
Linear Programming Problems

Linear programming problems come up in many applications.

In a
linear programming problem, we have a function, called the
objective function, which depends linearly on a number of
independent variables, and which we want to optimize in the sense
of either finding its minimum value or maximum value.

Depending linearly means that the objective function is in the form
of a linear polynomial, a polynomial in which each of the variables
occurs to the first power and none of the variables are multiplied
together.
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Constraints

The variables are also subject to conditions,

in the form of linear
inequalities. These are called constraints.

The variables must also satisfy the non-negativity condition: they
can’t be negative.
The set of points, or values of the variables, which satisfy the
constraints and the non-negativity condition is called the feasible
set.
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Fundamental Theorem of Linear Programming

Theorem (Fundamental Theorem of Linear Programming)

The optimal value of the objective functions must occur at one of
the vertices of the feasible set.

We can understand this fairly easily for a case where there are two
independent variables. The notation gets more complicated when
there are more variables, but the basic ideas carry through.

Consider the values of an objective function p = αx + βy along a
line y = mx + b. If we plug mx + b in for y in the formula for p,
we get p = αx + β(mx + b) = αx + βmx + βb or

p = (α + βm)x + b.

If α + βm > 0, then p increases when x increases and p decreases
when x decreases.

If α + βm < 0, then p decreases when x increases and p increases
when x decreases.
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In either case, p increases when we go along the line in one
direction and decreases when we go along the line in the opposite
direction.

A third possibility is that α + βm = 0, in which case p never
changes.

In any of those cases, along any segment of the line, any extreme
value for p must occur at an endpoint.

If an extreme value occurs in a closed polygon, we easily see the
extreme value must occur along the boundary, and then if it occurs
along the boundary it must occur at one of the vertices, which is
what the Fundamental Theorem of Linear Programming says.
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In a linear programming problem with just two variables and a
handful of constraints, it’s easy to sketch the feasible set and find
its vertices.

This is the essence of solving linear programming
problems geometrically.

I Find the feasible set.

I Find the vertices.

I Evaluate the objective function at each vertex.

I Pick out the optimal value for the objective function.

Alan H. SteinUniversity of Connecticut



In a linear programming problem with just two variables and a
handful of constraints, it’s easy to sketch the feasible set and find
its vertices. This is the essence of solving linear programming
problems geometrically.

I Find the feasible set.

I Find the vertices.

I Evaluate the objective function at each vertex.

I Pick out the optimal value for the objective function.

Alan H. SteinUniversity of Connecticut



In a linear programming problem with just two variables and a
handful of constraints, it’s easy to sketch the feasible set and find
its vertices. This is the essence of solving linear programming
problems geometrically.

I Find the feasible set.

I Find the vertices.

I Evaluate the objective function at each vertex.

I Pick out the optimal value for the objective function.

Alan H. SteinUniversity of Connecticut



In a linear programming problem with just two variables and a
handful of constraints, it’s easy to sketch the feasible set and find
its vertices. This is the essence of solving linear programming
problems geometrically.

I Find the feasible set.

I Find the vertices.

I Evaluate the objective function at each vertex.

I Pick out the optimal value for the objective function.

Alan H. SteinUniversity of Connecticut



In a linear programming problem with just two variables and a
handful of constraints, it’s easy to sketch the feasible set and find
its vertices. This is the essence of solving linear programming
problems geometrically.

I Find the feasible set.

I Find the vertices.

I Evaluate the objective function at each vertex.

I Pick out the optimal value for the objective function.

Alan H. SteinUniversity of Connecticut



In a linear programming problem with just two variables and a
handful of constraints, it’s easy to sketch the feasible set and find
its vertices. This is the essence of solving linear programming
problems geometrically.

I Find the feasible set.

I Find the vertices.

I Evaluate the objective function at each vertex.

I Pick out the optimal value for the objective function.

Alan H. SteinUniversity of Connecticut



We’ll do some examples to help understand linear programming
problems,

but most linear programming problems that come up in
real life involve numerous variables and constraints and effectively
require a more efficient approach. The most common approach is
called the Simplex Method.
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The Elephant in the Room

Linear programming problems don’t come out of thin air;

there are
real problems that, when translated, turn into linear programming
problems.

The process of turning a real problem into a linear programming
problem is the same involved in any other word problem: Read the
problem!!!

In particular,

I Look for variables and unknowns.

I Find connections among the variables and unknowns. In this
case, the connections translate into constraints along with the
objective function.
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The Simplex Method

In most word problems studied before, the connections translated
to equations,

which were then solved.

In linear programming problems, we generally use the Simplex
Method.
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An Example

Consider the following maximum problem:

2x + y ≤ 3

3x + y ≤ 4

x ≥ 0, y ≥ 0

p = 17x + 5y
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Vertices

The vertices of the feasible set and the values of the objective
function p = 17x + 5y at those points are the following:

(0, 0) 0
(4/3, 0) 222

3
(1, 1) 22
(0, 3) 15

.

