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Abstract

Let G be a computable ordered abelian group. We show that the computable di-
mension of G is either 1 or ω, that G is computably categorical if and only if it has
finite rank, and that if G has only finitely many Archimedean classes, then G has a
computable presentation which admits a computable basis.

1 Introduction

In this article, we examine countable ordered abelian groups from the perspective of com-
putable algebra. We begin with the definition and some examples of ordered abelian groups.

Definition 1.1. An ordered abelian group is a pair (G,≤G), where G is an abelian group
and ≤G is a linear order on G such that if a ≤G b, then a+ g ≤G b+ g for all g ∈ G.

The simplest examples of ordered abelian groups are the additive groups Z and Q with
their usual orders. Another example is

∑
ω Z, the restricted sum of ω many copies of Z.

The elements of this group are functions g : N → Z with finite support. To compare two
distinct elements g and h, find the least n such that g(n) 6= h(n) and set g < h if and only if
g(n) < h(n).

An abelian group is orderable if and only if it is torsion free. Therefore, all groups in this
article are torsion free. Also, since we consider only computable groups (defined below), all
groups in this article are countable.
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DMS-0071586. The primary mathematics subject classification is 03D and the secondary classification is 06F.

1



One of the fundamental problems in computable algebra is to determine which classical
theorems are effectively true. That is, we ask whether a classical theorem holds when all the
algebraic objects are required to be computable. To illustrate this perspective, consider the
following two classical theorems of field theory: every field has an algebraic closure, and a
field is orderable if and only if it is formally real. Rabin ([15]) proved that the first theorem
is effectively true, and Metakides and Nerode ([13]) proved that the second theorem is not
effectively true. That is, every computable field has a computable algebraic closure, but there
are computable formally real fields which do not have a computable order.

To apply the techniques of computability theory to a class of algebraic structures, we
must first code these structures into the natural numbers. In the case of ordered abelian
groups, this means that we choose a computable set G ⊂ N of group elements along with a
computable function +G : G × G → G and a computable relation ≤G⊂ G × G which obey
the axioms for an ordered abelian group. The triple (G,+G,≤G) is called a computable
ordered abelian group. For simplicity, we often drop the subscripts on +G and ≤G, and
we abuse notation by referring to the computable ordered abelian group as G. If H is an
abstract ordered abelian group and G is a computable ordered group such that H ∼= G, then
G is called a computable presentation of H. The intuition is that G is a coding of H into
the natural numbers to which we can apply the techniques of computability theory.

For completeness, we give a more general definition of a computable structure, which
agrees with the definition above for the class of ordered abelian groups. The most general
definition, which allows the possibility of infinite languages, is not needed here.

Definition 1.2. An algebraic structure A with finitely many functions and relations is com-
putable if the domain of the structure and each of the functions and relations is computable.
A computable presentation of a structure B is a computable structure A which is isomor-
phic to B.

In this article, we consider only abstract ordered abelian groups which have some com-
putable presentation. Notice that this includes the examples given above, as well as most
naturally occurring countable examples. That is, it takes some work to build a countable
ordered group that has no computable presentation.

If an abstract ordered abelian group H has a computable presentation, then it will have
many different computable presentations. One of the goals of computable algebra is to study
how the effective properties of H depend upon the chosen presentation or coding. Consider
the following example. Downey and Kurtz ([2]) proved that there is a computable torsion
free abelian group which has no computable order and also no computable basis. Therefore,
the theorem stating that every torsion free abelian group has both an order and a basis is
not effectively true. In their proof, Downey and Kurtz gave a complicated coding of

∑
ω Z

which diagonalized against the existence of a computable order. However, it is clear that
if the group

∑
ω Z is coded in a “nice” way, then it will have a computable basis and the

lexicographic order described above will be computable.
The next reasonable question to ask is if every torsion free abelian group which has a

computable presentation also has one which admits a computable basis and a computable
order. The answer turns out to be yes, as shown for a basis in Dobritsa ([1]) and for an
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order (which is a trivial consequence of Dobritsa’s work) in Solomon ([19]). Therefore, if a
computable torsion free abelian group does not have a computable basis or a computable
order, then it is a consequence of the coding as opposed to a fundamental property of the
abstract isomorphism type of the group.

Unfortunately, Dobritsa’s methods do not in general preserve orders. However, we will
prove that an analogue of Dobritsa’s result does hold for a wide class of computable ordered
abelian groups. (The terms from ordered group theory are defined after the introduction.)

Theorem 1.3. If G is a computable Archimedean ordered group, then G has a computable
presentation which admits a computable basis.

Theorem 1.4. If G is a computable ordered abelian group with finitely many Archimedean
classes, then G has a computable presentation which admits a computable nonshrinking basis.

The computable ordered abelian groups which are the least affected by issues of coding are
those for which there is a computable isomorphism between any two computable presentations.
Such groups are called computably categorical. More generally, we look at computable
structures up to computable isomorphism. That is, we regard two computable structures as
equivalent if there is a computable isomorphism between them. This intuition motivates the
following definition.

Definition 1.5. Let A be a computable structure. The computable dimension of A is the
number of computable presentations of A up to computable isomorphism. If the computable
dimension of A is 1, then A is called computably categorical or autostable.

A considerable amount of work has been done on the question of which computable di-
mensions occur in various classes of algebraic structures.

Theorem 1.6 ([3], [6], [8], [12], [13], [14], [16]). Every computable linear order, Boolean
algebra, abelian group, algebraically closed field, and real closed field has computable dimension
1 or ω.

For several of these classes of structures, there are algebraic conditions which separate
the computably categorical structures from those which have computable dimension ω. For
example, a computable linear order is computably categorical if and only if it has finitely many
successive pairs of elements, and a computable Boolean algebra is computably categorical if
and only if it has finitely many atoms.

These examples, unfortunately, give a picture that is too simple to hold in general. The
following theorem shows that for other classes of algebraic structures, there exist computable
structures which have finite computable dimensions other than 1.

Theorem 1.7 ([3], [10]). For each 1 ≤ n ≤ ω, the following classes of algebraic structures
contain examples which have computable dimension exactly n: partially ordered sets, graphs,
lattices, and nilpotent groups.

The class of ordered abelian groups is interesting from the perspective of computable
dimension because these groups have both an addition function and an ordering relation. Of
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the examples listed above, only Boolean algebras have both functions and an ordering, but
for Boolean algebras, the order is definable from the meet and join. Furthermore, Goncharov
has proved two general theorems, the Unbounded Models Theorem and the Branching Models
Theorem (see [4]), stating conditions under which all computable structures from a particular
class of structures must have dimension 1 or ω. For ordered abelian groups, neither of these
theorems appears to apply. However, our main result, Theorem 1.8, shows that computable
ordered abelian groups must have computable dimension 1 or ω. Theorems 1.3 and 1.4 will
be established during the proof of Theorem 1.8.

