The Natural Logarithm Function and The Exponential Function

One specific logarithm function is singled out and one particular exponential function is singled out.

Definition
$e=\lim _{x \rightarrow 0}(1+x)^{1 / x}$

The Natural Logarithm Function and The Exponential Function

One specific logarithm function is singled out and one particular exponential function is singled out.
Definition
$e=\lim _{x \rightarrow 0}(1+x)^{1 / x}$
Definition (The Natural Logarithm Function)
$\ln \mathrm{X}=\log _{e} \mathrm{X}$

The Natural Logarithm Function and The Exponential Function

One specific logarithm function is singled out and one particular exponential function is singled out.

Definition
$e=\lim _{x \rightarrow 0}(1+x)^{1 / x}$
Definition (The Natural Logarithm Function)
$\ln \mathrm{X}=\log _{e} \mathrm{X}$
Definition (The Exponential Function)
$\exp \mathrm{X}=\mathrm{e}^{\mathrm{x}}$

Special Cases

The following special cases of properties of logarithms and exponential functions are worth remembering separately for the natural log function and the exponential function.

Special Cases

The following special cases of properties of logarithms and exponential functions are worth remembering separately for the natural log function and the exponential function.

- $y=\ln x$ if and only if $x=e^{y}$

Special Cases

The following special cases of properties of logarithms and exponential functions are worth remembering separately for the natural log function and the exponential function.

- $y=\ln x$ if and only if $x=e^{y}$
- $\ln \left(\mathrm{e}^{x}\right)=x$

Other Bases

Suppose $y=b^{x}$. By the properties of logarithms, we can write $\ln y=\ln \left(\mathrm{b}^{x}\right)=x \ln \mathrm{~b}$. It follows that $\mathrm{e}^{\ln y}=\mathrm{e}^{x \ln b}$. But, since $\mathrm{e}^{\ln y}=\mathrm{y}=\mathrm{b}^{x}$, it follows that

Other Bases

Suppose $y=b^{x}$. By the properties of logarithms, we can write $\ln y=\ln \left(\mathrm{b}^{x}\right)=x \ln \mathrm{~b}$. It follows that $\mathrm{e}^{\ln y}=\mathrm{e}^{x \ln b}$. But, since $\mathrm{e}^{\ln y}=\mathrm{y}=\mathrm{b}^{x}$, it follows that

$$
\mathrm{b}^{x}=\mathrm{e}^{x \ln b}
$$

Other Bases

Suppose $y=b^{x}$. By the properties of logarithms, we can write $\ln y=\ln \left(\mathrm{b}^{x}\right)=x \ln \mathrm{~b}$. It follows that $\mathrm{e}^{\ln y}=\mathrm{e}^{x \ln b}$. But, since $\mathrm{e}^{\ln y}=\mathrm{y}=\mathrm{b}^{x}$, it follows that $\mathrm{b}^{x}=\mathrm{e}^{x \ln b}$

This important identity is very useful.

Other Bases

Suppose $y=b^{x}$. By the properties of logarithms, we can write $\ln y=\ln \left(\mathrm{b}^{x}\right)=x \ln \mathrm{~b}$. It follows that $\mathrm{e}^{\ln y}=\mathrm{e}^{x \ln b}$. But, since $\mathrm{e}^{\ln y}=\mathrm{y}=\mathrm{b}^{x}$, it follows that $\mathbf{b}^{x}=\mathrm{e}^{x \ln b}$

This important identity is very useful.
Similarly, suppose $\mathrm{y}=\log _{b} \mathrm{x}$.

Other Bases

Suppose $y=b^{x}$. By the properties of logarithms, we can write $\ln y=\ln \left(\mathrm{b}^{x}\right)=x \ln \mathrm{~b}$. It follows that $\mathrm{e}^{\ln y}=\mathrm{e}^{x \ln b}$. But, since $\mathrm{e}^{\ln y}=\mathrm{y}=\mathrm{b}^{x}$, it follows that

$$
\mathbf{b}^{x}=\mathbf{e}^{x \ln b}
$$

This important identity is very useful.
Similarly, suppose $y=\log _{b} x$. Then, by the definition of a logarithm, it follows that $\mathrm{b}^{y}=\mathrm{x}$.

