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Thin classes of separating sets

Reed Solomon

Abstract. There are various definitions for a Martin–Pour-El theory in the
literature. We isolate two such definitions: weak Martin–Pour-El theories

(which correspond to perfect thin Π0
1 classes) and strong Martin–Pour-El the-

ories (which correspond to thin classes of separating sets). By concentrating
on constructions of appropriate Π0

1 classes, rather than on direct construc-

tions of the theories, we show how the extend versions of well known results
about weak Martin–Pour-El theories to strong Martin–Pour-El theories. In

addition, we consider how the degrees of complete consistent extensions of a

strong Martin–Pour-El theory relate to the degree of the theory. Finally, we
give a new restriction on the degrees of sets occurring in a thin Π0

1 class and

prove that this restriction is strictly stronger than previously known results.

1. Introduction

Π0
1 classes can be used to represent many different collections of objects in

mathematics, including the set of complete consistent extensions of a computably
enumerable (c.e.) theory. We begin with a brief discussion of this connection.
The reader who is not familiar with Π0

1 classes and their connections to c.e. the-
ories is referred to Cenzer [C] and Cenzer and Remmel [CR] for a more detailed
introduction.

A tree is a set T ⊆ 2<ω which is closed under initial segments. For any tree
T , we let [T ] denote the set of all infinite paths through T . That is, X ∈ [T ] if
and only if 〈X(0), X(1), . . . , X(n)〉 ∈ T for all n. A Π0

1 class is a set P ⊆ 2ω

for which there is a computable tree T such that P = [T ]. (Such classes are
sometimes called computably bounded Π0

1 classes in the literature.) Equivalently,
P ⊆ 2ω is a Π0

1 class if and only if there is a primitive recursive tree T such that
P = [T ]. The advantage of working with primitive recursive trees is that we can fix
an effective enumeration of such trees and avoid any issues of partialness. Another
useful equivalent definition for a Π0

1 class P is that P = [V ] for a Π0
1 tree V . Such

a tree is usually constructed as the intersection V =
⋂

s Vs of a nested uniform
sequence V0 ⊇ V1 ⊇ · · · of computable trees.
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The main examples of Π0
1 classes we will work with are separating classes. Given

disjoint c.e. sets A and B, the Π0
1 class Sep(A,B) = {D |A ⊆ D ∧D ∩ B = ∅} is

called the separating class of A and B. If A∪B is coinfinite, then Sep(A,B) is
a perfect Π0

1 class and hence is uncountable. One of the main themes of this article
is to transfer results from perfect Π0

1 classes to classes of separating sets.
We work with propositional theories in the language with propositional vari-

ables pi, i ∈ ω. Let S be a consistent c.e. propositional theory. The collection of
complete consistent extensions of S can be represented by a Π0

1 class in the sense
that there is a Π0

1 class PS and a Turing degree preserving bijection between PS and
the set of complete consistent extensions of S. We view each X ∈ PS as represent-
ing the theory generated by {pi | i ∈ X} and {¬pi | i 6∈ X}. Conversely, if we start
with a Π0

1 class P , then there is a c.e. theory SP and a Turing degree preserving
bijection between the complete consistent extensions of SP and P . Furthermore,
these processes are inverses in the sense that passing from a Π0

1 class to a c.e. the-
ory and back to a Π0

1 class returns us to the original class. Therefore, studying
complete consistent extensions of c.e. theories is equivalent to studying Π0

1 classes.
(For details of this correspondence, the reader is referred to Cenzer [C] and Cenzer
and Remmel [CR].)

To examine this connection in more depth, we need additional notation. For
σ, τ ∈ 2<ω, we write σ v τ if σ is an initial segment of τ . Similarly, we write σ v X
if σ is an initial segment of the set X. If P is a Π0

1 class, then P [σ] denotes the set
of all X ∈ P such that σ v X. If T is a tree, then T [σ] is the set of all τ ∈ T such
that σ v τ . We sometimes abuse notation and treat T [σ] as a tree, even though it
is missing the proper initial segments of σ.

Definition 1.1. A Π0
1 class P is thin if for every Π0

1 subclass Q ⊆ P , there is
a finite set of strings σ1, . . . , σk such that Q = P [σ1] ∪ · · · ∪ P [σk]. In other words,
Q is the intersection of P with a clopen set in 2ω.

Definition 1.2. Let S be a consistent c.e. theory in the propositional language
with variables pi, i ∈ ω.

(1) S has few c.e. extensions if every c.e. extension C of S is a principal ex-
tension. That is, C is generated by S together with a single propositional
formula.

(2) S is essentially undecidable if S has no decidable complete consistent
extensions.

(3) S is well generated if there are sets A and B such that S is generated
by {pi | i ∈ A} and {¬pi | i ∈ B}. (In this case, A and B must be c.e. and
disjoint.)

The following properties of the correspondence between Π0
1 classes and complete

consistent extensions of c.e. theories follow from the definitions. First, S has few
c.e. extensions if and only if the corresponding Π0

1 class is thin. Second, S is
essentially undecidable if and only if the corresponding Π0

1 class has no computable
members. Third, S is well generated if and only if the corresponding Π0

1 class is a
separating class.

There are several different definitions for a Martin–Pour-El theory in the lit-
erature, each of which corresponds to some combination of these properties. The
varying definitions were chosen to fit particular circumstances. For example, Cen-
zer, Downey, Jockush and Shore [CDJS] define a Martin–Pour-El theory to be



THIN CLASSES OF SEPARATING SETS 3

a consistent c.e. theory with few c.e. extensions. Under their definition, Martin–
Pour-El theories correspond to thin Π0

1 classes. They chose this definition to fit
their focus on countable Π0

1 classes, each of which must contain a computable ele-
ment and cannot be a class of separating sets for which A∪B is coinfinite. We will
not work with this particular definition of a Martin–Pour-El theory.

In the survey papers Cenzer [C] and Cenzer and Remmel [CR], the authors
define a Martin–Pour-El theory to be a consistent c.e. theory that is essentially un-
decidable and has few c.e. extensions. We refer to such theories as weak Martin–
Pour-El theories. These theories correspond to perfect thin Π0

1 classes with no
computable paths. (It is known that the requirement of having no computable
path is redundant and we give a proof of this fact in Section 2.) The construction
of such a class is a basic example of the finite extension technique in Π0

1 classes.
(See Theorem 5.3 in Cenzer [C] for this construction.) Such a construction can be
combined with other finite extension methods to build a perfect thin Π0

1 class P
with extra properties such as X ′ ≡T X ⊕ 0′ for all X ∈ P (see Theorem 5.4 in
Cenzer [C]) or X and Y are Turing incomparable for any X 6= Y ∈ P (use the fi-
nite extension construction in Theorem 4.7 in Jockusch and Soare [JS]). Under the
correspondence with c.e. theories, one obtains as immediate corollaries that there
are weak Martin–Pour-El theories T1 and T2 such that every complete consistent
extension of T1 is generalized low (that is, satisfies X ′ ≡T X ⊕ 0′) and every pair
of distinct complete consistent extensions of T2 is Turing incomparable.

Finally, in Downey [D], Downey, Jockusch and Stob [DJS] and Cholak, Coles,
Downey and Herrmann [CCDH], a Martin–Pour-El theory is defined to be a con-
sistent c.e. theory that is essentially undecidable, has few c.e. extensions and is
well generated. We refer to these theories as strong Martin–Pour-El theories.
These theories correspond to thin classes of separating sets with no computable
paths. (As above, the condition of having no computable paths is redundant as
long as the thin class of separating sets is infinite.) Such theories were first shown
to exist by Martin and Pour-El [MP], giving rise to their name. In [D] and [DJS],
the authors explore the possible Turing degrees of such theories, culminating in the
classification that these degrees are exactly the array nonrecursive degrees. In each
of the articles [MP], [D] and [DJS], the authors construct such theories directly
and obtain the corresponding Π0

1 class results as (often unstated) corollaries.
One of the goals of this paper is to explore the possible degrees of complete con-

sistent extensions of strong Martin–Pour-El theories by constructing thin classes of
separating sets rather than directly constructing the theories themselves. We bor-
row a technique from Jockusch and Soare [JS] to show that the basic finite extension
construction of a perfect thin Π0

1 class (as described in Cenzer [C]) can be modified
to give a thin class of separating sets. Once we build a thin class of separating
sets using this modified finite extension construction, it will be almost immediately
apparent that the construction can be combined with other (similarly modified)
finite extension arguments. There are many such arguments in the literature and
we mention two examples in Section 2.