Theorem 1.8. Every computable ordered abelian group has computable dimension 1 or ω.
Furthermore, such a group is computably categorical if and only if it has finite rank.

If G has finite rank, then clearly G is computably categorical. In fact, not only are any
two computable presentations of G computably isomorphic, every isomorphism between two
computable presentations is computable. It remains to show that if G has infinite rank, then
the computable dimension of G is ω. We use the following theorem from computable model
theory to simplify our work.

Theorem 1.9 ([9]). If a countable model A has two computable presentations, A1 and A2,
which are ∆0

2 but not computably isomorphic, then A has computable dimension ω.

We split the proof of Theorem 1.8 into three cases. Since the interplay between the group
structure and the ordering can be quite complicated, we have to introduce new algebra in
each case to handle the internal combinatorics.

Theorem 1.10. If G is a computable ordered abelian group with infinitely many Archimedean
classes, then G has computable dimension ω.

Theorem 1.11. If G is a computable Archimedean ordered group, then G has computable
dimension 1 or ω. Furthermore, G is computably categorical if and only if G has finite rank.

Theorem 1.12. If G is a computable abelian ordered group with finitely many Archimedean
classes, then G has computable dimension 1 or ω. Furthermore, G is computably categorical
if and only if G has finite rank.

In Section 2, we present some background material in ordered abelian group theory. In
in Section 3, we present the algebra necessary to prove Theorem 1.10, and we give the proof
in Section 4. In Sections 5 and 6, we describe the computability theory and the algebra,
respectively, used in the proofs of Theorems 1.11 and 1.3. We prove Theorems 1.11 and 1.3
in Section 7 and we prove Theorems 1.12 and 1.4 in Section 8.

The notation is standard and follows [17] for computability theory, and both [11] and [5]
for ordered abelian groups. The term computable always means Turing computable and we
use ϕe, e ∈ ω, to denote an effective list of the partial computable functions. If we designate
a number n as “large” during a construction, let n be the least number which is larger than
any number used in the construction so far.
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2 Ordered abelian groups

In this section, we introduce several useful concepts from the theory of ordered groups.

Definition 2.1. Let G be an ordered group. The absolute value of g ∈ G, denoted by |g|,
is whichever of g or −g is positive. For g, h ∈ G, we say g is Archimedean equivalent
to h, denoted g ≈ h, if there exist n,m ∈ N with n,m > 0, such that |g| ≤G |nh| and
|h| ≤G |mg|. If g 6≈ h and |g| < |h|, g is Archimedean less than h, denoted g � h. G is
an Archimedean group if g ≈ h for every g, h ∈ G \ {0G}.

The Archimedean classes of G are the equivalence classes under ≈. Although technically
0G forms its own Archimedean class, we typically ignore this class and consider only the
nontrivial Archimedean classes.

In Section 5, we give a full discussion of Hölder’s Theorem, but we state it here since it is
used in the proof of Lemma 3.5.

Hölder’s Theorem. If G is an Archimedean ordered group, then G is isomorphic to a sub-
group of the naturally ordered additive group R.

Definition 2.2. Let G be a torsion free abelian group. The elements g0, . . . , gn ∈ G are
linearly independent if, for all c0, . . . , cn ∈ Z, the equality

c0g0 + c1g1 + · · ·+ cngn = 0

implies that ci = 0 for all i. An infinite set is linearly independent if every finite subset is
independent. A maximal linearly independent set is called a basis, and the cardinality of any
basis is called the rank of G.

If a torsion free abelian group is divisible, then it forms a vector space over Q. In this
case, these definitions agree with the corresponding terms for a vector space. Notice that if
g and h are in different Archimedean classes, then they are independent. Therefore, if G has
infinitely many Archimedean classes, then G has infinite rank.

Definition 2.3. If X = {xi|i ∈ N} is a basis for G, then each g ∈ G, g 6= 0G, satisfies a
dependence relation (or equation) of the form

αg = c0x0 + · · ·+ cnxn

where α ∈ N, α 6= 0, and each ci ∈ Z. A dependence relation is called reduced if α > 0 and
the greatest common divisor of α and the nonzero ci coefficients is 1.

Obviously, any dependence relation can be transformed into a reduced one by dividing.
Suppose g and h both satisfy the equation αy = c0x0 + · · · + cnxn. Then, α(g − h) = 0G,
and since we consider only torsion free groups, g = h. Therefore, any dependence relation
(regardless of whether x0, . . . , xn are independent) has at most one solution. It will also be
important that in reduced equation, the coefficient α is required to be positive.
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Definition 2.4. For any X ⊂ G, we define the span of X to be the set of solutions to the
reduced equations αy = c0x0 +c1x1 + · · ·+ckxk, where each xi ∈ X. The span of X is denoted
by Span(X).

The notion of t-independence will be used to approximate a basis during the constructions.

Definition 2.5. The elements g0, . . . , gn are t-independent if for all c0, . . . , cn ∈ Z with
|ci| ≤ t, c0g0 + · · · cngn = 0G implies that each ci = 0. The elements g0, . . . , gn are t-
dependent if they are not t-independent.

Definition 2.6. A subgroup H is convex if for all x, y ∈ H and all g ∈ G, x ≤ g ≤ y implies
that g ∈ H.

If H is a convex subgroup of G, then there is a natural order on the quotient group G/H.
The induced ordered on G/H is defined by a+H ≤G/H b+H if and only if a+H = b+H
or a+H 6= b+H and a < b. In Section 8, we will use the fact that a+H <G/H b+H implies
that a <G b.

3 Algebra for Theorem 1.10

Throughout Sections 3 and 4, G denotes a computable ordered abelian group with infinitely
many Archimedean classes.

Definition 3.1. B ⊂ G has the nonshrinking property if for all {b1, . . . , bn} ⊂ B with
b1 ≈ · · · ≈ bn, and for all x ∈ Span(b1, . . . , bn), if x 6= 0G, then x ≈ b1. A basis with the
nonshrinking property is called a nonshrinking basis.

We first establish, noneffectively, the existence of a nonshrinking basis.

Lemma 3.2. For any (possibly finite) independent set B = {b1, b2, . . .}, there is an in-
dependent set with the nonshrinking property B′ = {b′1, b′2, . . .} such that for every i,
Span(b1, . . . , bi) = Span(b′1, . . . , b

′
i).

Proof. Set b′0 = b0. For n > 0, consider all sums of the form c0b
′
0 + · · · + cn−1b

′
n−1 + cnbn,

where ci ∈ Z and cn 6= 0. These sums can lie in at most n+ 1 different Archimedean classes,
so there is a least Archimedean class which contains one of these elements. Set b′n to be any
of these sums which lies in this least Archimedean class. Since cn 6= 0, bn ∈ Span(b′0, . . . , b

′
n).