Thus, the maximum value for p is 222
3 , which occurs at (4/3, 0).
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The Simplex Method

With the Simplex Method, we do not need to evaluate the
objective function at each vertex.

We will illustrate the Simplex Method using this example and then
generalize the method so we can perform it mechanically, as an
algorithm.

The first step is to change the contraints from inequalities into
equations by introducing what are called slack variables. The slack
variables essentially take up the slack in the inequalities.

Looking at the inequality 2x + y ≤ 3, we introduce the slack
variable u = 3− (2x + y), so u ≥ 0 while 2x + y + u = 3.

Similarly, looking at the inequality 3x + y ≤ 4, we introduce the
slack variable v = 4− (3x + y), so v ≥ 0 while 3x + y + v = 4.
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algorithm.
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Restating the Problem

We can thus restate the problem as

2x + y + u = 3

3x + y + v = 4

x , y , u, v ≥ 0

p = 17x + 5y

where we find the maximum value for the objective function p
which satisfies the contraints, now given as equations, and the
non-negativity condition.
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A New System of Equations

If we rewrite the formula for the objective function in the form
−17x − 5y + p = 0,

we get a system of equations:

2x + y + u = 3

3x + y + v = 4

−17x − 5y + p = 0.

We will write down the augmented matrix for this system, use it to
easily pick out one of the vertices and the value of the objective
function at that vertex, and then pivot in a way that will enable us
to find another vertex at which the value for the objective function
is larger.
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The Initial Simplex Tableau

The augmented matrix for the system

2x + y + u = 3

3x + y + v = 4

−17x − 5y + p = 0.

is
x y u v p
2 1 1 0 0 3
3 1 0 1 0 4
−17 −5 0 0 1 0



The first row isn’t actually part of the augmented matrix, but we’ll
write it down as a reminder of which variable each column is
associated with.
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The Initial Tableau


x y u v p
2 1 1 0 0 3
3 1 0 1 0 4
−17 −5 0 0 1 0


Looking at the matrix, it’s fairly obvious that the columns
corresponding to x and y are the most complicated.

We can easily
read off a solution if we set x = 0 and y = 0. If we do that, the
first row, which corresponds to the equation 2x + y + u = 3, gives
a solution u = 3. Similarly, the second row, which corresponds to
the equation 3x + y + v = 4, gives a solution v = 4. The third
row, which corresponds to the equation −17x − 5y + p = 0, gives
a solution p = 0.
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A Solution

So we have a solution of the equations giving x = 0, y = 0, u = 3,
v = 4 and p = 0.

This corresponds to the vertex (0, 0), which
gives a value of 0 for the objective function.

We will call x and y Group I variables and we will call u and v
Group II variables.

Each time we pivot, we will exchange one pair of variables, one
from Group I and one from Group II, to get another set of Group I
variables which will be set to 0. This will give another fairly
obvious solution, which will correspond to another vertex and
another value of the objective function.
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The Objective Function

The last row gives a formula −17x − 5y + p = 0 involving the
objective function.

We can solve this for the objective function,
getting p = 17x + 5y . It may seem as if we’re going around in
circles, but right now we’re trying to understand a process; later
we will synthesize the ideas into an efficient algorithm.

Since at the solution we found, x = y = 0, p takes on the value 0.
On the other hand, it’s clear that if we found another solution
where either x or y was positive, we’d get a larger value for p. It
should also be clear that increasing x will increase p faster than
increasing y would, so we’ll pivot in a way that will make x a
Group II variable.

We’ll do this by pivoting about the column corresponding to x , in
other words, we’ll pivot about the first column.
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Finding the Pivot Row

We now have to decide which entry in the first column to pivot
around.

Since the last row corresponds to the objective function,
which is different in character from the others, we won’t even
consider pivoting about the last row.

If we pivoted about the first row, we’d start by dividing the first
row by 2, getting 3/2 in the last column. We’d next subtract 3
times the first row from the second, which would give −1

2 in the
last column. Since negative numbers are evil, we’ll avoid that by
pivoting about the second row. So we’ll pivot about the entry in
the second row, first column.
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The Pivot

 2 1 1 0 0 3
3 1 0 1 0 4
−17 −5 0 0 1 0


First, we divide the second row by 3 to get a 1 at the pivot point: 2 1 1 0 0 3

1 1/3 0 1/3 0 4/3
−17 −5 0 0 1 0



To get 0’s elsewhere in the first column, we’ll subtract 2× the pivot
row from the first row and add 17× the pivot row to the third row:
R1 ← R1 − 2R2, R3 = R3 + 17R2:0 1/3 1 −2/3 0 1/3

1 1/3 0 1/3 0 4/3
0 2/3 0 17/3 1 68/3
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Interpreting the New Matrix

We’ll rewrite the matrix with the columns again labeled:
x y u v p
0 1/3 1 −2/3 0 1/3
1 1/3 0 1/3 0 4/3
0 2/3 0 17/3 1 68/3



This time, the Group II variables are y and v and we’ll set them to
0.