These examples combine well known finite extension methods with the con-
struction of a thin class of separating sets to yield the strong Martin–Pour-El theory
analogues of the weak Martin–Pour-El theories T1 and T2 mentioned above. Al-
though the modifications of known techniques required to get these results are not
difficult, they do not appear to follow from previously published constructions of
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perfect thin Π0
1 classes. Also, because Martin and Pour-El [MP], Downey [D] and

Downey, Jockusch and Stob [DJS] directly construct their strong Martin–Pour-El
theories rather than building the corresponding thin class of separating sets, it is
not as immediately apparent how to combine their constructions with other finite
extension arguments to yield these new results concerning the degrees of complete
consistent extensions of strong Martin–Pour-El theories.

In Section 3, we examine the connection between a strong Martin–Pour-El
theory and the set of positive and negative literals that generate it. Let T be a
strong Martin–Pour-El theory. We call A = {i | pi ∈ T} the set of positive literals
in T , we call B = {i | ¬pi ∈ T} the set of negative literals in T and we call A∪B
the set of literals in T . Because the sets A and B are disjoint c.e. sets, A ∪ B has
the same degree as both A ⊕ B and the theory T . Much of the previous work on
strong Martin–Pour-El theories has focused on the degree of A ∪B rather than on
the degrees of A and B. In this section, we examine the connection between the
degrees of A and B and the degree of A ∪ B. In particular, we show that it is
possible for T to have degree 0′ while both A and B have low degree. We also show
it is possible to partition the set of literals A ∪B into positive and negative halves
in ways which result in different degrees for the complete consistent extensions of
the corresponding theories. Specifically, we construct a sequence of strong Martin–
Pour-El theories Tn, n ∈ ω, such that each Tn has the same set of literals (but
divided differently into positive and negative halves) and no complete consistent
extension of Tn can compute a complete consistent extension of Tm for m 6= n.

In Section 4, we consider limitations on the Turing degrees of elements of thin
Π0

1 classes (regardless of whether the Π0
1 classes are classes of separating sets or

not). We begin with a result of Cenzer, Downey, Jockusch and Shore [CDJS]
which states that if P is a thin Π0

1 class and X ∈ P , then X ′ ≤T X ⊕ 0′′. We use
a similar proof to derive a different restriction of the degrees of elements of thin
Π0

1 classes in terms of dominating functions and prove that this new condition is
strictly stronger.

We assume that the reader is familiar with finite injury constructions in com-
putability theory. The computability theoretic terminology and notation is stan-
dard and follows Soare [S]. In particular, ϕe denotes the eth partial computable
function. The terminology for Π0

1 classes follows Cenzer [C] and Cenzer and Rem-
mel [CR]. A node σ on a tree T is extendible if there is an infinite path X ∈ [T ]
such that σ v X. An extendible node σ is called a branching node if both
σ ∗ 0 and σ ∗ 1 are extendible. If [T ] = Sep(A,B), then for each n ∈ ω, either
every extendible node of length n is branching or no extendible node of length n
is branching. If all such nodes are branching, then we say n is a branching level
of T . Notice that the branching levels correspond exactly to the elements of the
complement of A ∪ B. Finally, we fix a effective enumeration Te, e ∈ ω of all the
primitive recursive trees.

2. Thin separating classes

In this section, we show how to extend some well known results for weak
Martin–Pour-El theories to strong Martin–Pour-El theories. We begin with the ob-
servation that weak Martin–Pour-El theories correspond to perfect thin Π0

1 classes.
(See [CCDH] for a statement of this lemma in a slightly different context.)
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Lemma 2.1. A thin Π0
1 class has no computable member if and only if it is

perfect.

Proof. Let P be a thin Π0
1 class. If P is not perfect, then it has an isolated

path. Since any isolated path in a Π0
1 class is computable, P has a computable

member. On the other hand, if P has a computable path X, then {X} is a Π0
1

subclass of P . Therefore, X is the sole member of P intersected with a clopen set,
which means X is isolated in P and hence is not perfect. �

As mentioned in the introduction, weak Martin–Pour-El theories correspond to
thin Π0

1 classes with no computable paths, and therefore they correspond to perfect
thin Π0

1 classes. In this section, we show that many finite extension constructions
for perfect thin Π0

1 classes can be modified to build thin classes of separating sets
with similar properties. Thus, they give corresponding results concerning strong
Martin–Pour-El theories. (Notice that Sep(A,B) is perfect as long as A ∪ B is
coinfinite.)

We begin with a basic construction of a thin class of separating sets. This
construction is similar to the proof of the existence of a perfect thin Π0

1 class given
in Theorem 5.3 of Cenzer [C], but it also uses a technique from Jockusch and Soare
[JS] to turn the Π0

1 class into a class of separating sets. Although this particular
construction is new, the result is an immediate corollary of the work of Martin and
Pour-El [MP].

Theorem 2.2 (Martin, Pour-El). There are disjoint c.e. sets A and B such
that A ∪B is coinfinite and Sep(A,B) is thin.

Proof. Because we will use the same notation in the other constructions, we
present it carefully here. We construct a {0, 1}–valued partial computable function
ψ in stages and set A = {n|ψ(n) = 1} and B = {n|ψ(n) = 0}. Letting ψs denote the
finite portion of ψ constructed at stage s, we will have ψs ⊆ ψs+1 and ψ = ∪sψs.
Define As = {n|ψs(n) = 1} and Bs = {n|ψs(n) = 0} and let Vs = Sep(As, Bs)
denote the set of all finite binary strings which are compatible with ψs. That is,

Vs = {σ ∈ 2<ω | ∀n < |σ| (ψs(n) ↓→ ψs(n) = σ(n)) }.

Every node on Vs is extendible and these trees form a uniformly computable nested
sequence V0 ⊇ V1 ⊇ · · · such that V =

⋂
s Vs is a Π0

1 tree for which [V ] = Sep(A,B).
(Each node on V is also extendible. However, if we write [V ] = [T ] for a computable
tree T , then it is not necessarily the case that the extendible nodes of T are even
computable. We will return to this point later.)

To make the domain of ψ coinfinite, we use movable markers δs(i) to denote
the ith element of the complement of As ∪ Bs at stage s. That is, δs(0) < δs(1) <
δs(2) < · · · and As ∪Bs = {δs(i)|i ∈ ω}. We guarantee that limsδs(i) = δ(i) exists
for each i.

To make Sep(A,B) = [V ] thin, we meet the requirements

Re : [Te] ⊆ [V ] ⇒ ∃U(U is clopen ∧ [Te] = [V ] ∩ U).

(Recall that Te is the eth primitive recursive tree.) We break each requirement
into subrequirements Rσ

e for each σ ∈ V such that |σ| = δ(e). (These strings σ
are the nodes on V at the eth branching level. Therefore, Re will have 2e many
subrequirements.) At stage s, we approximate these subrequirements by working
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with Rσ
e for each σ ∈ Vs such that |σ| = δs(e). Once δs(e) reaches its limit, we

arrive at the final list of subrequirements. The subrequirements are

Rσ
e : σ ∈ Te ⇒ ∀τ w σ (τ ∈ V → τ ∈ Te).

Why do the subrequirements make [V ] thin? Suppose [Te] ⊆ [V ] and let
σ0, . . . , σk be the strings such that σi ∈ V ∩ Te and |σi| = δ(e). Because of Rσ

e ,
[V [σi]] ⊆ [Te] for 0 ≤ i ≤ k, and for all other µ ∈ V with |µ| = δ(e), µ 6∈ Te (and
hence [Te[µ]] ∩ [V ] = ∅). Therefore, [Te] ⊆ [V ] implies

[V [σ0] ∪ V [σ1] ∪ · · · ∪ V [σk]] = [Te]

as required.
We prioritize the subrequirements by letting Rσ

e have higher priority than Rτ
i

if e < i or if e = i and σ is less than τ in the lexicographic order. The construction
has only finite injury and subrequirements for the same Re requirement will not
injure each other.

At stage 0, we set ψ0 to be undefined everywhere. Assume we are at stage s+1
of the construction. If σ ∈ Vs with |σ| = δs(e), then we say Rσ

e needs attention if
σ ∈ Te and

∃τ w σ ( τ ∈ Vs ∧ τ 6∈ Te ).