To verify that B′ has the nonshrinking property, assume that b′i1 ≈ · · · ≈ b′in with
i1 < · · · < in. Suppose there is an x ∈ Span(b′i1 , . . . , b

′
in) such that x 6= 0G and x � b′i1 .

Then, x satisfies a reduced equation of the form αx = ci1b
′
i1

+ · · · + cinb
′
in . Without loss of

generality, assume that cin 6= 0. By our construction of B′, b′in can be expressed as a sum of
b′1, . . . , b

′
in−1, bin in which the coefficient of bin is not zero. Replace b′in in the equation for x

by this sum and notice that the coefficient of bin is not zero. Therefore, when b′in was chosen,
αx was one of the other elements considered, contradicting our choice of b′in .

The following two lemmas follow directly from Lemma 3.2 and Definition 3.1.
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Lemma 3.3. Any finite independent set with the nonshrinking property can be extended to a
nonshrinking basis.

Lemma 3.4. If B is a nonshrinking basis and {b1, . . . , bn} ⊂ B with b1 / b2 / · · · / bn, then
for all x ∈ Span(b1, . . . , bn), if x 6= 0G, then b1 / x.

The reason for working with a nonshrinking bases is that there are no “large” elements
which combine with other “large” elements to become “small”. To be more specific, suppose
B is a nonshrinking basis and x ≈ y are represented by the reduced equations αx =

∑
i∈I cibi

and βy =
∑

j∈J djbj. Since α, β > 0, x ≤ y if and only if αβx ≤ αβy. To determine
if x ≤ y, it suffices to compare the sums from the expressions αβx =

∑
i∈I(βci)bi and

αβy =
∑

j∈J(αdj)bj. Let X = {bk|k ∈ I ∪ J} and let Y be the set of all k such that bk ∈ X
and bk is an element of the largest Archimedean class occurring among the members of X.
Define x′ =

∑
i∈I∩Y (βci)bi and y′ =

∑
j∈J∩Y (αdj)bj. Because B is a nonshrinking basis,

x′ ≈ bk and y′ ≈ bk for all k ∈ Y . Therefore, x′ < y′ implies that x < y. On the other
hand, if x′ = y′, then we can compare the parts of the sums for βx and αy generated by the
basis elements in the second greatest Archimedean class in X. Assuming that x 6= y, we must
eventually find a largest Archimedean class within X for which the sums for αβx and αβy
restricted to the basis elements in X in this class disagree. Then x < y if and only if the
restricted sum for αβx is less than the restricted sum for αβy.

We prove a sequence of lemmas, culminating in the main combinatorial lemma needed for
the proof of Theorem 1.10. Our eventual goal is to show that if we have a finite set Gs ⊂ G
with subsets C,P ⊂ Gs satisfying particular conditions, then there is a map δ : Gs → G
which preserves + and <, which is the identity on P , and which collapses the elements of C
to a single Archimedean class. This property will allow us to diagonalize against computable
isomorphisms.

Lemma 3.5. Let g1, . . . , gk be elements in the least nontrivial Archimedean class of G such
that gi − gj ≈ gi for all 1 ≤ i 6= j ≤ k. There is a map ϕ : {g1, . . . , gk} → Z such that for all
1 ≤ x, y, z ≤ k, gx + gy = gz if and only if ϕ(gx) + ϕ(gy) = ϕ(gz) and gx < gy if and only if
ϕ(gx) ≤ ϕ(gy). Furthermore, if gx > 0G, then ϕ(gx) > 0.

Proof. Consider the Archimedean subgroup H = {g ∈ G|g ≈ g1 ∨ g = 0G}, let b1, . . . , bn ∈ H
be independent positive elements such that each gi is dependent on {b1, . . . , bn}, and let t be
such that each gi is actually t-dependent on {b1, . . . , bn}. Each gi satisfies a unique reduced
equation αgi = α1b1 + · · · + αnbn in which 0 < α ≤ t and each |αi| ≤ t. Applying Hölder’s
Theorem, fix an isomorphism ψ : H → R such that ψ(b1) = 1 and assume ψ(bi) = ri for
1 < i ≤ n.

Look at all sums of the form β1 + β2r2 + · · · + βnrn in which each βi ∈ Z and |βi| ≤ 2t3.
Because r1, . . . , rn are independent, the sums corresponding to different choices of coefficients
are different. Let q ∈ Q, q > 0, be strictly less than the difference between any two distinct
sums of this form, let q′ ∈ Q be such that 0 < q′ < q/9nt3, and pick q2, . . . , qn ∈ Q such that
|ri − qi| ≤ q′.

Next, we prove four claims about sums involving the numbers ri and qi. Fix arbitrary
distinct sequences 〈α1, . . . , αn〉, 〈β1, . . . , βn〉, and 〈γ1, . . . , γn〉 such that each αi, βi, γi ∈ Z and
|αi|, |βi|, |γi| ≤ t3.
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Our first claim is that for such sequences,

α1 + α2r2 + · · ·+ αnrn < β1 + β2r2 + · · ·+ βnrn

⇔ α1 + α2q2 + · · ·+ αnqn < β1 + β2q2 + · · ·+ βnqn.

This claim follows because

|(α1 + α2r2 + · · ·+ αnrn)− (α1 + α2q2 + · · ·+ αnqn)| ≤ nt3q′ ≤ q/9,

|(β1 + β2r2 + · · ·+ βnrn)− (β1 + β2r2 + · · ·+ βnrn)| ≤ nt3q′ ≤ q/9,

and |(α1 + α2r2 + · · ·+ αnrn)− (β1 + β2r2 + · · ·+ βnrn)| > q.

Our second claim is that for all sequences as above, we have

(α1 + α2r2 + · · ·+ αnrn) + (β1 + β2r2 + · · ·+ βnrn) = (γ1 + γ2r2 + · · ·+ γnrn)

⇔ (α1 + α2q2 + · · ·+ αnqn) + (β1 + β2q2 + · · ·+ βnqn) = (γ1 + γ2q2 + · · ·+ γnqn).

Since 1, r2, . . . , rn are independent, we have that the top equality holds if and only if γi = αi+βi

for each i. Therefore, the (⇒) direction is clear. To establish the (⇐) direction, assume that
the bottom equality holds but the top does not. We get a contradiction by considering the
inequalities used to prove the first claim, together with the following inequalities:

|(γ1 + γ2r2 + · · ·+ γrn)− (γ1 + γ2q2 + · · ·+ γqn)| ≤ q/9,

and |[(α1 + β1) + (α2 + β2)r2 + · · ·+ (αn + βn)rn]− (γ1 + γ2r2 + · · ·+ γrn)| > q.

