Graded Homework Assignment

1. Factor $x^4 - 18x^2 + 32x - 15$ completely.

Solution: Looking at the divisors of 15: $\pm 1, \pm 3, \pm 5, \pm 15$, we find 1 is a zero of the polynomial, so x-1 is a factor. Dividing $(x^4-18x^2+32x-15) \div (x-1) = x^3+x^2-17x+15$, we have $x^4-18x^2+32x-15=(x-1)(x^3+x^2-17x+15)$.

We now look at the divisors of 15 again and find 1 is also a zero of $x^3 + x^2 - 17x + 15$, so x - 1 is a factor of $x^3 + x^2 - 17x + 15$. Dividing $(x^3 + x^2 - 17x + 15) \div (x - 1) = x^2 + 2x - 15$, we have $x^4 - 18x^2 + 32x - 15 = (x - 1)^2(x^2 + 2x - 15)$.

We can easily factor $x^2 + 2x - 15 = (x+5)(x-3)$ at sight to obtain $x^4 - 18x^2 + 32x - 15 = (x-1)^2(x+5)(x-3)$.

2. Solve the equation $x^4 - 18x^2 + 32x - 15 = 0$.

Solution: From the first question, we easily see the solution set is $\{1, -5, 3\}$.

3. Solve the inequality $x^4 + 32x \ge 18x^2 + 15$.

Solution: Subtracting $18x^2 + 15$ from both sides, we get the equivalent inequality $x^4 - 18x^2 + 32x - 15 \ge 0$, which may be written in the form

$$(x-1)^2(x+5)(x-3) \ge 0.$$

Using the zeros of the polynomial, obtained in Question 1, we divide the real line into the intervals $(-\infty, -5)$, (-5, 1), (1, 3), $(3, \infty)$.

When x > 3, all the factors are positive, so the product is positive and x is a solution.

When 1 < x < 3, $(x - 1)^2$ is positive, x + 5 is positive and x - 3 is negative, so the product is negative and x is not a solution.

When -5 < x < 1, $(x - 1)^2$ is positive, x + 5 is positive and x - 3 is negative, so the product is negative and x is not a solution.

When x < -5, $(x-1)^2$ is positive, x+5 is negative and x-3 is negative, so the product is positive and x is a solution.

When x is either -5, 1 or 3, the product is 0 and the x is a solution.

We conclude the solution set is $\{x|x \leq -5 \text{ or } x \geq 3 \text{ or } x = 1\}$. This may also be expressed as $\{1\} \cup (-\infty, -5] \cup [3, \infty)$.

4. Devise a question that is equivalent to Question 2 but does not refer to any equation.

Solution: Find all zeros of the polynomial $x^4 - 18x^2 + 32x - 15$.