(To make this condition effective, we look only at e ≤ s and τ with |τ | ≤ s. Because
Te is a primitive recursive tree, we do not need to place any stage approximations on
Te.) If no subrequirement needs attention, then let ψs+1 = ψs. Otherwise, let Rσ

e

be the highest priority requirement that needs attention and fix the corresponding
string τ . Define ψs+1 as follows: for all i such that |σ| ≤ i < |τ |, let ψs+1(i) = τ(i),
and for all other j ∈ dom(ψs), let ψs+1(j) = ψs(j). Proceed to the next stage. This
completes the description of the construction.

Notice what the action of Rσ
e accomplishes. It does not define ψs+1 on any

number of the form δs(k) for k < e, so these markers retain their values at stage
s+1. All numbers i such that |σ| ≤ i < |τ | are now in dom(ψs+1), so δs+1(e) ≥ |τ |.
Because all the other numbers in the domain of ψs keep their values, there is a
unique string σ′ w τ such that σ′ ∈ Vs+1 with length δs+1(e). The action for Rσ

e

has caused Rσ
e to become the subrequirement Rσ′

e and since σ′ ∈ Vs+1 and σ′ 6∈ Te

(since Te is a tree, τ 6∈ Te and τ v σ′), Rσ′

e is satisfied.
Each of the other Re subrequirements has undergone a similar change. That is,

let µ be any other string on Vs with |µ| = |σ| and let ν w µ be the string such that
for all |µ| ≤ i < |τ |, ν(i) = τ(i). There is a unique string µ′ w ν such that µ′ ∈ Vs+1

with length δs+1(e). (In fact, |µ′| = |σ′| and for all |σ| ≤ i < |σ′|, σ′(i) = µ′(i).)
The subrequirement Rµ

e has become Rµ′

e . If Rµ
e had previously been satisfied in the

sense that µ 6∈ Te, then Rµ′

e is also satisfied since µ v µ′ and hence µ′ 6∈ Te (since
Te is a tree). Therefore, the action of Rσ

e does not injure any previously satisfied
Re subrequirement. Furthermore, because each number i added to the domain of
ψs+1 by Rσ

e satisfies i ≥ |σ| = δs(e), we have that δs+1(k) = δs(k) for all k < e.
Therefore, the action of Rσ

e does not injure any subrequirement for Ri with i < e.
(The action may injure subrequirements for Ri if i > e, but this injury is finitary.)

Finally, notice that the new function ψs+1 is consistent with ψs in the sense
that ψs ⊆ ψs+1. This follows because our chosen τ satisfies τ ∈ Vs and hence is
compatible with ψs. Therefore, if |σ| ≤ i < |τ | and ψs(i) ↓, we have ψs(i) = τ(i),
so we have not changed the value of ψs(i) at stage s+ 1. �
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Corollary 2.3 (Martin, Pour-El). There is a strong Martin–Pour-El theory.

Proof. By Theorem 2.2, there is a thin class of separating sets Sep(A,B) such
that A∪B is coinfinite. Sep(A,B) is perfect, so by Lemma 2.1, it has no computable
members. The corresponding theory is a strong Martin–Pour-El theory. �

The key property of the construction in Theorem 2.2 is that a subrequirement
Rσ

e which needs attention at stage s can be satisfied by adding a finite segment above
σ (and above µ for each µ ∈ Vs with |µ| = |σ|) to Vs to form Vs+1. Furthermore,
once Rσ

e is satisfied, it is not injured by any other action which causes Rσ
e to become

Rσ′

e as long as σ v σ′. In particular, it is not injured by the later action of any
Rµ

i for i ≥ e. Therefore, we can build thin separating classes with other properties
as long as these properties can be split into subrequirements of the form Sσ

e (for
e ∈ ω and σ of length δ(e)) each of which can be satisfied by adding a finite segment
above σ in a similar way and each of which is not injured by further extensions (by
requirements of the form Sµ

i or Rµ
i for i ≥ e) once it is satisfied.

We present two simple examples of this type of construction below. In each case,
we specify the subrequirements Sσ

e which will guarantee the property in question.
We indicate how they can be satisfied using finite extensions and check that they
are not injured by further finite extensions. We leave the remaining formal details
of the finite injury constructions to the reader.

For the first example, we force every separating set to be generalized low. (A
set X is called generalized low if X ′ ≡T X ⊕ 0′.) It is possible for every member
of a Π0

1 class to be low (that is, satisfy X ′ ≡T 0′), but this property cannot happen
in an uncountable class since there are only countably many low sets. Therefore,
attaining a property like generalized lowness is the best one can hope for in the
context of Sep(A,B) where A ∪ B is coinfinite. The following theorem generalizes
Theorem 5.4 in Cenzer [C] from perfect thin Π0

1 classes to thin classes of separating
classes.

Theorem 2.4. There is a thin class Sep(A,B) such that A ∪ B is coinfinite
and every X ∈ Sep(A,B) satisfies X ′ ≡T X ⊕ 0′.

Proof. For each e and each σ of length δ(e), we add the following subrequire-
ment to the construction in Theorem 2.2.

Sσ
e : ϕσ

e (e) ↓ ∨ ∀τ ∈ V (σ v τ → ϕτ
e (e) ↑)

At stage s, we say that Sσ
e needs attention (for σ ∈ Vs with |σ| = δs(e)) if

ϕσ
e,s(e) does not converge and there is a τ ∈ Vs such that σ v τ and ϕτ

e,s(e) does
converge. (Whenever we deal with convergent computations using a finite oracle
such as τ , we assume that the computation does not query any elements of the
oracle which are larger than the length of the finite oracle.) If Sσ

e is the highest
priority subrequirement needing attention, then we define ψs+1 by ψs+1(i) = τ(i)
for all |σ| ≤ i < |τ | and ψs+1(i) = ψs(i) for all i in the domain of ψs. (Since τ ∈ Vs,
τ is consistent with ψs and hence ψs ⊆ ψs+1 .)

As in the previous construction, when Sσ
e acts, it becomes Sσ′

e for a unique
string σ′ w σ of length δs+1(e). Furthermore, if a future extension causes Sσ′

e to
become Sσ′′

e for some σ′′ w σ′, then Sσ′′

e will remain satisfied since ϕσ′′

e (e) also
converges.

To see why satisfying the Sσ
e requirements is enough to establish the theorem,

notice that 0′ can determine the final list of subrequirements Sσ
e for any e (uniformly
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in e). Furthermore, for any of these final subrequirements Sσ
e , 0′ can determine

whether ϕσ
s (e) converges or not. Therefore, to calculateX ′(e) we use 0′ to determine

the final subrequirements Sσ
e , we use X to determine which Sσ

e subrequirement
satisfies σ v X, and we use 0′ again to determine whether ϕσ

e (e) converges. Because
ϕX(e) converges if and only if ϕσ

e (e) converges, we have calculatedX ′(e). Therefore,
X ′ ≤T X ⊕ 0′ and hence X ′ ≡T X ⊕ 0′. �

We immediately get the following corollary which strengthens the well known
result that there is a weak Martin–Pour-El theory in which every complete consis-
tent extension C satisfies C ′ ≡T C ⊕ 0′.

Corollary 2.5. There is a strong Martin–Pour-El theory S such that each
complete consistent extension C of S satisfies C ′ ≡T C ⊕ 0′.

Theorem 2.4 has some connection to work done by Cenzer, Downey, Jockusch
and Shore [CDJS]. They proved that if T is a thin Π0

1 class and the set of extendible
nodes of T is computable, then X ′ ≡T X ⊕ 0′ for all X ∈ [T ]. In the context of
countable thin Π0

1 classes, they also showed that it is possible to have the set
of extendible nodes be computable and to even make the Cantor-Bendixson rank
an arbitrarily large computable ordinal. However, for a class of separating sets
Sep(A,B), if the set of extendible nodes is computable, then A and B must also
be computable. To see why, let T be such that [T ] = Sep(A,B) and the set of
extendible nodes of T is computable. A number n is in the complement of A ∪ B
if and only there is some node at level n of T which has two immediate successors
which are both extendible. (This situation says that n can either be added to
or kept out of the separating set and this situation can only occur when n is in
the complement of A ∪ B.) However, if A and B are disjoint c.e. sets and the
complement of A ∪ B is computable, then A and B are computable. By Lemma
2.1, if A∪B is coinfinite and Sep(A,B) is thin, then A and B cannot be computable.
Therefore, it is not possible to obtain Theorem 2.4 by using a trick such as making
the set of extendible nodes computable. Furthermore, it shows that making the set
of extendible nodes computable is not the only way to make all the elements of a
thin class satisfy X ′ ≡T X ⊕ 0′.