Other Bases

Suppose $y=b^{x}$. By the properties of logarithms, we can write $\ln y=\ln \left(\mathrm{b}^{x}\right)=x \ln \mathrm{~b}$. It follows that $\mathrm{e}^{\ln y}=\mathrm{e}^{x \ln b}$. But, since $\mathrm{e}^{\ln y}=\mathrm{y}=\mathrm{b}^{x}$, it follows that

$$
\mathbf{b}^{x}=\mathrm{e}^{x \ln b}
$$

This important identity is very useful.
Similarly, suppose $y=\log _{b} x$. Then, by the definition of a logarithm, it follows that $\mathrm{b}^{y}=\mathrm{x}$. But then $\ln \left(\mathrm{b}^{y}\right)=\ln \mathrm{x}$.

Other Bases

Suppose $y=b^{x}$. By the properties of logarithms, we can write $\ln y=\ln \left(\mathrm{b}^{x}\right)=x \ln \mathrm{~b}$. It follows that $\mathrm{e}^{\ln y}=\mathrm{e}^{x \ln b}$. But, since $\mathrm{e}^{\ln y}=\mathrm{y}=\mathrm{b}^{x}$, it follows that

$$
\mathbf{b}^{x}=\mathbf{e}^{x \ln b}
$$

This important identity is very useful.
Similarly, suppose $y=\log _{b} x$. Then, by the definition of a logarithm, it follows that $\mathrm{b}^{y}=x$. But then $\ln \left(\mathrm{b}^{y}\right)=\ln \mathrm{x}$. Since $\ln \left(b^{y}\right)=y \ln b$,

Other Bases

Suppose $y=b^{x}$. By the properties of logarithms, we can write $\ln y=\ln \left(\mathrm{b}^{x}\right)=x \ln \mathrm{~b}$. It follows that $\mathrm{e}^{\ln y}=\mathrm{e}^{x \ln b}$. But, since
$\mathrm{e}^{\ln y}=\mathrm{y}=\mathrm{b}^{x}$, it follows that

$$
\mathrm{b}^{x}=\mathrm{e}^{x \ln b}
$$

This important identity is very useful.
Similarly, suppose $y=\log _{b} x$. Then, by the definition of a logarithm, it follows that $\mathrm{b}^{y}=\mathrm{x}$. But then $\ln \left(\mathrm{b}^{y}\right)=\ln \mathrm{x}$. Since $\ln \left(b^{y}\right)=y \ln b$, it follows that $y \ln b=\ln x$ and $y=\frac{\ln x}{\ln b}$, yielding the following equally important identity.

Other Bases

Suppose $y=b^{x}$. By the properties of logarithms, we can write $\ln y=\ln \left(\mathrm{b}^{x}\right)=x \ln \mathrm{~b}$. It follows that $\mathrm{e}^{\ln y}=\mathrm{e}^{x \ln b}$. But, since
$\mathrm{e}^{\ln y}=\mathrm{y}=\mathrm{b}^{x}$, it follows that

$$
\mathrm{b}^{x}=\mathrm{e}^{x \ln b}
$$

This important identity is very useful.
Similarly, suppose $y=\log _{b} x$. Then, by the definition of a logarithm, it follows that $b^{y}=x$. But then $\ln \left(b^{y}\right)=\ln x$. Since $\ln \left(b^{y}\right)=y \ln b$, it follows that $y \ln b=\ln x$ and $y=\frac{\ln x}{\ln b}$, yielding the following equally important identity.
$\log _{b} x=\frac{\ln x}{\ln b}$

Derivatives

$\frac{d}{d x}(\ln x)=\frac{1}{x}$

Derivatives

$$
\begin{aligned}
& \frac{d}{d x}(\ln x)=\frac{1}{x} \\
& \frac{d}{d x}\left(e^{x}\right)=e^{x}
\end{aligned}
$$

Derivatives

$$
\begin{aligned}
& \frac{d}{d x}(\ln x)=\frac{1}{x} \\
& \frac{d}{d x}\left(e^{x}\right)=e^{x}
\end{aligned}
$$

If there are logs or exponentials with other bases, one may still use these formulas after rewriting the functions in terms of natural logs or the exponential function.