To verify the last inequality, notice that |αi + βi| ≤ 2t3.
Letm be the least common multiple of the denominators of the reduced fractions q2, . . . , qn.

Let m′ = m · t!, and define p1 = m′, p2 = m′q2, . . . , pn = m′qn. Notice that pi ∈ Z and t!
divides pi for each i.

Our third claim is that

α1 + α2r2 + · · ·+ αnrn < β1 + β2r2 + · · ·+ βnrn

⇔ α1p1 + α2p2 + · · ·+ αnpn < β1p1 + β2p2 + · · ·+ βnpn.

This claim follows from the first claim because

α1p1 + · · ·+ αnpn = m′(α1 + α2q2 + · · ·+ αnqn)

and β1p1 + · · ·+ βnpn = m′(β1 + β2q2 + · · ·+ βnqn).

Our fourth (and final) claim is that

(α1 + α2r2 + · · ·+ αnrn) + (β1 + β2r2 + · · ·+ βnrn) = (γ1 + γ2r2 + · · ·+ γnrn)

⇔ (α1p1 + α2p2 + · · ·+ αnpn) + (β1p1 + β2p2 + · · ·+ βnpn) = (γ1p1 + γ2p2 + · · ·+ γnpn).

This claim follows from the second claim just as the third claim follows from the first claim.
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For each gi, consider the unique reduced equation αgi = α1b1 + · · · + αnbn. Since ψ is a
homomorphism, the equation αx = α1 + α2r2 · · ·+ αnrn has the unique solution x = ψ(gi) in
R. Because t! divides each pi and 0 < α ≤ t, we have that

ui = α1
p1

α
+ · · ·+ αn

pn

α
∈ Z.

Define ϕ by ϕ(gi) = ui.
To verify that ϕ has the appropriate properties, fix x, y, z between 1 and k. There are

positive numbers α, β, and γ, and integer sequences 〈α1, . . . , αn〉, 〈β1, . . . , βn〉, and 〈γ1, . . . , γn〉
with the absolute value of all numbers bounded by t such that

αgx = α1b1 + · · ·+ αnbn, βgy = β1b1 + · · ·+ βnbn, and γgz = γ1b1 + · · ·+ γnbn.

Because G is torsion free, gx + gy = gz if and only if αβγgx + αβγgy = αβγgz. Since the
coefficients in the sums for αβγgx, αβγgy, and αβγgz are all bounded by t3, all four claims
apply to these sums. The following calculation proves that addition is preserved under ϕ.

gx +G gy = gz ⇔ αβγgx +G αβγgy = αβγgz

⇔ βγ(α1p1 + · · ·+ αnpn) +Z αγ(β1p1 + · · ·+ βnpn) = αβ(γ1p1 + · · ·+ γnpn)

⇔ 1/α(α1p1 + · · ·αnpn) +Z 1/β(β1p1 + · · ·+ βnpn) = 1/γ(γ1p1 + · · ·+ γnpn)

⇔ ux +Z uy = uz ⇔ ϕ(gx) +Z ϕ(gy) = ϕ(gz)

The following equivalences prove that < is preserved under ϕ.

gx < gy ⇔ αβgx < αβgy

⇔ β(α1p1 + · · ·+ αnpn) < α(β1p1 + · · ·+ βnpn)

⇔ 1/α(α1p1 + · · ·+ αnpn) < 1/β(β1p1 + · · ·+ βnpn)

⇔ ux < uy ⇔ ϕ(gx) < ϕ(gy)

Finally, the fact that gx > 0G if and only if ϕ(gx) > 0 is similar.

Lemma 3.6. Let g1, . . . , gk be nonidentity elements such that gi ≈ gj and gi − gj ≈ gi for
all 1 ≤ i 6= j ≤ k. There is a map ϕ : {g1, . . . , gk} → Z such that for all 1 ≤ x, y, z ≤ k,
gx + gy = gz implies that ϕ(gx) + ϕ(gy) = ϕ(gz), and gx < gy implies that ϕ(gx) < ϕ(gy).
Furthermore, gx > 0G if and only if ϕ(gx) > 0.

Proof. If {g1, . . . , gk} are in the least nontrivial Archimedean class, then we have the stronger
result of Lemma 3.5. Otherwise, let N = {g ∈ G|g � g1} be the subgroup of elements
Archimedean less than g1. The elements g1 + N, . . . , gk + N are in the least nontrivial
Archimedean class of G/N . Also, if gx 6= gy, then gx− gy ≈ gx and so gx− gy 6∈ N . Therefore
if x 6= y, then gx +N 6= gy +N , so Lemma 3.5 applies to the elements g1 +N, . . . , gk +N in
G/N . The lemma now follows from the fact that gx < gy implies gx +N < gy +N and that
gx + gy = gz implies gx +N + gy +N = gz +N .

Lemma 3.7. Let C = {g1, . . . , gm} be such that g1 / gi / gm for each i. There is a map
δ : C → G such that for all u, v, w ∈ C, we have
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1. δ(u) ≈ gm,

2. u+ v = w implies δ(u) + δ(v) = δ(w), and

3. u < v implies δ(u) < δ(v).

Proof. First, fix a nonshrinking basis B for G and let {b1, . . . , bk} ⊂ B be such that C ⊂
Span(b1, . . . , bk) and bi / gm for each i. Let t be such that |c| < t for all coefficients c used
in the reduced equations for elements of C relative to {b1, . . . , bk}. Thus, every element of C
satisfies a unique reduced equation of the form αx = c1b1 + · · · + ckbk, with α < t and each
|ci| < t.

Second, divide {b1, . . . , bk} (by possibly renumbering the indices) into {b1, . . . , bj} ∪
{bj+1, . . . , bk} where g1 / bi / gm for all i ≤ j and bi � g1 for all i > j. Let A = {b1, . . . , bj}.
Without loss of generality, assume that A ⊂ C (by expanding C if necessary). Let C ′ be the
set of elements of G corresponding to the sums

∑j
i=1 cibi for every choice of coefficients with

|ci| ≤ t3.
Since C is finite, it intersects a finite number r of Archimedean classes. Further partition

A (again renumbering the indices if necessary) into

b1 ≈ · · · ≈ bd1 � bd1+1 ≈ · · · ≈ bd2 � bd2+1 · · · � bdr−1+1 ≈ · · · ≈ bj.

For notational convenience, let d0 = 0, dr = j. Therefore, each Archimedean class within
C is generated by bdy−1+1, . . . , bdy for some 0 < y ≤ r. Let Ay = {bdy−1+1, . . . , bdy} and
Dy = Span(Ay)∩ (C ∪C ′). When we have to verify statements for each Dy, we will typically
verify it for D1 and note that the proofs for the other Dy are the same up to a change in
subscripts.