Our second example has a slightly different feature which is best brought out
by considering how a more classical finite extension argument works and how it
differs from the constructions in the theorems so far. The standard construction of
a perfect thin Π0

1 class P (as given in Cenzer [C]) proceeds by building a uniform
sequence of computable functions αs : 2<ω → 2<ω such that

• for all σ, αs(σ ∗ 0) and αs(σ ∗ 1) are incompatible extensions of αs(σ),
• range(αs+1) ⊆ range(αs), and
• for all σ, lims αs(σ) = α(σ) exists.

Let Vs be the computable tree formed by taking the downward closure of range(αs)
and let V =

⋂
s Vs be the limiting Π0

1 tree. To make P = [V ] thin, we meet the
following subrequirements Sσ

e for each |σ| = e.

Sσ
e : α(σ) ∈ Te → ∀τ w σ(α(τ) ∈ Te)

Sσ
e requires attention at stage s if αs(σ) ∈ Te and there is a τ w σ such that αs(τ) 6∈
Te. To satisfy Sσ

e , we define αs+1 so that αs+1(σ) = αs(τ) and αs+1(µ) = αs(τ ∗ ν)
for µ w σ such that σ ∗ ν = µ. This action does not cause αs+1(µ) to change for
any µ 6= σ such that |µ| = |σ| = e. Therefore, the subrequirements Sσ

e for the same
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e act independently of each other. This independence makes the construction more
flexible but it also means that it does not necessarily build a class of separating
sets.

In the construction for Theorem 2.2, the subrequirements for Re do affect each
other, but they do not injure each other. The property in Theorem 2.4 of making
the elements generalized low is typically forced using a standard finite extension
argument like the one for a perfect thin Π0

1 class. However, it can be adapted to
work with the modified type of finite extension argument required to build a class
of separating sets as shown above.

Not all finite extension arguments can be modified in this manner. The stan-
dard example of this phenomenon is the construction of a perfect Π0

1 class P for
which each distinct pair of elements X 6= Y ∈ P is Turing incomparable. In Theo-
rem 4.7 of Jockusch and Soare [JS], the authors construct such a Π0

1 class using a
finite extension argument which can be easily combined with the construction of a
thin perfect Π0

1 class to yield a perfect thin class in which each pair of distinct ele-
ments is Turing incomparable. Such a class corresponds to the existence of a weak
Martin–Pour-El theory for which any two distinct complete consistent extensions
are Turing incomparable.

It is not possible to have such a property for a class of separating sets Sep(A,B)
in which A ∪ B is coinfinite. In such a class, there are always separating sets X
and Y such that X 6= Y but the symmetric difference X 4 Y is finite. Such
X and Y are Turing equivalent. However, Jockusch and Soare [JS] showed that
this problem of finite symmetric differences is the only restriction by constructing
Sep(A,B) such that A ∪ B is coinfinite and any pair of separating sets either has
finite symmetric difference or is Turing incomparable. Because they did not give the
details of the construction of such a class (as its existence is a modification of earlier
techniques in the paper), we give the explicit construction below to illustrate that
it is also a modified finite extension construction of exactly the type that can be
combined with the thinness construction for separating classes as in Theorem 2.2.
This combination of techniques yields a new theorem on thin classes of separating
sets as well as a new result on strong Martin–Pour-El theories.

Theorem 2.6. There exists a thin class Sep(A,B) such that A∪B is coinfinite
and for any two sets C,D ∈ Sep(A,B), either |C4D| < ω or C and D are Turing
incomparable.

Proof. We add the following requirements for e ∈ ω to the construction in
Theorem 2.2.

Se : ∀X,Y ∈ [V ](|X 4 Y | = ω → ϕX
e 6= Y ).

At stage s, we break this requirement into subrequirements Sσ
e for each σ ∈ Vs of

length δs(e). The subrequirement Sσ
e works to satisfy Se in the case when σ v X.

We say that Sσ
e needs attention at stage s + 1 if it is not currently satisfied

(this term is defined below) and there is a string µ ∈ Vs extending σ (with length
≤ s) and an m with e ≤ m ≤ s such that ϕµ

e,s(δs(m)) converges but it is not the
case that ϕµ

e,s(δs(m)) = µ(δs(m)). There are three ways this could happen: δs(m)
is not in the domain of µ, ϕµ

e (δs(m)) converges to a number other than 0 or 1, or
ϕµ

e (δs(m)) = 1− µ(δs(m)). Once we act for Sσ
e , it is declared satisfied and it only

becomes unsatisfied if some requirement of the form Sτ
i or Rτ

i acts with i < e. (The
Rτ

i requirements are the thinness requirements of Theorem 2.2.)
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The action of Sσ
e depends on the three possibilities listed above. First, if

δs(m) ≥ |µ|, then extend ψs to ψs+1 by setting ψs+1(x) = µ(x) for all x such that
|σ| ≤ x < |µ|, ψs+1(δs(m)) = 1 − ϕµ

e (δs(m)), and ψs+1(x) = ψs(x) for all other
x ∈ dom(ψs). Since µ is compatible with ψs, this definition gives ψs+1 ⊇ ψs and
no marker of the form δs(i) for i < e has been added to dom(ψs+1). Therefore, the
higher priority markers retain their values at stage s + 1 and this action does not
injure any higher priority requirements.

In this case, if X is any extension of σ which is in [Ts+1], then X extends µ.
Furthermore, ϕX

e (δs(m)) = ϕµ
e (δs(m)). However, for any Y in [Ts+1],

Y (δs(m)) = ψs+1(δs(m)) = 1− ϕµ
e (δs(m)) 6= ϕµ

e (δs(m)) = ϕX
e (δs(m)).

Therefore, ϕX
e 6= Y and we have satisfied Sσ

e .
Second, if ϕµ

e (δs(m)) = 1−µ(δs(m)), then we extend ψs to ψs+1 as follows. For
all x such that |σ| ≤ x < |µ|, set ψs+1(x) = µ(x), and for all other x ∈ dom(ψs),
set ψs+1(x) = ψs(x). In particular, since δs(m) is in the domain of µ but is not
in the domain of ψs, we have defined ψs+1(δs(m)) = µ(δs(m)). As above, we have
ψs ⊆ ψs+1 and we have not changed the values of any higher priority markers.

Consider any extension X of σ in [Ts+1] and any other set Y ∈ [Ts+1]. Since
X is an extension of σ on Ts+1, it must be an extension of µ. Therefore,

ϕX
e (δs(m)) = 1− µ(δs(m)) = 1− ψs+1(δs(m)) 6= ψs+1(δs(m)) = Y (δs(m)).

So, we have satisfied the subrequirement Sσ
e .

Third, if ϕµ
e (δs(m)) does not have the value 0 or 1, then we extend ψs to ψs+1

as follows. For all x such that |σ| ≤ x < |µ|, let ψs+1(x) = µ(x), and for all other
x ∈ dom(ψs), let ψs+1(x) = ψs(x).

Consider any X ∈ [Ts+1] extending σ. As above, X must extend µ, and
therefore, ϕX

e (δs(m)) converges to a value other than 0 or 1. Since ϕX
e does not

compute a set, we have satisfied the subrequirement Sσ
e .

In each of these three cases, when Sσ
e acts it increases the value of δs(e) and

becomes Sσ′

e where σ′ is the unique string of length δs+1(e) such that σ′ w µ w σ.
It is clear from the descriptions above that if some other Sτ

e or Rτ
e requirement

causes Sσ′

e to become Sσ′′

e for σ′′ w σ′, then Sσ′′

e stays satisfied.
It remains to verify that the construction works. Let X,Y ∈ Sep(A,B) be sets

such that |X 4 Y | = ω and assume for a contradiction that ϕX
e = Y . Since the

symmetric difference is infinite, for all n, there is an m > n such that X(δ(m)) 6=
Y (δ(m)). Pick a stage s and anm > e such that δs(m) = δ(m), the subrequirements
Sσ

e have reached their limits, no requirement of higher priority acts after s, and
X(δ(m)) 6= Y (δ(m)). Fix the string σ such that σ v X and Sσ

e is one of the
final Se subrequirements. Fix a stage t > s such that there is an n < t for which
ϕX�n

e,t (δ(m)) converges.
Consider the action of Sσ

e as stage t + 1. Because no requirement of higher
priority acts, Sσ

e is free to act if it wants to. Let µ = X � n. At this stage, Sσ
e

sees the convergent computation ϕµ
e (δ(m)). The only thing that would prevent Sσ

e

from acting at this stage (and hence being satisfied forever since no higher priority
requirement injures it after this stage) is if ϕµ

e (σ(m)) = µ(δ(m)). However, in this
case,

ϕX
e (δ(m)) = X(δ(m)) 6= Y (δ(m)),

which is a contradiction to the assumption that ϕX
e = Y . �
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Combining all of the constructions so far, we get the following corollary.

