
Linear Programming Problems
Linear programming problems come up in many applications. In a

linear programming problem, we have a function, called the objective
function, which depends linearly on a number of independent variables,
and which we want to optimize in the sense of either finding its mini-
mum value or maximum value.

Depending linearly means that the objective function is in the form of
a linear polynomial, a polynomial in which each of the variables occurs
to the first power and none of the variables are multiplied together.

Constraints
The variables are also subject to conditions, in the form of linear

inequalities. These are called constraints.

The variables must also satisfy the non-negativity condition: they can’t
be negative.

The set of points, or values of the variables, which satisfy the con-
straints and the non-negativity condition is called the feasible set.

Fundamental Theorem of Linear Programming

Theorem 1 (Fundamental Theorem of Linear Programming). The
optimal value of the objective functions must occur at one of the vertices
of the feasible set.

We can understand this fairly easily for a case where there are two
independent variables. The notation gets more complicated when there
are more variables, but the basic ideas carry through.

Consider the values of an objective function p = αx + βy along a line
y = mx + b. If we plug mx + b in for y in the formula for p, we get
p = αx + β(mx + b) = αx + βmx + βb or

p = (α + βm)x + b.

If α+βm > 0, then p increases when x increases and p decreases when
x decreases.

If α+βm < 0, then p decreases when x increases and p increases when
x decreases.

In either case, p increases when we go along the line in one direction
and decreases when we go along the line in the opposite direction.

A third possibility is that α + βm = 0, in which case p never changes.

In any of those cases, along any segment of the line, any extreme value
for p must occur at an endpoint.
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If an extreme value occurs in a closed polygon, we easily see the ex-
treme value must occur along the boundary, and then if it occurs along
the boundary it must occur at one of the vertices, which is what the
Fundamental Theorem of Linear Programming says.

In a linear programming problem with just two variables and a hand-
ful of constraints, it’s easy to sketch the feasible set and find its vertices.
This is the essence of solving linear programming problems geometri-
cally.

• Find the feasible set.
• Find the vertices.
• Evaluate the objective function at each vertex.
• Pick out the optimal value for the objective function.

We’ll do some examples to help understand linear programming
problems, but most linear programming problems that come up in real
life involve numerous variables and constraints and effectively require
a more efficient approach. The most common approach is called the
Simplex Method.

The Elephant in the Room

Linear programming problems don’t come out of thin air; there are
real problems that, when translated, turn into linear programming
problems.

The process of turning a real problem into a linear programming prob-
lem is the same involved in any other word problem: Read the prob-
lem!!!

In particular,

• Look for variables and unknowns.
• Find connections among the variables and unknowns. In this

case, the connections translate into constraints along with the
objective function.

The Simplex Method

In most word problems studied before, the connections translated to
equations, which were then solved.

In linear programming problems, we generally use the Simplex Method.

An Example

Consider the following maximum problem:
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2x + y ≤ 3

3x + y ≤ 4

x ≥ 0, y ≥ 0

p = 17x + 5y

Vertices
The vertices of the feasible set and the values of the objective func-

tion p = 17x + 5y at those points are the following:

(0, 0) 0
(4/3, 0) 222

3
(1, 1) 22
(0, 3) 15

.

Thus, the maximum value for p is 222
3
, which occurs at (4/3, 0).

The Simplex Method
With the Simplex Method, we do not need to evaluate the objective

function at each vertex.

We will illustrate the Simplex Method using this example and then
generalize the method so we can perform it mechanically, as an algo-
rithm.

The first step is to change the contraints from inequalities into equa-
tions by introducing what are called slack variables. The slack variables
essentially take up the slack in the inequalities.

Looking at the inequality 2x + y ≤ 3, we introduce the slack variable
u = 3− (2x + y), so u ≥ 0 while 2x + y + u = 3.

Similarly, looking at the inequality 3x + y ≤ 4, we introduce the slack
variable v = 4− (3x + y), so v ≥ 0 while 3x + y + v = 4.

Restating the Problem
We can thus restate the problem as

2x + y + u = 3

3x + y + v = 4

x, y, u, v ≥ 0

p = 17x + 5y

where we find the maximum value for the objective function p which
satisfies the contraints, now given as equations, and the non-negativity
condition.

