14
2 =

22
2 = 11.



Linear Equations in Two Vari-
ables

If we have an equation using two variables,
say x and y, we represent the solution graph-
ically. If we write the equation in the form
F (x, y) = G(x, y), where we can think of F (x, y)
and G(x, y) as algebraic expressions which may
or may not contain the variables x and y, the
graph is simply the set of points {(x, y) : F (x, y) =
G(x, y)}.

This may be thought of as the set of points
whose coordinates satisfy the equation. This
may be thought of as meaning the coordi-
nates of (x, y) satisfy the equation if F (x, y) =
G(x, y), or x = a, y = b satisfies the equation
if F (a, b) = G(a, b).

We particularly look at Linear Equations (whose
graphs are straight lines), Quadratic functions
(whose graphs are parabolas), second degree
equations (whose graphs are called conic sec-
tions) and circles (which happen to be conic
sections).



Lines

The key property of a line is its slope. The

slope of a line is the tangent of the angle the

line makes with the horizontal. We actually

define slope as follows.

Definition 5 (Slope). Consider a line through

the points (x1, y1), (x2, y2). Its slope, often

denoted by m, is the quotient y2−y1
x2−x1

.

Exercise: Show that the slope does not depend

on the choice of points on the line.

Example: The slope of the line through (2,8)

and (5,23) is 23−8
5−2 = 5.

If a line rises as we go from left to right, it will

have a positive slope. The steeper the line,

the bigger the slope.

If a line falls as we go from left to right, it will

have a negative slope. The steeper the line,



the smaller the slope. Pay attention to what

that really means; it does not mean “closer to

0.”

A line making an angle of π/4 (45◦ in degree

measure) with the horizontal will have slope

±1.

Some students think of slope as rise
run or ∆y

∆x.



Equations of Lines

The simplest way to obtain an equation of a

line requires a point on the line and the slope

of the line. It is based on the fact that if a line

contains the point (x1, y1) and has slope m,

then a point (x, y) will be on that line precisely

if m = y−y1
x−x1

, which is equivalent to m(x−x1) =

y − y1. Th



is y−4 = 6(x−8). It also has equation y−28 =

6(x− 12).

Suppose we take those two different equations

obtained in the last example and simplify them.

y − 4 = 6(x− 8), y − 4 = 6x− 48, y = 6x− 44

y−28 = 6(x−12), y−28 = 6x−72, y = 6x−44.

In each case, we get the same equation: y =

6x − 44. This is in another standard form,

called the Slope-Intercept form, which in this

case enables us to see the slope is −6 and the

y−intercept is −44.

The standard Slope-Intercept Formula is y =

mx + b, where m is the slope and b is the

y−intercept. This is really a special case of the

Point-Slope Formula, where the point known

is the y−



m and goes through the point (0, b), the Point-

Slope Formula gives the equation y−b = m(x−
0), which easily simplifies to y − b = mx, y =

mx + b.

Example: Consider the line through (3,7) with

slope 10.

Using the Point-Slope Formula, we get the

equation y − 7 = 10(x− 3).

Simplifying, we may also get y− 7 = 10x− 30,

y = 10x − 23, which is in the Slope-Intercept

Form.



Circles
Definition 6 (Circle). A circle is the set of

points a fixed distance, called the radius of the

circle, from a fixed point, called the center of

the circle.

Suppose a circle has center (a, b) and radius r.

An arbitrary point (x, y) will be on the circle if

its distance from the center (a, b) is r. Using

the distance formula, this will be the case pre-

cisely when (x−a)2 +(y− b)2 = r2. This gives

an equation for the circle in standard form.

Example: A circle of radius 5 has center (2,7).

Its equation may be written (x−2)2+(y−7)2 =

25.

Example: A circle of radius 3 has center (8,−5).

Its equation may be written (x−8)2+(y+5)2 =

9.



Example: (x−3)2+(y+9)2 = 121 is an equa-

tion for the circle with center (3,−9) and radius

11.