We can then interpret the equations. The first row corresponds to
the equation 1

3y + u − 2
3v = 1

3 . Since y = v = 0, we get u = 1
3 .

The second row corresponds to the equation x + 1
3y + 1

3v = 4
3 .

Again, since y = v = 0, we get x = 4
3 .

The third row corresponds to the equation 2
3y + 17

3 v + p = 68
3 .

Once again, since y = v = 0, we easily get p = 68
3 .

This corresponds to the vertex (4/3, 0), giving the value 68
3 = 222

3
for the objective function.
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Another Look at the Last Row

Looking at the last row, corresponding to the equation
2
3y + 17

3 v + p = 68
3 , more closely, we can solve for p to get:

p = 68
3 −

2
3y − 17

3 v .

We just found a vertex corresponding to values of 0 for y and v .
Any other solution would either involve still having 0 values for y
and v , which would give the same value for p, or would involve
positive values for one or both of y and v , which would give a
smaller value for p.

Obviously, we have found the largest possible value for the
objective function.

We’ll analyze what we just did, synthesize it, and come up with
the Simplex Method.
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The Simplex Method

1. The first step is to take each inequality and introduce a slack
variable to get an equation.

2. We also rewrite the formula for the objective function,
bringing all the variables over to the left side.

3. We now write down the augmented matrix for the system of
equations, with the folowing optional adjustment: Since we
never pivot about the last row, the next to last column never
changes. Effectively, the next to last column is unnecessary, so
we don’t have to write it down.

At this point, we have the Initial Simplex Tableau.
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Pivoting

We then pivot, choosing where to pivot as follows:

1. We look at the bottom row, look at the negative entries, and
choose the column for which the negative entry in the bottom
row has the largest magnitude. That will be the pivot column.
If there are no negative entries, then we are finished.

2. Look at the rows with positive entries in both the pivot
column and the last column. In each such row, compute the
quotient of the entry in the last column divided by the entry
in the pivot column. The row for which this quotient is
smallest is the pivot row.

Once we have chosen the pivot row and pivot column, we pivot.

Alan H. SteinUniversity of Connecticut



Pivoting

We then pivot, choosing where to pivot as follows:

1. We look at the bottom row, look at the negative entries, and
choose the column for which the negative entry in the bottom
row has the largest magnitude.

That will be the pivot column.
If there are no negative entries, then we are finished.

2. Look at the rows with positive entries in both the pivot
column and the last column. In each such row, compute the
quotient of the entry in the last column divided by the entry
in the pivot column. The row for which this quotient is
smallest is the pivot row.

Once we have chosen the pivot row and pivot column, we pivot.

Alan H. SteinUniversity of Connecticut



Pivoting

We then pivot, choosing where to pivot as follows:

1. We look at the bottom row, look at the negative entries, and
choose the column for which the negative entry in the bottom
row has the largest magnitude. That will be the pivot column.

If there are no negative entries, then we are finished.

2. Look at the rows with positive entries in both the pivot
column and the last column. In each such row, compute the
quotient of the entry in the last column divided by the entry
in the pivot column. The row for which this quotient is
smallest is the pivot row.

Once we have chosen the pivot row and pivot column, we pivot.

Alan H. SteinUniversity of Connecticut



Pivoting

We then pivot, choosing where to pivot as follows:

1. We look at the bottom row, look at the negative entries, and
choose the column for which the negative entry in the bottom
row has the largest magnitude. That will be the pivot column.
If there are no negative entries, then we are finished.

2. Look at the rows with positive entries in both the pivot
column and the last column. In each such row, compute the
quotient of the entry in the last column divided by the entry
in the pivot column. The row for which this quotient is
smallest is the pivot row.

Once we have chosen the pivot row and pivot column, we pivot.

Alan H. SteinUniversity of Connecticut



Pivoting

We then pivot, choosing where to pivot as follows:

1. We look at the bottom row, look at the negative entries, and
choose the column for which the negative entry in the bottom
row has the largest magnitude. That will be the pivot column.
If there are no negative entries, then we are finished.

2. Look at the rows with positive entries in both the pivot
column and the last column.

In each such row, compute the
quotient of the entry in the last column divided by the entry
in the pivot column. The row for which this quotient is
smallest is the pivot row.

Once we have chosen the pivot row and pivot column, we pivot.