A New System of Equations
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If we rewrite the formula for the objective function in the form
−17x− 5y + p = 0, we get a system of equations:

2x + y + u = 3

3x + y + v = 4

−17x− 5y + p = 0.

We will write down the augmented matrix for this system, use it to
easily pick out one of the vertices and the value of the objective function
at that vertex, and then pivot in a way that will enable us to find
another vertex at which the value for the objective function is larger.

The Initial Simplex Tableau

The augmented matrix for the system

2x + y + u = 3

3x + y + v = 4

−17x− 5y + p = 0.

is
x y u v p
2 1 1 0 0 3
3 1 0 1 0 4
−17 −5 0 0 1 0


The first row isn’t actually part of the augmented matrix, but we’ll write
it down as a reminder of which variable each column is associated with.

The Initial Tableau
x y u v p
2 1 1 0 0 3
3 1 0 1 0 4
−17 −5 0 0 1 0


Looking at the matrix, it’s fairly obvious that the columns corre-

sponding to x and y are the most complicated. We can easily read off
a solution if we set x = 0 and y = 0. If we do that, the first row,
which corresponds to the equation 2x + y + u = 3, gives a solution
u = 3. Similarly, the second row, which corresponds to the equation
3x+y+v = 4, gives a solution v = 4. The third row, which corresponds
to the equation −17x− 5y + p = 0, gives a solution p = 0.

A Solution
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So we have a solution of the equations giving x = 0, y = 0, u = 3,
v = 4 and p = 0. This corresponds to the vertex (0, 0), which gives a
value of 0 for the objective function.

We will call x and y Group I variables and we will call u and v Group
II variables.

Each time we pivot, we will exchange one pair of variables, one from
Group I and one from Group II, to get another set of Group I variables
which will be set to 0. This will give another fairly obvious solution,
which will correspond to another vertex and another value of the ob-
jective function.

The Objective Function
The last row gives a formula−17x−5y+p = 0 involving the objective

function. We can solve this for the objective function, getting p =
17x + 5y. It may seem as if we’re going around in circles, but right
now we’re trying to understand a process; later we will synthesize the
ideas into an efficient algorithm.

Since at the solution we found, x = y = 0, p takes on the value 0. On
the other hand, it’s clear that if we found another solution where either
x or y was positive, we’d get a larger value for p. It should also be clear
that increasing x will increase p faster than increasing y would, so we’ll
pivot in a way that will make x a Group II variable.

We’ll do this by pivoting about the column corresponding to x, in other
words, we’ll pivot about the first column.

Finding the Pivot Row
We now have to decide which entry in the first column to pivot

around. Since the last row corresponds to the objective function, which
is different in character from the others, we won’t even consider pivoting
about the last row.

If we pivoted about the first row, we’d start by dividing the first row
by 2, getting 3/2 in the last column. We’d next subtract 3 times the
first row from the second, which would give −1

2
in the last column.

Since negative numbers are evil, we’ll avoid that by pivoting about the
second row. So we’ll pivot about the entry in the second row, first
column.

The Pivot 2 1 1 0 0 3
3 1 0 1 0 4
−17 −5 0 0 1 0


First, we divide the second row by 3 to get a 1 at the pivot point:
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1 1/3 0 1/3 0 4/3
−17 −5 0 0 1 0


To get 0’s elsewhere in the first column, we’ll subtract 2× the pivot
row from the first row and add 17× the pivot row to the third row:

R1 ← R1 − 2R2, R3 = R3 + 17R2:0 1/3 1 −2/3 0 1/3
1 1/3 0 1/3 0 4/3
0 2/3 0 17/3 1 68/3


Interpreting the New Matrix

We’ll rewrite the matrix with the columns again labeled:
x y u v p
0 1/3 1 −2/3 0 1/3
1 1/3 0 1/3 0 4/3
0 2/3 0 17/3 1 68/3


This time, the Group II variables are y and v and we’ll set them to 0.

We can then interpret the equations. The first row corresponds to the
equation 1

3
y + u− 2

3
v = 1

3
. Since y = v = 0, we get u = 1

3
.