Corollary 2.7. There is a strong Martin–Pour-El theory S such that every
complete consistent extension C of S satisfies C ′ ≡T C⊕0′ and every pair of distinct
complete consistent extensions either differ on only a finite number of propositional
variables or are Turing incomparable.

We end this section by pointing out one significant difference between perfect
thin classes and thin classes of separating sets. Let L(2ω) denote the collection
of Π0

1 classes under inclusion. Cholak, Coles, Downey and Herrmann [CCDH]
proved that the collection of perfect thin classes is definable in this structure while
the collection of classes of separating classes is not. Furthermore, they proved that
any two perfect thin classes are automorphic. In particular, automorphisms of
L(2ω) can take a thin classes of separating sets to a perfect thin class which is not
a class of separating sets.

3. Degrees of literals and degrees of theories

Another aspect of strong Martin–Pour-El theories that can easily be brought
out using Π0

1 classes is the connection between the degree of the theory T and the
degrees of the sets A and B generating the corresponding class of separating sets.
Recall that if T is a strong Martin–Pour-El theory, then the complete consistent
extensions of T correspond to the elements of Sep(A,B) where A = {i | pi ∈ T}
(the positive literals of T ) and B = {i | ¬pi ∈ T} (the negative literals of T ).
We call A∪B the set of literals of T . Downey [D] observed that T ≡T A⊕B ≡T

A ∪ B (because A and B are disjoint c.e. sets). In this section, we investigate the
relationship between the degree of T and the degrees of A and B. These results
are related to the work of Downey, Jockusch and Stob [DJS] and we discuss these
connections at the end of the section.

Definition 3.1. A c.e. set C is called effectively simple if it is coinfinite and
there is a computable function f such that for every e, if We ⊆ C, then |We| ≤ f(e).

Effectively simple sets are obviously noncomputable, but Martin [M] proved
that they all have degree 0′. In the standard direct construction of a strong Martin–
Pour-El theory as given in Downey [D], the degree of T is 0′ because A ∪ B is
effectively simple. We can easily add requirements to our earlier constructions
of thin separating sets to make A ∪ B effectively simple. (Of course, this result
immediately follows from Downey’s construction via the correspondence between
strong Martin–Pour-El theories and thin classes of separating sets.)

Theorem 3.2 (Downey). There is a thin class of separating sets Sep(A,B)
such that A ∪B is effectively simple.

Proof. The effectively simple requirements (working with the function f(e) =
2e) are

Se : We ⊆ A ∪B ⇒ |We| ≤ 2e.
We say that Se needs attention at stage s+1 if We,s ⊆ As ∪Bs and there is a k ≥ 2e
such that δs(k) ∈We,s. If Se is the highest priority requirement needing attention,
then we let ψs+1(δs(k)) = 1 and let ψs+1(x) = ψs(x) for all x in the domain of
ψs. (That is, we put δs(k) into A.) There are no subrequirements to worry about
here and once we act for Se, it is never injured by the action of other requirements
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(even higher priority ones). Because Se acts in a finite extension manner, it can be
added to any of the previous constructions. �

Corollary 3.3. There is a strong Martin–Pour-El theory T such that T ≡T 0′

and the generating sets A = {i | pi ∈ T} and B = {i | ¬pi ∈ T} have low degree.

Proof. This result follows from combining the effectively simple requirements
with the proof of Theorem 2.4 to obtain disjoint c.e. sets A and B such that A ⊕
B ≡T 0′ (and hence T ≡T 0′) and such that every element of Sep(A,B) has
generalized low degree. Since A,B ∈ Sep(A,B) and A,B ≤T 0′, it follows that A
and B have low degree. �

Corollary 3.4. There is a strong Martin–Pour-El theory T such that no
complete consistent extension of T can compute T .

Proof. By combining the effectively simple requirements above with the re-
quirements from Theorems 2.4 and 2.6, we get a thin class Sep(A,B) such that
A∪B ≡T 0′ (and so T ≡T 0′), A and B are low, and for any two separating sets C
and D, either C ≡T D or C and D are Turing incomparable. Since A,B <T 0′, no
separating set can have degree ≥ 0′. Furthermore, because any complete consistent
extension of T has the same degree as a separating set, none of these extensions
can compute 0′ ≡T T . �

Next, we turn to the question of how the degrees of the complete consistent
extensions of two strong Martin–Pour-El theories with the same set of literals are
related. That is, suppose we have thin class of separating sets Sep(A,B) and
Sep(C,D) such that A ∪ B = C ∪ D. Can separating sets from one class always
compute separating sets for the other class? The answer turns out to be no.

Theorem 3.5. There are disjoint pairs of c.e. sets A,B and C,D such that
A ∪ B = C ∪ D is coinfinite, Sep(A,B) and Sep(C,D) are thin and for all X ∈
Sep(A,B), Y ∈ Sep(C,D), X and Y are Turing incomparable.

Proof. We build two partial computable function ψ and α in stages and let
A = {n |ψ(n) = 1}, B = {n |ψ(n) = 0}, C = {n |α(n) = 1} and D = {n |α(n) =
0}. To make A ∪ B = C ∪D, we guarantee that at all stages s, the domain of ψs

is equal to the domain of αs. Therefore, we can use one set of markers δs(n) to
denote both As ∪Bs and Cs ∪Ds.

The thinness requirements for the separating sets are met as in Theorem 2.2,
although we now have the meet these requirements for both pairs A,B and C,D.
Therefore, we have two sets of requirements RA,B

e and RC,D
e analogous to the Re

requirements of Theorem 2.2. We meet these requirements using the same strategy
as before, except that when we extend ψs to meet RA,B

e , we also add all numbers
in dom(ψs+1)− dom(ψs) to the domain of αs+1.

More specifically, at stage s the requirement RA,B
e breaks into subrequirements

RA,B,σ
e for each σ ∈ Sep(As, Bs) with |σ| = δs(e). RC,D

e breaks into similar sub-
requirements. Since the markers δs(e) enumerate As ∪Bs = Cs ∪Ds, the strings
used in the subrequirements for RA,B

e and RC,D
e have the same length, even though

they might not be identical as strings. (That is, a number i ∈ As may have been
put into Ds rather than into Cs.) RA,B,σ

e needs attention if σ ∈ Te and

∃τ w σ (τ ∈ Sep(As, Bs) ∧ τ 6∈ Te)
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(and similarly for a subrequirement of the form RC,D,µ
e ). If RA,B,σ

e is the highest
priority subrequirement needing attention, then we fix such a τ and define ψs+1(i) =
τ(i) and αs+1(i) = τ(i) for all |σ| ≤ i < |τ | and for all other j ∈ dom(ψs) =
dom(αs), we let ψs+1(j) = ψs(j) and αs+1(j) = αs(j). This action maintains
dom(ψs+1) = dom(αs+1) and does not cause any injury to a RC,D,µ

e (or RA,B,ν
e )

subrequirement if RC,D,µ
e (or RA,B,ν

e ) was already satisfied.
To insure that the separating sets in Sep(A,B) and Sep(C,D) are Turing in-

comparable, we meet the requirements

Se : ∀X ∈ Sep(A,B) (ϕX
e 6∈ Sep(C,D)) and

Qe : ∀Y ∈ Sep(C,D) (ϕY
e 6∈ Sep(A,B)).

These requirements break into subrequirements of the following form for each σ ∈
Sep(As, Bs) and µ ∈ Sep(Cs, Ds) with length |σ| = |µ| = δs(e)

Sσ
e : ∀X ∈ Sep(A,B) (σ v X → ϕX

e 6∈ Sep(C,D)) and

Qµ
e : ∀Y ∈ Sep(C,D) (µ v Y → ϕY

e 6∈ Sep(A,B)).

At stage s+ 1, we say that Sσ
e needs attention if it is not already satisfied and

∃τ w σ [τ ∈ Sep(As, Bs) ∧ ϕτ
e (δs(e)) ↓]

(and similarly for Qµ
e ). If Sσ

e is the highest priority requirement needing attention,
then we fix such a τ . Define ψs+1(i) = τ(i) for all |σ| ≤ i < |τ | and ψs+1(j) = ψs(j)
for all other j ∈ dom(ψs). (If δs(e) ≥ |τ |, also define ψs+1(δs(e)) = 1 so that δs(e)
is in the domain of ψs+1.) Define αs+1(δs(e)) = 1 − ϕτ

e (δs(e)), αs+1(i) = τ(i) for
all |σ| ≤ i < |τ | with i 6= δs(e) and αs+1(j) = αs(j) for all other j ∈ dom(αs). We
have again maintained that dom(ψs+1) = dom(αs+1).