The point of this notation is to think of dividing C ∪ C ′ into various categories. Each
Dy has the property that all of its elements are Archimedean equivalent and, because our
basis is nonshrinking, the difference between any two distinct elements still lies in the same
Archimedean class. Therefore, Lemma 3.6 can be applied to each Dy. We will fix the images
of these elements under δ first.

There are also elements x ∈ Span(A) such that x 6∈ Dy for any y. Each bi ∈ A is in some
Dy set, so δ(bi) is already defined. Therefore, we can use the fact that the elements in Span(A)
are all solutions of equations over A to define the images of the elements of Span(A)− ∪Dy.
Finally, there are the elements that involve the basis elements {bj+1, . . . , bk}, and we fix the
images of these elements last.

We begin by applying Lemma 3.6 to each Dy to define maps ϕy : Dy → Z such that for
all u, v, w ∈ Dy

u+ v = w ⇒ ϕy(u) + ϕy(v) = ϕy(w),

u < v ⇒ ϕy(u) < ϕy(v), and u > 0G ⇔ ϕy(u) > 0.
(1)

Next, we define a map ϕ : ∪Dy → Z such that for all u, v, w ∈ ∪Dy,

u+ v = w ⇒ ϕ(u) + ϕ(v) = ϕ(w)

u ≤ v ⇒ ϕ(u) ≤ ϕ(v), and u > 0G ⇔ ϕ(u) > 0.
(2)
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We define ϕ on each Dy by induction on y, verifying at each step that Equation (2) holds.
For x ∈ D1, set ϕ(x) = t!ϕ1(x). It is clear from Equation (1) that Equation (2) holds for all
u, v, w ∈ D1. Let M1 be such that M1 > |ϕ(x)| for all x ∈ D1.

For x ∈ D2, set ϕ(x) = M1t!ϕ2(x). Define M2 such that M2 > |ϕ(x1)| + |ϕ(x2)| for all
x1 ∈ D1 and x2 ∈ D2. To see that ϕ satisfies Equation (2), let u, v, w ∈ D1∪D2. If u+v = w,
then either u, v, w ∈ D1 or u, v, w ∈ D2, so Equation (1) implies that + is preserved. Similarly,
if u, v ∈ D1 or u, v ∈ D2, then it is clear that < is preserved. Consider u ∈ D1 and v ∈ D2.
Then, u < v implies that either u, v are both positive or else u is negative and v is positive.
In the first case, ϕ1(u) and ϕ2(v) are both positive, so ϕ(u) < ϕ(v) follows from the fact that
ϕ(u) < M1. In the second case, ϕ1(u) is negative and ϕ2(v) is positive, so ϕ(u) < ϕ(v). The
cases for u ∈ D2 and v ∈ D1 are similar.

We proceed by induction. For all x ∈ Dy, set ϕ(x) = My−1t!ϕy(x) and define My such
that My > |ϕ(x1)|+ · · ·+ |ϕ(xy)| for all choices of xi ∈ Di. The verification that Equation (2)
holds is similar to the case of y = 2 done above. Also, the fact that for all x ∈ ∪Dy, x > 0G

if and only if ϕ(x) > 0 follows from the fact that this holds for each ϕy.
Fix h ∈ G such that h ≈ gm and h is positive. We begin to define the map δ by setting

δ(x) = ϕ(x)h+ x for all x ∈ ∪Dy. In particular, δ(bi) is now defined for all bi ∈ A.
To give an equivalent definition for δ(x), assume x ∈ D1 and x satisfies the reduced

equation αx = α1b1 + · · · + αd1bd1 . By the proof of Lemma 3.5 and the fact that bi ∈ D1

for 1 ≤ i ≤ d1, we have αϕ1(x) = α1ϕ1(b1) + · · · + αd1ϕ1(bd1). Multiplying by t! shows
αϕ(x) = α1ϕ(b1) + · · ·+ αd1ϕ(bd1), which gives us

αδ(x) = αϕ(x)h+ αx =

= (α1ϕ(b1) + · · ·+ αd1ϕ(bd1))h+ (α1b1 + · · ·+ αd1bd1) =

= α1δ(b1) + · · ·+ αd1δ(bd1).

Therefore, once we have defined δ(bi) = ϕ(bi)h + bi, we can define δ(x) to be the unique
solution to

αx = α1δ(b1) + · · ·+ αd1δ(bd1).

(By the calculations above, this equation does have a solution.) The same calculations with
different subscripts give analogous results for each Dy.

Before continuing with the definition of δ, we verify that for all u, v, w ∈ (∪Dy) ∩ C ′,

u+ v = w ⇒ δ(u) + δ(v) = δ(w) and u < v ⇒ δ(u) < δ(v).

To see that < is preserved, notice that u < v implies that ϕ(u) < ϕ(v), which in turn implies
that δ(u) = ϕ(u)h + u < ϕ(v)h + v = δ(v). To see that + is preserved, it is easiest to
use the definition of δ in terms of solutions of equations. Without loss of generality assume
that u, v, w ∈ D1. Since they are also in C ′, they satisfy equations u = α1b1 + · · · + αd1bd1 ,
v = β1b1 + · · ·+ βd1bd1 , and w = γ1b1 + · · ·+ γd1bd1 . If u+ v = w, then αi + βi = γi for each
i ≤ d1. Therefore,

α1δ(b1) + · · ·+ αd1δ(bd1) + β1δ(b1) + · · ·+ βd1δ(bd1) = γ1δ(b1) + · · ·+ γd1δ(bd1),
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and hence δ(u) + δ(v) = δ(w). The same argument works for any Dy with the appropriate
index substitutions.

Next, consider x ∈ Span(A), write αx = α1b1 + · · ·+αjbj as a reduced equation, and recall
that 0 < α < t. Define ϕ(x) as the solution to αx = α1ϕ(b1) + · · · + αjϕ(bj). The fact that
t! divides each ϕ(bi) guarantees that ϕ(x) ∈ Z. If x ∈ Dy, this definition agrees with value of
ϕ(x) we have already assigned. Set δ(x) = ϕ(x)h+x, and as above, notice that this definition
is equivalent to defining δ(x) as the solution to αz = α1δ(b1) + · · · + αjδ(bj). Because this
equation is equivalent to

αz = (α1ϕ(b1) + · · ·+ αjϕ(bj))h+ (α1b1 + · · ·+ αjbj),

and because α divides each ϕ(bi) as well as α1b1+· · ·+αjbj, this equation does have a solution.
Again, we verify some properties before finishing the definition of δ. We have now defined

