$$y = \log_b x$$
 if and only if $x = b^y$ (1)

$$y = \log_b x$$
 if and only if $x = b^y$ (1)

Essentially, the logarithm to the base b of a number x is the power which b must be raised to in order to obtain x.

$$y = \log_b x$$
 if and only if $x = b^y$ (1)

Essentially, the logarithm to the base b of a number x is the power which b must be raised to in order to obtain x.

This immediately leads to the two very useful formulas

$$b^{\log_b x} = x$$

$$y = \log_b x$$
 if and only if $x = b^y$ (1)

Essentially, the logarithm to the base b of a number x is the power which b must be raised to in order to obtain x.

This immediately leads to the two very useful formulas

$$b^{\log_b x} = x$$
 and $\log_b b^x = x$. (2)

Each of the properties of exponential functions has an analog for logarithmic functions.

- ▶ $\log_b 1 = 0$.

In other words, The logarithm of a product or quotient is the sum or difference of logarithms and the logarithm of a number to a power is the power times the logarithm of that number.