Alan H. SteinUniversity of Connecticut



Pivoting

We then pivot, choosing where to pivot as follows:

1. We look at the bottom row, look at the negative entries, and
choose the column for which the negative entry in the bottom
row has the largest magnitude. That will be the pivot column.
If there are no negative entries, then we are finished.

2. Look at the rows with positive entries in both the pivot
column and the last column. In each such row, compute the
quotient of the entry in the last column divided by the entry
in the pivot column.

The row for which this quotient is
smallest is the pivot row.

Once we have chosen the pivot row and pivot column, we pivot.

Alan H. SteinUniversity of Connecticut



Pivoting

We then pivot, choosing where to pivot as follows:

1. We look at the bottom row, look at the negative entries, and
choose the column for which the negative entry in the bottom
row has the largest magnitude. That will be the pivot column.
If there are no negative entries, then we are finished.

2. Look at the rows with positive entries in both the pivot
column and the last column. In each such row, compute the
quotient of the entry in the last column divided by the entry
in the pivot column. The row for which this quotient is
smallest is the pivot row.

Once we have chosen the pivot row and pivot column, we pivot.

Alan H. SteinUniversity of Connecticut



Pivoting

We then pivot, choosing where to pivot as follows:

1. We look at the bottom row, look at the negative entries, and
choose the column for which the negative entry in the bottom
row has the largest magnitude. That will be the pivot column.
If there are no negative entries, then we are finished.

2. Look at the rows with positive entries in both the pivot
column and the last column. In each such row, compute the
quotient of the entry in the last column divided by the entry
in the pivot column. The row for which this quotient is
smallest is the pivot row.

Once we have chosen the pivot row and pivot column,

we pivot.

Alan H. SteinUniversity of Connecticut



Pivoting

We then pivot, choosing where to pivot as follows:

1. We look at the bottom row, look at the negative entries, and
choose the column for which the negative entry in the bottom
row has the largest magnitude. That will be the pivot column.
If there are no negative entries, then we are finished.

2. Look at the rows with positive entries in both the pivot
column and the last column. In each such row, compute the
quotient of the entry in the last column divided by the entry
in the pivot column. The row for which this quotient is
smallest is the pivot row.

Once we have chosen the pivot row and pivot column, we pivot.

Alan H. SteinUniversity of Connecticut



The End Game

We continue pivoting until we can’t pivot any more,

which occurs
when there are no negative entries in the bottom row.

At this point, we can set the Group I variables to 0, easily find the
values for the Group II variables, and the entry in the bottom right
of the matrix will be the value of the objective function.
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Complications

This works well as long as all the contraints are in the form
(Linear Polynomial) ≤ (Positive Constant)
and we are trying to maximize the objective function.

Things get more complicated if the inequality goes the other way,
which generally occurs when we are trying to minimize the
objective function and can also occur occasionally in maximum
problems. Dealing with minimum problems is another complication.
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Dealing with ≥

If the inequality goes the other way, we can deal with it by
multiplying both sides by −1.

In other words, if we have an
equality of the form
P ≥ k,
where P is a linear polynomial and k is a constant, we can instead
use the equivalent inequality
−P ≤ −k.

The complication is that this is likely to lead to a negative number
on the right hand side. We need to see how to deal with that.
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Dealing with Negative Constants

The problem with having a negative constant is that when we pick
out what we hope will be a feasible solution, one of the variables
will fail to satisfy the non-negativity condition.

We deal with that
via some preliminary pivoting on the Initial Simplex Tableau.

Alan H. SteinUniversity of Connecticut



Dealing with Negative Constants

The problem with having a negative constant is that when we pick
out what we hope will be a feasible solution, one of the variables
will fail to satisfy the non-negativity condition. We deal with that
via some preliminary pivoting on the Initial Simplex Tableau.

Alan H. SteinUniversity of Connecticut



Preliminary Pivoting

If there is a negative entry in the last column of a tableau
(excluding the bottom row), we look in that row for a negative
entry.

The column containing that entry becomes our pivot column.

Note:

I If there is more than one row with a negative entry in the last
column, we can look at any of those rows.

I If there is more than one negative entry in that row, we may
choose any of the columns with a negative entry as the pivot
column.
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Choosing the Pivot Row

Once we have the pivot column, we choose the pivot row in the
usual way, with the following adjustment:

We consider all rows
where the quotient of the entry in the last column divided by the
entry in the pivot column is positive.

We then pivot and repeat this preliminary process until there are
no more negative entries in the last column. At that point, we
proceed with the Simplex Method in the usual way.
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Minimizing the Objective Function

We minimize the objective function by maximizing its additive
inverse,

that is, its negative.

In other words, if we need to minimize p, we simply maximize
M = −p.

When we are finished pivoting, we then merely recognize that the
entry in the lower right hand corner of the final simplex tableau is
the negative of minimum value for the objective function.
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