Consider any X ∈ Sep(As+1, Bs+1) such that σ v X. As in the previous
constructions, there is a unique σ′ ∈ Vs+1 such that σ v τ v σ′ and |σ′| = δs+1(e).
Since σ v X, we have τ v σ′ v X and hence ϕX

e (δs(e)) = ϕτ
e (δs(e)). If Y ∈

Sep(Cs+1, Ds+1), then

Y (δs(e)) = αs+1(δs(e)) = 1− ϕτ
e (δs(e)) 6= ϕτ

e (δs(e)) = ϕX
e (δs(e)).

Therefore, we have successfully diagonalized to win Sσ
e . Future extensions by other

Se, Qe, RA,B
e or RC,D

e subrequirements will not injure this action. (The actions
taken for Qµ

e are analogous.)
Given the previous constructions, it should be clear that these actions are

successful, so we leave the remaining details to the reader. �

Although we presented Theorem 3.5 in terms of two separating sets, a simple
modification of the proof allows us to construct a countable sequence of theories
with similar properties. (Of course, we could also make all separating sets have
generalized low degree and all sets from the same Sep(An, Bn) be either Turing
equivalent or Turing incomparable.)

Theorem 3.6. There are disjoint pairs of c.e. sets An, Bn for n ∈ ω such
that for all n 6= m, An ∪ Bn = Am ∪ Bm, An ∪ Bn is coinfinite, Sep(An, Bn) is
thin and for all X ∈ Sep(An, Bn) and all Y ∈ Sep(Am, Bm), X and Y are Turing
incomparable.

Corollary 3.7. There is a sequence of strong Martin–Pour-El theories Tn for
n ∈ ω such that the set of literals in Tn and Tm are the same for any n,m (and
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hence Tn ≡T Tm) and such that any complete consistent extension of Tn cannot
compute any complete consistent extension of Tm for m 6= n.

Finally, we discuss two connections between these results and the work of
Downey, Jockusch and Stob [DJS]. First, in [DJS], the authors classify the c.e. de-
grees of strong Martin–Pour-El theories as exactly the array nonrecursive degrees.
However, Corollary 3.7 provides evidence that the degree of a Martin–Pour-El the-
ory has little to do with the degrees of its complete consistent extensions. Therefore,
while quite a bit is known about the possible degrees of strong Martin–Pour-El the-
ories, this information does not tell us everything we might like to know about the
possible collections of degrees of complete consistent extensions that can occur for
these theories.

Second, in [DJS], the authors prove that a c.e. degree d is the degree of a strong
Martin–Pour-El theory if and only if there are c.e. sets A,B ≤T d such that A∪B
is coinfinite and no set of degree 0′ separates A and B. The example in Corollary
3.4 shows that in at least some examples, we can make the sets A and B be the
sets of positive and negative literals for the theory T . Downey, Jockusch and Stob
also proved that a c.e. degree d is the degree of a strong Martin–Pour-El theory
if and only if there exist disjoint pairs of c.e. sets A0, B0 ≤T d and A1, B1 ≤T d
such that the elements of Sep(A0, B0) are Turing incomparable with the elements
of Sep(A1, B1). Corollary 3.7 shows that at least in some examples, we can make
A0 ∪B0 = A1 ∪B1 and make these sets be the generating sets of literals for strong
Martin–Pour-El theories of the same degree.

4. Limitations on thin classes

The examples given so far illustrate that constructions of Π0
1 classes which

use the finite extension method can frequently be modified to yield similar (if not
identical) results in the more restricted context of thin classes of separating sets.
These examples might give the impression that there is little difference between
the degrees of members of Π0

1 classes and the degrees of members of thin classes
(regardless of whether the thin class is a class of separating sets). However, there
are important differences and we point out two such differences in this section. The
first difference comes from Cenzer, Downey, Jockusch and Shore [CDJS].

Theorem 4.1 (Cenzer, Downey, Jockusch and Shore). If X is an element of
a thin Π0

1 class, then X ′ ≤T X ⊕ 0′′.

It follows from Theorem 4.1 that there is no set X ≥T 0′′ such that X is an
element of a thin Π0

1 class. Certainly, no such restriction applies in general Π0
1

classes. Before giving the second condition, we restate the property that X ′ ≤T

X ⊕ 0′′ in terms of dominating functions. If p is any partial function on ω, we say
that a total function f strongly dominates p if there is an n for which p(x) ≤ f(x)
for all x ≥ n such that p(x) is defined.

Lemma 4.2. For any set X, the following are equivalent.
(1) X ′ ≤T X ⊕ 0′′.
(2) ∃f ≤T X ⊕ 0′′ ∀e (f strongly dominates ϕX

e ).
(3) ∀e∃f ≤T X ⊕ 0′′ (f strongly dominates ϕX

e ).

Proof. To see that (1) implies (2), let g ≤T X ′ be such that g(e, n) = ϕX
e (n)

if ϕX
e (n) converges and g(e, n) = 0 otherwise. Let f ≤T X ′ be such that f(n) =
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max{g(e, n) | e ≤ n} + 1. By its definition, f strongly dominates all ϕX
e , and by

(1), f ≤T X ⊕ 0′′.
(2) clearly implies (3), so we prove that (3) implies (1). Fix an index e such

that X ′ = WX
e and let g(m) be the least s such that m ∈ WX

e,s if such an s exists,
and g(m) is undefined otherwise. The partial function g is computable from X, so
fix a total function f ≤T X ⊕ 0′′ which strongly dominates g. By altering a finite
initial segment of f (and hence not changing the degree of f), we can assume that
f(n) ≥ g(n) for all n on which g(n) is defined. Let h ≤T X ⊕ 0′′ be defined by
h(m) =

∑
n<m f(n). It follows that WX

e,h(m) � m = WX
e � m for all m and hence

that
X ′ = WX

e ≤T X ⊕ h ≤T X ⊕ 0′′.
�

As an immediate corollary of Theorem 4.1 and Lemma 4.2, we obtain the
following.

Corollary 4.3. If X is an element of a thin Π0
1 class, then

∃f ≤T X ⊕ 0′′ ∀e (f strongly dominatesϕX
e ).

For the second limitation on the degree of a member of a thin Π0
1 class, we

simplify the oracle needed to compute the strongly dominating function in Corollary
4.3 from X ⊕ 0′′ to 0′′. The proof of Theorem 4.4 is very similar to the proof of
Theorem 4.1.

Theorem 4.4. If T ⊆ 2<ω is a computable tree such that [T ] is a thin Π0
1 class,

then
∃f ≤T 0′′ ∀e∀X ∈ [T ] (ϕX

e is strongly dominated by f)

Proof. It is straightforward to construct (uniformly in e and i) computable
trees Qi

e ⊆ 2<ω such that [Qi
e] is the Π0

1 class of all X for which ϕX
e (i) diverges.

Because [T ] is thin, [Qi
e] ∩ [T ] is a clopen subset of [T ]. Therefore, for each e and

i, there is a level n such that for each extendible node σ ∈ T with |σ| = n, either
ϕσ

e (i) converges or else ϕτ
e (i) diverges for every extendible τ ∈ T with σ v τ . Using

0′′ as an oracle, we can find such a level n and define g(e, i) to be the maximum
value of ϕσ

e (i) for the extendible nodes σ such that |σ| = n and ϕσ
e (i) converges.

The function f(i) = max{g(e, i)|e ≤ i}+ 1 is the desired dominating function. �

We end this paper by comparing the conditions on X given in Theorems 4.1
and 4.4:

(C1) X ′ ≤T X ⊕ 0′′,
(C2) ∃f ≤T 0′′ ∀e (ϕX

e is strongly dominated by f).
In Lemma 4.5, we show that the nonuniform version of Condition (C2)

∀e∃f ≤T 0′′ (ϕX
e is strongly dominated by f)

is already strong enough to imply Condition (C1). In Theorem 4.6, we show that
Condition (C1) is not strong enough to imply even the nonuniform version of Con-
dition (C2) restricted to total functions

∀e∃f ≤T 0′′ (ϕX
e total → ϕX

e is dominated by f).