δ for all elements of C ′. The argument that for all u, v, w ∈ C ′,

u+ v = w ⇒ δ(u) + δ(v) = δ(w) and u < v ⇒ δ(u) < δ(v)

is essentially the same as for (∪Dy)∩C ′. Also, we verify that for all x ∈ Span(A), x > 0G if and
only if ϕ(x) > 0. Fix x and suppose it satisfies the reduced equation αx = α1b1 + · · ·+ αjbj.
Consider the largest Archimedean class with nonzero terms in α1b1 + · · ·+αjbj. Let z be the
element of C ′ which is the restriction of the sum α1b1+· · ·+αjbj to the terms from this largest
Archimedean class. Because our basis is nonshrinking, z lies in this largest Archimedean class,
and hence it determines whether x is positive or not. Therefore, x > 0G if and only if z > 0G.
Since z ∈ Dy for some y, we have already verified that z > 0G if and only if ϕ(z) > 0. Finally,
since ϕ(z) is a multiple of My−1 and My−1 is larger than any sum of images of elements
of smaller Archimedean classes under ϕ, we have that ϕ(z) determines the sign of ϕ(x).
Altogether, these equivalences imply that x > 0G if and only if ϕ(x) > 0.

To finish the definition of δ, consider a remaining element gi and assume gi is a solution
to the reduced equation αz = c1b1 + · · · + cjbj + cj+1bj+1 + · · · + ckbk. Since gi 6∈ Span(A),
there must be at least one ci 6= 0 for i > j. Define δ(gi) to be the solution to

αz = c1δ(b1) + · · ·+ cjδ(bj) + cj+1bj+1 + · · ·+ ckbk.

As above, this equation does have a solution. Also, this definition for δ agrees with our earlier
definitions in the case that gi ∈ ∪Dy or gi ∈ Span(A). Therefore, it can be taken as the final
definition covering all cases.

It remains to verify the properties of δ. First, we show that for all gi ∈ C, δ(gi) ≈ h
and hence δ(gi) ≈ gm. Suppose gi > 0G satisfies αgi = α1b1 + · · · + αkbk, and consider
z = α1b1 + · · · + αjbj ∈ C ′. If gi > 0G, then z > 0G, and hence ϕ(z) > 0. Since δ(z) =
ϕ(z)h + z, we have δ(z) > ϕ(z)h, and since z / gm, it follows that δ(z) ≈ h. Because
αj+1bj+1 + · · · + αkbk � g1, we get δ(z) + αj+1bj+1 + · · · + αkbk ≈ h. Dividing by α cannot
change the Archimedean class, so δ(gi) ≈ h. The argument for gi < 0G is similar.

Second, we check that < is preserved. Assume gi satisfies the equation above and gj

satisfies βgj = β1b1 + · · ·+ βkbk. If gi < gj, then αβgi < αβgj since α and β are positive. We
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therefore have

β(α1b1 + · · ·+ αjbj) + β(αj+1bj+1 + · · ·+ αkbk)

< α(β1b1 + · · ·+ βjbj) + α(βj+1bj+1 + · · ·+ βkbk).

We claim that this implies that β(α1b1 + · · · + αjbj) ≤ α(β1b1 + · · · + βjbj). If not, then
β(α1b1 + · · ·+αjbj) > α(β1b1 + · · ·+βjbj). Since our basis is nonshrinking, both of these sums
are Archimedean greater than the parts involving bj+1, . . . , bk. Therefore, β(α1b1+· · ·+αjbj) >
α(β1b1 + · · ·+ βjbj) implies that αβgi > αβgj, which is a contradiction.

There are now two cases to consider. If β(α1b1 + · · · + αjbj) = α(β1b1 + · · · + βjbj),
then αβgi < αβgj implies that β(αj+1bj+1 + · · · + αkbk) < α(βj+1bj+1 + · · · + βkbk). Also,
since the elements x = β(α1b1 + · · · + αjbj) and y = α(β1b1 + · · · + βjbj) are in C ′, we
have that x = y implies δ(x) = δ(y). However, αβδ(gi) = δ(x) + β(αj+1bj+1 + · · · + αkbk)
and αβδ(gj) = δ(y) + α(βj+1bj+1 + · · · + βkbk). Therefore, αβδ(gi) < αβδ(gj) and hence
δ(gi) < δ(gj).

The second case is when β(α1b1 + · · ·+ αjbj) < α(β1b1 + · · ·+ βjbj). In this case, with x
and y as above, x < y and so δ(x) < δ(y). However, δ(x), δ(y) ≈ h and so are Archimedean
greater than bj+1, . . . , bk. Therefore, αβδ(gi) < αβδ(gj) and δ(gi) < δ(gj).

Last, we check that + is preserved. Let gi and gj satisfy reduced sums as above and let gl

satisfy γgl = γ1b1 + · · ·+ γkbk. If gi + gj = gl, then αβγgi + αβγgj = αβγgl. Since our basis
is nonshrinking,

βγ(α1b1 + · · ·αjbj) + αγ(β1b1 + · · · βjbj) = αβ(γ1b1 + · · · γjbj)

and βγ(αj+1bj+1 + · · ·αkbk) + αγ(βj+1bj+1 + · · · βkbk) = αβ(γj+1bj+1 + · · · γkbk).

The terms in the top equation are in C ′, so the addition is preserved by δ. The terms in
the bottom sum are not moved by δ. Therefore, αβγδ(gi) + αβγδ(gj) = αβγδ(gl) and so
δ(gi) + δ(gj) = δ(gl).

The following lemma expresses the main combinatorial fact needed to do the diagonaliza-
tion in the proof of Theorem 1.10.

Lemma 3.8. Let Gs ⊂ G be a finite set with two subsets P = {p1, . . . , pn} ⊂ Gs (called the
protected elements) and C = {g1, . . . , gm} ⊂ Gs (called the collapsing elements). Assume that
the elements of C satisfy g1 / gi / gm for each i. Let G′ = {g ∈ G|g1 / g / gm}. Assume
that Gs ∩ G′ = C and Span(P ) ∩ G′ = ∅. Then, there is a map δ : Gs → G such that the
following conditions hold.

1. For all x ∈ Span(P ) ∩Gs, δ(x) = x.

2. For all 1 ≤ i ≤ m, δ(gi) ≈ gm.

3. For all x, y, z ∈ Gs, x+ y = z implies δ(x)+ δ(y) = δ(z) and x < y implies δ(x) < δ(y).

Proof. Apply Lemma 3.2 to get P ′ = {p′1, . . . , p′n} such that P is independent, has the non-
shrinking property, and satisfies Span(p1, . . . , pn) = Span(p′1, . . . , p

′
n). Let B = {bi|i ∈ ω} be

a nonshrinking basis for G that extends P ′.
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Run the construction of Lemma 3.7 using the basis B to obtain δ : C → G. We use the
same notation as in the proof of Lemma 3.7. That is, by possibly renumbering the indices in
B, we assume that j < k are such that C ⊂ Span(b1, . . . , bk), g1 / bi / gm for all i ≤ j, and
bi � g1 for all j < i ≤ k. Furthermore, let l > k be such that Gs ⊂ Span(b1, . . . , bl).