Example: x2 − 6x + y2 = 55

This takes a bit more work. We may complete

the squares by noting (x − 3)2 = x2 − 6x + 9,

so that x2 − 6x = (x− 3)2 − 9, and thus write

the equation in the form (x−3)2−9+y2 = 55

or (x − 3)2 + y2 = 64 and thus recognize an

equation of the circle with center (3,0) and

radius 8.



Completing the Square

The method of completing the square comes

in handy in a number of instances. The goal in

completing the square is to rewrite a quadratic

as a square plus or minus a constant, effectively

eliminating the linear (first degree) term.

The key observation is that when one squares

a binomial of the form (x + a), one gets a

quadratic where the linear term has a coef-

ficient twice the constant in the original bino-

mial.

Another way of saying that is the constant

term of the binomial is half the coefficient of

the linear term in its square.

Examples:

(x + 1)2 = x2 + 2x + 1: 2 is twice 1; 1 is half

of 2



(x + 5)2 = x2 + 10x + 25: 10 is twice 5; 5 is

half of 10

(x− 8)2 = x2− 16x +64: −16 is twice −8; −8

is half of −16

This leads to the observation that to complete

the square of a quadratic, start by calculating

the square of

x+ half the coefficient of the linear term.

Example: Complete the square of x2 + 6x.

The coefficient of the linear term is 6. Half of

6 is 3, so calculate (x + 3)2 = x2 + 6x + 9. It

easily follows that x2 + 6x = (x + 3)2 − 9.

Example: Complete the square of x2− 8x + 5.

The coefficient of the linear term is −8. Half

of −8 is −4, so calculate (x−4)2 = x2−8x+16.



It easily follows that x2 − 8x = (x − 4)2 − 16

and thus x2 − 8x + 5 = (x − 4)2 − 16 + 5 =

(x− 4)2 − 11.

In general, we may note (x+ b
2)

2 = x2+bx+ b2

4 ,

so x2 + bx = (x + b
2)

2 − b2

4 and x2 + bx + c =

(x + b
2)

2 − b2

4 + c = (x + b
2)

2 + c− b2

4 . We may

look at

x2 + bx + c = (x + b
2)

2 + c− b2

4

as a completing the squares formula, although

it is probably better practice to work out the

calculation in each individual case.

Non-Monic Polynomials

Sometimes we need to complete the square for

a quadratic that is not monic, for which the

leading coefficient is not 1. In that case, we



may factor out the leading coefficient, com-

pete the square of the quadratic factor, and

then go back and multiply through by the lead-

ing coefficient again. It is sometimes more

convenient to deal with the constant term of

the original polynomial separately.

Example: Complete the square for 3x2+12x−
5.

Write 3x2+12x as 3(x2+4x). Completing the

square for x2+4x, we get x2+4x = (x+2)2−4.

Thus, 3x2+12x = 3[(x+2)2−4] = 3(x+2)2−
12 and 3x2 + 12x − 5 = 3(x + 2)2 − 12 − 5 =

3(x + 2)2 − 17.

Sometimes we have to deal with fractions. The



We may also get a general Completing the

Square formula by completing the square on

an arbitrary quadratic ax2 + bx + c.

Writing ax2+bx = a(x2+ b
ax), we can complete

the square on x2 + b
ax by looking at x + b

2a.

Squaring, we get (x + b
2a)

2 = x2 + b
ax + b2

4a2, so

that x2 + b
ax = (x + b

2a)
2 − b2

4a2 and ax2 + bx =

a[(x + b
2a)

2 − b2

4a2] = a(x + b
2a)

2 − ab2

4a2.

It then follows that

ax2 + bx + c = a(x + b
2a)

2 − b2

4a + c.

This may be viewed as a general Completing

the Squares formula.

Some resemblence to the Quadratic Formula

may be observed in this formula; indeed, the

Quadratic Formula may be derived by using

Completing the Squares to solve an arbitrary

quadratic equation.