The second row corresponds to the equation x + 1
3
y + 1

3
v = 4

3
. Again,

since y = v = 0, we get x = 4
3
.

The third row corresponds to the equation 2
3
y + 17

3
v + p = 68

3
. Once

again, since y = v = 0, we easily get p = 68
3
.

This corresponds to the vertex (4/3, 0), giving the value 68
3

= 222
3

for
the objective function.

Another Look at the Last Row
Looking at the last row, corresponding to the equation 2

3
y+ 17

3
v+p =

68
3
, more closely, we can solve for p to get:

p = 68
3
− 2

3
y − 17

3
v.

We just found a vertex corresponding to values of 0 for y and v. Any
other solution would either involve still having 0 values for y and v,
which would give the same value for p, or would involve positive values
for one or both of y and v, which would give a smaller value for p.

Obviously, we have found the largest possible value for the objective
function.

We’ll analyze what we just did, synthesize it, and come up with the
Simplex Method.
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The Simplex Method
(1) The first step is to take each inequality and introduce a slack

variable to get an equation.
(2) We also rewrite the formula for the objective function, bringing

all the variables over to the left side.
(3) We now write down the augmented matrix for the system of

equations, with the folowing optional adjustment: Since we
never pivot about the last row, the next to last column never
changes. Effectively, the next to last column is unnecessary, so
we don’t have to write it down.

At this point, we have the Initial Simplex Tableau.

Pivoting
We then pivot, choosing where to pivot as follows:

(1) We look at the bottom row, look at the negative entries, and
choose the column for which the negative entry in the bottom
row has the largest magnitude. That will be the pivot column.
If there are no negative entries, then we are finished.

(2) Look at the rows with positive entries in both the pivot column
and the last column. In each such row, compute the quotient of
the entry in the last column divided by the entry in the pivot
column. The row for which this quotient is smallest is the pivot
row.

Once we have chosen the pivot row and pivot column, we pivot.

The End Game
We continue pivoting until we can’t pivot any more, which occurs

when there are no negative entries in the bottom row.

At this point, we can set the Group I variables to 0, easily find the
values for the Group II variables, and the entry in the bottom right of
the matrix will be the value of the objective function.

Complications
This works well as long as all the contraints are in the form
(Linear Polynomial) ≤ (Positive Constant)
and we are trying to maximize the objective function.

Things get more complicated if the inequality goes the other way, which
generally occurs when we are trying to minimize the objective function
and can also occur occasionally in maximum problems. Dealing with
minimum problems is another complication.

Dealing with ≥
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If the inequality goes the other way, we can deal with it by multi-
plying both sides by −1. In other words, if we have an equality of the
form

P ≥ k,
where P is a linear polynomial and k is a constant, we can instead

use the equivalent inequality
−P ≤ −k.

The complication is that this is likely to lead to a negative number on
the right hand side. We need to see how to deal with that.

Dealing with Negative Constants
The problem with having a negative constant is that when we pick

out what we hope will be a feasible solution, one of the variables will
fail to satisfy the non-negativity condition. We deal with that via some
preliminary pivoting on the Initial Simplex Tableau.

Preliminary Pivoting
If there is a negative entry in the last column of a tableau (excluding

the bottom row), we look in that row for a negative entry.

The column containing that entry becomes our pivot column.

Note:

• If there is more than one row with a negative entry in the last
column, we can look at any of those rows.
• If there is more than one negative entry in that row, we may

choose any of the columns with a negative entry as the pivot
column.

Once we have the pivot column, we choose the pivot row in the
usual way, with the following adjustment: We consider all rows where
the quotient of the entry in the last column divided by the entry in the
pivot column is positive.

We then pivot and repeat this preliminary process until there are no
more negative entries in the last column. At that point, we proceed
with the Simplex Method in the usual way.

Minimizing the Objective Function
We minimize the objective function by maximizing its additive in-

verse, that is, its negative.

In other words, if we need to minimize p, we simply maximize M = −p.

When we are finished pivoting, we then merely recognize that the en-
try in the lower right hand corner of the final simplex tableau is the
negative of minimum value for the objective function.