Therefore, although the proofs of Theorems 4.1 and 4.4 are very similar, the result
of Theorem 4.4 is strictly stronger.
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Lemma 4.5. Let X be a set such that for all e, there is an f ≤T 0′′ such that
ϕX

e is strongly dominated by f . Then X ′ ≤T X ⊕ 0′′.

Proof. Because 0′′ ≤T X ⊕ 0′′, this lemma follows trivially from the implica-
tion that Condition (3) implies Condition (1) in Lemma 4.2. �

Theorem 4.6. There is a set X such that X ′ ≤T X ⊕ 0′ (and hence X ′ ≤T

X ⊕ 0′′) and such that there is an index e for which ϕX
e is total but not dominated

by any function ≤T 0′′.1

To prove Theorem 4.6, we build a set X with the following three properties.
(P1) X ′ ≤T X ⊕ 0′,
(P2) there is a set Y ≤T 0′′ such that Y <T X and X is c.e. in Y , and
(P3) X 6≤T 0′′.

To see that these three properties suffice, notice that by Property (P2), we can fix an
index e such that X = WY

e . Let g(m) be the least s such that X � m = WY
e,s � m.

Since Y <T X, g is a total function computable from X. Suppose there is an
f ≤T 0′′ such that f dominates g. Since f and Y are both ≤T 0′′, 0′′ can compute
WY

e,f(m) � m for each m. However, for sufficiently large m (past the point at which
f starts to dominate g), we have X � m = WY

e,f(m) � m. Therefore, X ≤T 0′′,
contradicting Property (P3).

To meet Property (P1), we make X 1-generic. A set X is 1-generic if for
every e, there is a finite initial segment σ v X such that either ϕσ

e (e) converges or
for every τ w σ, ϕτ

e (e) diverges. In the first case, we say that σ forces e into X ′

and in the second case, we say that σ forces e out of X ′. Every 1-generic set X
satisfies X ′ ≤T X ⊕ 0′, so we get Property (P1) immediately from this condition.
(See Lerman [L] for a proof of this fact.) We let Je denote the requirement that e
is either forced into or out of X ′.

To meet Property (P2), we define Y = {2i ·3j | i ∈ X∧2i ·3j 6∈ X}. Jockusch [J]
has shown that for any 1-generic set X, the corresponding set Y satisfies Y <T X
and X is c.e. in Y . Thus, we get most of the requirements of Property (P2)
immediately from this result. We use a dumping strategy during the construction
when injury occurs to insure that Y ≤T 0′′.

To meet Property (P3), we use a diagonalization strategy. For each e we have
a witness xe which may change during the construction due to injury by higher
priority requirements but will stabilize at a finite stage. Initially we keep the
witness xe out of X and we wait for ϕ0′′

e (xe) to converge to 0. (The construction
uses 0′′ as an oracle, so we can recognize this convergence when it occurs.) If we
see this convergence, then we put xe into X to satisfy Property (P3). We let De

denote the diagonalization requirement that X 6= ϕ0′′

e .
We work with oracle 0′′ and at stage s, we specify a finite binary string Xs as

our current guess at the initial segment of X. There will be finite injury, meaning
that initial segments of X may change finitely often before settling down to be
correct. Each Je requirement has a finite binary string parameter αe,s which it
uses to force e into or out of X ′. Each De requirement has a witness xe,s which it
uses to diagonalize and has a binary parameter ie,s which denotes to xe,s-th bit of

1Bjorn Kjos-Hanssen has pointed out that any 3-generic X satisfies the conditions of Theorem
4.6 since one can show that the principal function of X is not dominated by any function ≤T 0′′.
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Xs. The finite string Xs will have the following form

Xs = α0,s ∗ i0,s ∗ α1,s ∗ i1,s ∗ · · · ∗ αs,s ∗ is,s

where αk,s is the current finite binary string parameter used by Jk and ik,s is the
binary digit used by Dk. The parameter xk,s denotes the position of the bit ik,s.
(We use σ ∗ τ to denote the concatenation of the strings σ and τ and we use σ ∗ i
for i ∈ {0, 1} to denote the concatenation of σ and 〈i〉.)

The basic strategy for Je is as follows. At stage e, we ask the oracle if there
is a string σ such that ϕXe∗σ

e (e) converges. If so, we pick such a string σ and let
αe,e = σ. If not, we let αe,e be the empty string. In the first case, we have forced
e into X ′ and in the second case, no matter how Xs is extended in the future, we
know e 6∈ X ′. This action involves only a finite extension of Xs so it does not
interfere with the higher priority strategies.

The basic strategy for De is as follows. After Je has defined αe,e at stage e, we
let xe,e denote the length of Xe ∗ αe,e and set Xe+1 = Xe ∗ αe,e ∗ 0. The trailing
0 is the bit ie,e which is initially set to 0. As the construction continues, De waits
for a stage s > e such that ϕ0′′

e,s(xe,s) converges to 0. (The 0′′ oracle can recognize
when this convergence occurs.) If this computation never converges to 0, we win De

without any action. If this computation does converge to 0, then we change ie,s to
1 (that is, we put xe,s into X), winning De. However, changing ie,s may injure the
action taken by requirements Jk for e < k since we have caused a change below the
length of the oracle that Jk used to force k into or out of X ′. This conflict is easily
resolved by initializing all Jk for k > e and letting them force the jump again using
finite extensions of the current approximation to X. (To make the construction
easier to write, we also initialize the Dk strategies for k > e, although any such
strategy which is already satisfied is not injured by this action.)

The final piece of the construction is to take the set Y into account. Although Y
is not defined until the end of the construction, we need to use a dumping strategy
to make sure it will be computable from 0′′. We adjust the length of the strings αe,s

used by Je to make each xe,s be a prime number greater than 3. The important
point is that xe,s is never divisible by 2 or 3, and hence the positions of the ie,s

bits are never of the form 2i · 3j . (Numbers of this form are exactly the ones which
could show up in Y .) Furthermore, when an element xe,s enters X late for the sake
of De, we place all numbers of the form 2xe,s · 3j which are less than |Xs| into X as
well. We repeat this process of adding numbers to Xs until we have closed under
the property that if a has been added to Xs, then all numbers of the form 2a · 3j

which are < |Xs| have been added to X as well. Because the numbers which are
added are greater than xe,s, they do not cause any additional injury. Furthermore,
this action keeps any of these numbers < |Xs| from entering Y late because xe,s

(or some other newly added number) is now in X. This action guarantees that
Y ≤T 0′′.

We can now present the formal construction. During the construction, any
parameter which is not explicitly redefined retains its value at the next stage. At
stage 0, ask if there is a string σ such that ϕσ

0 (0) converges. If so, then let α0,0 = σ
for the first such σ for which |σ| is a prime > 3. If not, then let α0,0 be any string of
length 5. In either case, let X0 = α0,0 ∗0. Set x0,0 = |α0,0| and i0,0 = X0(x0,0) = 0.
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At stage s+ 1, assume that we have defined a finite string Xs and that it has
the form

Xs = α0,s ∗ i0,s ∗ α1,s ∗ i1,s ∗ · · · ∗ αs,s ∗ is,s

with xe,s equal to the position of ie,s for e ≤ s. We first determine whether
any of the diagonalization strategies De for e ≤ s wants to act. Check if there
is a witness xe,s such that ϕ0′′

e,s(xe,s) converges to 0 and ie,s = 0. If not, then
we go immediately to forcing the jump by asking if there is a string σ such that
ϕXs∗σ

s+1 (s+1) converges. If so, then let αs+1,s+1 be the first such σ for which Xs ∗σ
has prime length. If not, then let αs+1,s+1 be any string such that Xs ∗ αs+1,s+1

has prime length. Set Xs+1 = Xs ∗ αs+1,s+1 ∗ 0, xs+1,s+1 = |Xs ∗ σs+1,s+1| and
is+1,s+1 = Xs+1(xs+1,s+1) = 0. Proceed to the next stage.

If there is an e ≤ s such that ϕ0′′

e,s(xe,s) converges to 0 and ie,s = 0, then let e
be the least such value. Let Z denote the finite string of length Xs which results
from putting xe,s into Xs and then closing under the property that if k ∈ Z, k 6∈ Xs

and 2k ·3j < |Z|, then 2k ·3j ∈ Z. Notice that all the numbers added to Xs to form
Z are ≥ xe,s and so Xs � xe,s = Z � xe,s. Let the parameters αj,s+1 and xj,s+1 for
j ≤ e retain their values from stage s. Let the parameters ij,s for j < e retain their
values from stage s and let the parameter ie,s+1 = Z(xe,s+1) = Z(xe,s) = 1.