To extend δ toGs, write x ∈ Gs as the solution to the reduced equation αx = c1b1+· · ·+clbl
and define δ(x) to be the solution to

αz = c1δ(b1) + · · ·+ cjδ(bj) + cj+1bj+1 + · · ·+ clbl.

The verification that this equation has a solution and that + and < are preserved under δ
is essentially the same as in Lemma 3.7. Therefore, we restrict ourselves to showing that
< is preserved. By possibly increasing k and renumbering indices, we can assume that
bk+1, . . . , bl � gm. Suppose u, v ∈ Gs satisfy the reduced equations αu = α1b1 + · · ·+αlbl and
βv = β1b1+· · ·+βlbl. If u < v, then αβu < αβv, and so β(α1b1+· · ·+αlbl) < α(β1b1+· · ·+βlbl).

We now split into cases. Let x = β(αk+1bk+1 + · · ·+αlbl) and y = α(βk+1bk+1 + · · ·+βlbl).
Notice that δ does not move x or y and also, since our basis is nonshrinking, that gm � x, y.
Therefore, if x < y, then αβδ(u) < αβδ(v) since the parts of the sums for δ(u) and δ(v)
which are distinct from x and y generate elements which are / gm. Similarly, if y < x, then
αβu > αβv, which is a contradiction. If x = y, then to determine which of αβδ(u) and αβδ(v)
is larger, we examine αβδ(u)− x and αβδ(v)− y. In this case, we are back within the realm
of Lemma 3.7 and the argument there applies.

It remains to check that δ(x) = x for all x ∈ Span(P ) ∩ Gs. Let x ∈ Span(P ). Because
Span(P ′) ∪ G′ = ∅. We can assume without loss of generality that the elements of P ′ are
among the basis elements bj+1, . . . , bl. Therefore, x can be written in the form

αx = cj+1bj+1 + · · ·+ clbl

since the other basis elements are not needed to generate x. The definition of δ shows that
δ(x) = x as required.

4 Proof of Theorem 1.10

This section is devoted to a proof of Theorem 1.10. Fix a computable ordered abelian group
G which has infinitely many Archimedean classes. By Theorem 1.9, it suffices to build a
computable ordered abelian group H with a ∆0

2 isomorphism f : H → G, and to meet the
requirements

Re : ϕe : G→ H is not an isomorphism.

In this context, an isomorphism must preserve order as well as addition.
We use ω for the elements of H. At stage s of the construction, we have a finite initial

segment of ω, denoted Hs, and a map fs : Hs → G, with range Gs. We define the operations
on H by x+ y = z if and only if there is an s such that fs(x)+ fs(y) = fs(z) and x ≤ y if and
only if there is an s such that fs(x) ≤ fs(y). To insure that these operations are well defined
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and computable, we require that for all s

fs(x) + fs(y) = fs(z) ⇒ ∀t ≥ s (ft(x) + ft(y) = ft(z))

and fs(x) ≤ fs(y) ⇒ ∀t ≥ s (ft(x) ≤ ft(y)).

We let f = lims fs. To insure that f is well defined and ∆0
2, we also meet the requirements

Se : lim
s
fs(e) exists.

The priority on these requirements is R0 < S0 < R1 < S1 < · · · .
The strategy for Se is to make fs+1(e) = fs(e). The strategy for Re is to pick witnesses

we,0 and we,1 from Gs which currently look like we,0 6≈ we,1. Re then waits for ϕe(we,0) ↓ and
ϕe(we,1) ↓. If it looks like ϕe(we,0) 6≈ ϕe(we,1) (which we measure by looking at the elements
fs(ϕe(we,0)) and fs(ϕe(we,1))), then we apply Lemma 3.8 to change the map fs to a map
fs+1 which forces fs+1(ϕe(we,0)) ≈ fs+1(ϕe(we,1)). This action may move the images of all
the elements in Hs which are between the Archimedean classes for ϕe(we,0) and ϕe(we,1). Re

then wants to restrict any other Ri requirement from changing ft(ϕe(we,0)) or ft(ϕe(we,1)) at
a later stage.

There are some obvious conflicts between the requirements. Re needs to change the images
of certain elements, but it doesn’t know which elements until the witnesses we,i stabilize and
the functions ϕe(we,i) converge. Both Re and Se want to restrain other requirements from
moving particular elements. To see how to resolve these conflicts consider R0, S0, and R1. R0

can act whenever it wants to, and once R0 has acted, S0 is can prevent fs(0) from changing
ever again. R1 cannot change fs(0), fs(ϕ0(w0,0)), or fs(ϕ0(w0,1)). The span of these three
elements, however, can intersect at most three Archimedean classes. Therefore, we give R1

8 witnesses, w1,i for i ≤ 7. If ϕ1(w1,i) ↓ for all i ≤ 7, and fs(ϕ1(w1,i)) 6≈ fs(ϕ1(w1,j)) for
i 6= j, then by the Pigeonhole Principle there must be two witnesses w1,i and w1,j for which
fs(ϕ1(w1,i)) � fs(ϕ1(w1,j)) and

Span(fs(0), fs(ϕ0(w0,0)), fs(ϕ0(w0,1))) ∩ {g ∈ Gs|fs(ϕ1(w1,i) / g / fs(ϕ1(w1,j))} = ∅.

Thus, by Lemma 3.8, there is a way to protect 0, fs(ϕ0(w0,0)), and fs(ϕ0(w0,1)) while forcing
fs+1(ϕ1(w1,i)) ≈ fs+1(ϕ1(w1,j)).

In general, we define a function τ(e) and let Re have τ(e) many witnesses. Let τ(0) = 2
and τ(e + 1) = 2(e + 1 +

∑
i≤e τ(i)) + 2. There are e + 1 Si requirements (each with one

number to protect) of higher priority than Re+1, and each Ri with i ≤ e has τ(i) witnesses to
protect. Therefore, there are e + 1 +

∑
i≤e τ(i) many numbers protected by requirements of

higher priority than Re+1 and the span of these numbers intersects at most e+ 1 +
∑

i≤e τ(i)
many Archimedean classes. τ(e) is defined to be the smallest number of witnesses that will
guarantee Re+1 has some pair that can be collapsed to the same Archimedean class without
moving the elements protected by the higher priority requirements.

Definition 4.1. Let F ⊂ G be a finite set. For x, y ∈ F , we define

x ≈s y ⇔ ∃u, v ≤ s (u, v > 0 ∧ u|x| ≥ |y| ∧ v|y| ≥ |x|).