Example: Calculate $\frac{d}{d x}\left(5^{x}\right)$

Using the formula $\mathrm{a}^{x}=\mathrm{e}^{x \ln a}$, write 5^{x} as $\mathrm{e}^{x \ln 5}$. We can then apply the Chain Rule, writing:

Example: Calculate $\frac{d}{d x}\left(5^{x}\right)$

Using the formula $\mathrm{a}^{x}=\mathrm{e}^{x \ln a}$, write 5^{x} as $\mathrm{e}^{x \ln 5}$. We can then apply the Chain Rule, writing:
$y=5^{x}=e^{x \ln 5}$

Example: Calculate $\frac{d}{d x}\left(5^{x}\right)$

Using the formula $\mathrm{a}^{x}=\mathrm{e}^{x \ln a}$, write 5^{x} as $\mathrm{e}^{x \ln 5}$. We can then apply the Chain Rule, writing:
$y=5^{x}=e^{x \ln 5}$
$\mathrm{y}=\mathrm{e}^{u}$
$u=x \ln 5$

Example: Calculate $\frac{d}{d x}\left(5^{x}\right)$

Using the formula $\mathrm{a}^{x}=\mathrm{e}^{x \ln a}$, write 5^{x} as $\mathrm{e}^{x \ln 5}$. We can then apply the Chain Rule, writing:
$y=5^{x}=e^{x \ln 5}$
$y=e^{u}$
$u=x \ln 5$
$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$

Example: Calculate $\frac{d}{d x}\left(5^{x}\right)$

Using the formula $\mathrm{a}^{x}=\mathrm{e}^{x \ln a}$, write 5^{x} as $\mathrm{e}^{x \ln 5}$. We can then apply the Chain Rule, writing:
$y=5^{x}=e^{x \ln 5}$
$y=e^{u}$
$u=x \ln 5$
$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=e^{u} \cdot \ln 5$

Example: Calculate $\frac{d}{d x}\left(5^{x}\right)$

Using the formula $\mathrm{a}^{x}=\mathrm{e}^{x \ln a}$, write 5^{x} as $\mathrm{e}^{x \ln 5}$. We can then apply the Chain Rule, writing:
$y=5^{x}=e^{x \ln 5}$
$y=e^{u}$
$u=x \ln 5$
$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=e^{u} \cdot \ln 5=5^{x} \ln 5$

Example: Calculate $\frac{d}{d x}\left(\log _{7} x\right)$

Using the formula $\log _{b} x=\frac{\ln x}{\ln b}$,

Example: Calculate $\frac{d}{d x}\left(\log _{7} x\right)$

Using the formula $\log _{b} x=\frac{\ln X}{\ln b}$, we write $\log _{7} x=\frac{\ln x}{\ln 7}$, so we can proceed as follows:

Example: Calculate $\frac{d}{d x}\left(\log _{7} x\right)$

Using the formula $\log _{b} x=\frac{\ln x}{\ln b}$, we write $\log _{7} x=\frac{\ln x}{\ln 7}$, so we can proceed as follows:
$y=\log _{7} x=\frac{\ln x}{\ln 7}=\frac{1}{\ln 7} \cdot \ln x$

Example: Calculate $\frac{d}{d x}\left(\log _{7} x\right)$

Using the formula $\log _{b} x=\frac{\ln X}{\ln \mathrm{~b}}$, we write $\log _{7} x=\frac{\ln X}{\ln 7}$, so we can proceed as follows:

$$
\begin{aligned}
& y=\log _{7} x=\frac{\ln x}{\ln 7}=\frac{1}{\ln 7} \cdot \ln x \\
& y^{\prime}=\frac{1}{\ln 7} \cdot \frac{d}{d x}(\ln x)=\frac{1}{\ln 7} \cdot \frac{1}{x}=\frac{1}{x \ln 7}
\end{aligned}
$$

