
The Natural Logarithm Function and The Exponential
Function

One specific logarithm function is singled out and one particular
exponential function is singled out.

Definition
e = limx→0(1 + x)1/x

Definition (The Natural Logarithm Function)

ln x = loge x

Definition (The Exponential Function)

exp x = ex
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Special Cases

The following special cases of properties of logarithms and
exponential functions are worth remembering separately for the
natural log function and the exponential function.

I y = ln x if and only if x = ey

I ln(ex) = x

I e ln x = x
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Other Bases

Suppose y = bx . By the properties of logarithms, we can write
ln y = ln(bx) = x ln b. It follows that e ln y = ex ln b. But, since
e ln y = y = bx , it follows that

bx = ex ln b

This important identity is very useful.

Similarly, suppose y = logb x . Then, by the definition of a
logarithm, it follows that by = x . But then ln(by ) = ln x . Since

ln(by ) = y ln b, it follows that y ln b = ln x and y =
ln x

ln b
, yielding

the following equally important identity.

logb x =
ln x

ln b
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Derivatives

d

dx
(ln x) =

1

x

d

dx
(ex) = ex

If there are logs or exponentials with other bases, one may still use
these formulas after rewriting the functions in terms of natural logs
or the exponential function.
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Example: Calculate
d

dx
(5x)

Using the formula ax = ex ln a, write 5x as ex ln 5. We can then
apply the Chain Rule, writing:

y = 5x = ex ln 5

y = eu

u = x ln 5

dy

dx
=

dy

du

du

dx
= eu · ln 5 = 5x ln 5
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Example: Calculate
d

dx
(log7 x)

Using the formula logb x =
ln x

ln b
,

we write log7 x =
ln x

ln 7
, so we can

proceed as follows:

y = log7 x =
ln x

ln 7
=

1

ln 7
· ln x

y ′ =
1

ln 7
· d

dx
(ln x) =

1

ln 7
· 1

x
=

1

x ln 7
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