Because this action may injure the earlier work of Jk for e < k, we proceed by
induction on k for e < k ≤ s + 1 to meet Jk. We begin by forcing the jump on
e+ 1. Let Z ′ = Xs � xe,s = Z � xe,s and let α′ be such that Z = Z ′ ∗ 1 ∗ α′. Ask if
there is a string σ such that ϕZ∗σ

e+1 (e+ 1) converges. If so, let αe+1,s+1 = α′ ∗ σ for
the first such σ for which |Z ∗σ| is prime. If not, let σ be any string such that Z ∗σ
has prime length and let αe+1,s+1 = α′ ∗σ. In either case, Z ∗σ = Z ′ ∗ 1 ∗αe+1,s+1.
Let xe+1,s+1 = |Z ′ ∗ 1 ∗ αe+1,s+1| and define Xe+1

s+1 = Z ′ ∗ 1 ∗ αe+1,s+1 ∗ 0. Set
ie+1,s+1 = Xe+1

s+1 (xe+1,s+1) = 0. The set Xe+1
s+1 has the form

Xe+1
s+1 = α0,s+1 ∗ i0,s+1 ∗ α1,s+1 ∗ i1,s+1 ∗ · · · ∗ αe+1,s+1 ∗ ie+1,s+1

and xj,s+1 denotes the position of ij,s+1 for all j ≤ e+ 1.
To continue the induction, assume that e+1 < k ≤ s+1 and Xk−1

s+1 has already
been defined with its associated parameters so that

Xk−1
s+1 = α0,s+1 ∗ i0,s+1 ∗ α1,s+1 ∗ i1,s+1 ∗ · · · ∗ αk−1,s+1 ∗ ik−1,s+1

with xj,s+1 denoting the position of ij,s+1 for j ≤ k − 1. Ask if there is a string

σ such that ϕ
Xk−1

s+1 ∗σ

k (k) converges. If so, let σ be the first such string for which
the length of Xk−1

s+1 ∗ σ is prime. If not, let σ be any string such that the length
of Xk−1

s+1 ∗ σ is prime. In either case, set αk,s+1 = σ, xk,s+1 = |Xk
s+1 ∗ αk,s+1|,

Xk
s+1 = Xk−1

s+1 ∗ αk,s+1 ∗ 0 and ik,s+1 = Xk
s+1(xk,s+1) = 0. The set Xk

s+1 has the
form

Xk
s+1 = α0,s+1 ∗ i0,s+1 ∗ α1,s+1 ∗ i1,s+1 ∗ · · · ∗ αk,s+1 ∗ ik,s+1

so the induction can continue. Once Xs+1
s+1 is defined, set Xs+1 = Xs+1

s+1 and end
the stage.

This completes the description of the formal construction. We now verify that
the construction succeeds.

Lemma 4.7. For each k, the parameters αk,s, xk,s and ik,s reach limits αk, xk

and ik. Furthermore, each Dk requirement acts only finitely often.
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Proof. The key observation for this lemma was pointed out in the proof: when
a strategy De acts, it only places numbers into X which are ≥ xe,s. Therefore, once
the parameters αk,s and xk,s are defined, they change only when a De strategy with
e < k acts.

We proceed by induction on k. Assume by induction that the parameters αe,s,
xe,s and ie,s for e < k have reached their limits by stage s and the De strategies for
e < k have finished acting by stage s. By the observation above, the parameters
αk,s and xk,s do not change after stage s and hence have reached their limits. After
stage s, the initial segment α0 ∗ i0 ∗α1 ∗ i1 ∗ · · · ∗αk−1 ∗ ik−1 ∗αk of X is fixed. Also
parameter xk denoting the length of this initial segment is fixed. The parameter
ik,s will only change if Dk acts to diagonalize. If this happens at stage t ≥ s, then
ik,t changes from 0 to 1. Dk will never want to act again since for any u > t,
ik,u = Xu(xk) = X(xk) = 1. Therefore, Dk acts at most once after stage s and ik,s

changes values at most once after stage s. �

Lemma 4.8. Each of the Dk requirements is met.

Proof. Let t be a stage such that αe,t and xe,t have reached their limits for
e ≤ k, ie,t has reached its limit for e < k and the strategies De for e < k do
not act after stage t. The value of the parameter ik,s is set to 0 at the last stage
s ≤ t at which xk,s is changed. It retains the value 0 unless ϕ0′′

e (xk) converges to
0. Therefore, if this convergence never occurs, the requirement Dk is won. If this
convergence does occur, then Dk will be the highest priority requirement wanting
to diagonalize and hence will change ik,s permanently to 1. Therefore, Dk is also
won in this case. �

Lemma 4.9. X is 1-generic.

Proof. Fix e ∈ ω and let s+ 1 be the last stage at which αe,s+1 is redefined.
When αe,s+1 is defined, the initial segment X̂ = α0 ∗ i0 ∗α1 ∗ i1 ∗ · · · ∗αe−1 ∗ ie−1 is
fixed. (X̂ is either Xs or Xe−1

s+1 depending on which case of the construction we use
to define αe,s+1.) We define αe,s+1 = αe by searching for a string σ which makes
ϕ

bX∗σ
e (e) converge. If there is such a string, then there is a σ for which X̂ ∗ σ has

prime length. We define αe = σ and have a correct initial segment X̂ ∗ αe of X for
which ϕ bX∗αe(e) converges. If there is no such σ, then X̂ is a correct initial segment
of X for which ϕτ

e (e) diverges for all τ w X̂. Therefore, X satisfies the conditions
for being 1-generic. �

We next verify that Properties (P1)–(P3) hold for X.

Lemma 4.10. Property (P1) holds for X.

Proof. Any 1-generic set G satisfies G′ ≤T G ⊕ 0′. Therefore, this lemma
follows immediately from Lemma 4.9. �

Lemma 4.11. Property (P3) holds for X.

Proof. This follows immediately from Lemma 4.8. �

Finally, it remains to verify Property (P2). Fix a recursive functional Φ such
that for any set A, Φ(A) = {2i · 3j | i ∈ A ∧ 2i · 3j 6∈ A}. Jockusch [J] proved
that if G is 1-generic, then Φ(G) <T G and G is c.e. in Φ(G). Therefore, if we let
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Y = Φ(X) = {2i · 3j | i ∈ X ∧ 2i · 3j 6∈ X}, then Y <T X and X is c.e. in Y . To
finish the verification of Property (P2), it remains to show that Y ≤T 0′′.

Lemma 4.12. Y ≤T 0′′.

Proof. To check if 2i · 3j is an element of Y , run the construction of X using
0′′ until a stage s such that |Xs| > 2i · 3j . The lemma follows from the claim that

2i · 3j ∈ Y ⇔ i ∈ Xs ∧ 2i · 3j 6∈ Xs.

To prove this equivalence, notice that for any s, once Xs is defined, no number
< |Xs| is ever removed from X. Furthermore, if a < |Xs| is added to X at a stage
t > s, then every number of the form 2a · 3j which is < |Xt| is also added to X at
stage t. Conversely, if a number of the form 2a · 3j which is < |Xt| is added to X
after stage t, then it must have been added because a was also added to X at the
same stage.

To prove the (⇐) direction, assume that 2i · 3j < |Xs|, i ∈ Xs and 2i · 3j 6∈ Xs.
Because we never remove elements < |Xs| from X, i ∈ X. Furthermore, we would
only add 2i · 3j to X after stage s if we added i to X after stage s. However, i is
already in Xs, so it cannot be added to X again later. Therefore, 2i · 3j 6∈ X and
we have that 2i · 3j is in Y .

To prove the (⇒) direction, assume that 2i · 3j < |Xs| and 2i · 3j ∈ Y . Then,
i ∈ X and 2i · 3j 6∈ X. First, we claim that i ∈ Xs. Suppose not. Then, i is added
to X at a stage t > s and hence 2i ·3j is also added to X since 2i ·3j < |Xs| < |Xt|.
Because numbers are never removed from X once they have been added, we would
have 2i · 3j ∈ X, which contradicts the fact that 2i · 3j 6∈ X. Therefore, i ∈ Xs.
Second, we claim that 2i · 3j 6∈ Xs. This claim follows immediately from the fact
that elements are never removed from X once they are added and the fact that
2i · 3j 6∈ X. �

This completes the proof of Theorem 4.6.
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