Quadratic Equations

A quadratic equation is an equation which is

equivalent to an equation in the form ax2 +

bx + c = 0.

Quadratic equations may be solved using fac-

toring along with the property that the only

way a product can be 0 is if one of the factors

is 0.

The general strategy is to rewrite the quadratic

in the standard form ax2 + bx + c = 0, factor

the left hand side, and observe when one of

the factors on the left is 0.

Example: Solve x2 + 10x = 144.

We rewrite this as the equivalent quadratic

equation x2 + 10x − 144 = 0. Since x2 +

10x− 144 may be factored as (x− 8)(x + 18),

we may also write the equation in the form



(x − 8)(x + 18) = 0. Since x − 8 is 0 when

x = 8, while x + 18 is 0 when x = −18, there

are clearly two solutions, 8 and −18. We may

wish to write the solution set is {8,−18}.

We may also solve this equation using Com-

pleting the Squares, in which case we don’t

even have to put it in standard form first.

Completing the square, we observe (x +5)2 =

x2 + 10x + 25, so x2 + 10x = (x + 5)2− 25. It

follows that we may write the equation in the

form (x + 5)2 − 25 = 144, which is equivalent

to the equation (x+5)2 = 169. Since the two

square roots of 169 are ±13, it’s clear that x

will satisfy the equation if and only if x + 5 is

either 13 or −13. Since x + 5 equals 13 when

x = 8, while x + 5 equals −13 when x = −18,

it follows that 8 and −18 are the only solutions

to the equaton.



Quadratic Formula

Suppose we have an arbitrary quadratic equa-

tion in the standard form ax2 + bx + c = 0.

Completing the Square, we can write it in the

form

a(x + b
2a)

2 − b2

4a + c = 0

and do the following manipulations to get a

set of equivalent equations until we have some-

thing easier to solve.

a(x + b
2a)

2 = b2

4a − c

a(x + b
2a)

2 = b2−4ac
4a

(x + b
2a)

2 = b2−4ac
4a2

Thus, x will be a solution if and only iff x+ b
2a =

±
√

b2−4ac
4a2 = ±

√
b2−4ac
2a .



This will be the case if and only if x = − b
2a ±√

b2−4ac
2a = −b±

√
b2−4ac

2a .

This gives us the Quadratic Formula, that the

solutions of an equation ax2 + bx + c = 0 are
−b±

√
b2−4ac

2a .

Note: This is a shorthand way of writing two

separate solutions, −b+
√

b2−4ac
2a and −b−

√
b2−4ac

2a .

We also note we need to be careful whenever

calculating a square root, which leads to three

possibilities.

If b2−4ac > 0, the quadratic formula gives two

distinct solutions.

If b2−4ac = 0, the quadratic formula just gives

one real solution, − b
2a. This is often referred

to as a double root.



If b2 − 4ac < 0,
√

b2 − 4ac is a pure imaginary

number. In this case, there are no real solu-

tions, although there are two distinct complex

solutions.

Example: Solve x2 + 10x = 144.

We may rewrite this in the form x2 + 10x −
144 = 0 and can apply the Quadratic Formula

with a = 1, b = 10, c = −144. This gives
−10±

√
102−4·1·(−144)

2·1 = −10±
√

676
2 = −10±26

2 =
2(−5±13)

2 = −5± 13.

Since −5 + 13 = 8 and −5 − 13 = −18, we

get the two solutions 8 and −18, the same so-

lutions obtained previously using factoring and

completing the square.

Example: Solve x2 − 6x + 9 = 0.

We may apply the Quadratic Formula with a =

1, b = −6, c = 9 to get −(−6)±
√

(−6)2−4·1·9
2·1 =



6±
√

0
2 = 6

2 = 3, so we have the single, double

solution 3.

Note this could have been solved by factoring

by writing the equation in the form (x− 3)2 =

0.