If x 6≈s y and |x| ≤ |y|, then x�s y.
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The following lemma follows immediately from this definition.

Lemma 4.2. For all x, y ∈ G, x ≈ y ⇔ ∃s(x ≈s y), x ≈s y ⇒ ∀t ≥ s (x ≈t y), and
x� y ⇔ ∀s(x�s y).

Construction

Stage 0: Let H0 = {0}, G0 = {0G}, and f0(0) = 0G.

Stage s+ 1: The first step is to define what appear to be the ω-least representatives for the
Archimedean classes. Define as

i ∈ Gs by induction on i until every x ∈ Gs, x 6= 0G, satisfies
x ≈s a

s
i for some as

i . Let as
0 be the ω-least strictly positive element in Gs. Let as

i+1 be the
ω-least element of Gs such that as

i+1 6≈s a
s
j for all j ≤ i. Let As be the set of the as

i .
The second step is to assign witnesses to the Re requirements by induction on e. We

continue to assign witnesses until the elements of As are all taken. By induction on e we
assign Re τ(e) many witnesses, ws

e,i for i < τ(e), which are chosen from As in increasing
ω-order and which are removed from As once they are chosen. For each Re which has a full
set of witnesses, Re is active if either Re did not have a full set of witnesses at the previous
stage, or one of Re’s witnesses has changed, or Re has the same witnesses and was active at
the end of the previous stage. Otherwise, Re is not active.

We say that Re needs attention if Re is active, ϕe,s(w
s
e,i) ↓ for all i < τ(e), and

fs(ϕe,s(w
s
e,i)) 6≈s fs(ϕe,s(w

s
e,j)) for all i 6= j. Consider the least e such that Re needs at-

tention. (If no Re needs attention, then proceed as if the search procedure below ended
because of option (1).) Run the following two search procedures concurrently.

1. Search for some i 6= j for which fs(ϕe,s(w
s
e,i)) ≈ fs(ϕe,s(w

s
e,j)).

2. Search for some i 6= j and a map δ : Gs → G such that

(a) δ(x) = x for all x = fs(k) with k < e and all x = fs(ϕk,s(w
s
k,l)) with k < e,

l < τ(k), and ϕk,s(w
s
k,l) ↓.

(b) For all x, y, z ∈ Gs, x + y = z implies δ(x) + δ(y) = δ(z), and x < y implies
δ(x) < δ(y).

(c) δ(fs(ϕe,s(w
s
e,i))) ≈ δ(fs(ϕe,s(w

s
e,j))).

At least one of these search procedures must terminate (see the verification below).
If the search in (1) terminates first, then let nG be the ω-least element of G − Gs and

let nH be the ω-least number not in Hs. Define Gs+1 = Gs ∪ {nG}, Hs+1 = Hs ∪ {nH},
fs+1(x) = fs(x) for all x ∈ Hs, and fs+1(nH) = nG.

If the search in (2) terminates first, then let {g1, . . . , gm} = Gs − range(δ), let nG be the
ω-least element in G− (Gs∪ range(δ)), and let r1, . . . , rm+1 be the m+1 ω-least numbers not
in Hs. Define Hs+1 = Hs ∪ {r1, . . . , rm+1}, Gs+1 = Gs ∪ range(δ) ∪ {nG}, fs+1(x) = δ(x) for
all x ∈ Hs, fs+1(ri) = gi for i ≤ m, and fs+1(rm+1) = nG. Declare Re to be not active, and
for all Ri with i > e, if Ri is not active, declare it to be active. We say that Re acted at stage
s+ 1.

End of construction
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Lemma 4.3. The following properties hold of this construction.

1.
⋃

sGs = G.

2. For all s and all x, y, z ∈ Hs, if fs(x) + fs(y) = fs(z), then fs+1(x) + fs+1(y) = fs+1(z),
and if fs(x) < fs(y), then fs+1(x) < fs+1(y).

3. If g1, . . . , gs are the ω-least elements of G, then {g1, . . . , gs} ⊂ Gs+1.

Lemma 4.4. For each i, lims a
s
i = ai exists and for all i 6= j, ai 6≈ aj.

Proof. Let s be such that there are i+ 1 distinct Archimedean classes represented among the
first s (in terms of N) elements of G. These elements are all in Gs+1, and so as

0, . . . , a
s
i are

all permanently defined and have reached limits at stage s+ 1. To see that ai 6≈ aj, suppose
ai ≈ aj and i < j. Then, there is an s such that ai ≈s aj and so ∀t ≥ s (ai ≈t aj). Without
loss of generality, as

i = ai has already reached its limit. Therefore, for every t ≥ s, at
j 6= aj,

which is a contradiction.

Lemma 4.5. For each e ∈ ω and i < τ(e), limsw
s
e,i = we,i exists, and for all 〈e, i〉 6= 〈e′, i′〉,

we,i 6≈ we′,i′.

Proof. Immediate from Lemma 4.4.

Lemma 4.6. One of the two concurrent search procedures must terminate.

Proof. Assume that the search in (1) never terminates. Then, fs(ϕe(w
s
e,i)) 6≈ fs(ϕe(w

s
e,j))

for i 6= j. Let P be the set consisting of fs(k) for k < e and all fs(ϕk,s(w
s
k,l)) for k < e,

l < τ(k), and for which ϕk,s(w
s
k,l) ↓. Notice that Span(P ) intersects at most e+1+

∑
k<e τ(k)

many Archimedean classes. Therefore, by the Pigeonhole Principle, there must be i 6= j
such that fs(ϕe(w

s
e,i)) � fs(ϕe(w

s
e,i)) and for all x ∈ Span(P ), either x � fs(ϕe(w

s
e,i)) or

fs(ϕe(w
s
e,j)) � x. Let C = {g ∈ Gs|fs(ϕe(w

s
e,i)) / g / fs(ϕe(w

s
e,j))} and apply Lemma 3.8 to

see the existence of a map δ with the required properties.

Lemma 4.7. Each Re requirement acts at most finitely often and is eventually satisfied.

Proof. The proof proceeds by induction on e. Let s be a stage such that all Ri with i < e
have ceased to act and wt

e,i = we,i for all t ≥ s and i < τ(e). The lemma is trivial if ϕe(we,i) ↑
for some i. Therefore, assume ϕe,s(we,i) ↓ for all i. Suppose fs(ϕe(we,i)) ≈s fs(ϕe(we,j)) for
some i 6= j. Then, since Re does not act, since no requirement of higher priority acts and
since no requirement of lower priority can change either fs(ϕe(we,i)) or fs(ϕe(we,j)), we have
that for all t ≥ s, ft(ϕe(we,i)) = fs(ϕe(we,i)) and ft(ϕe(we,j)) = fs(ϕe(we,j)). Therefore,
f(ϕe(we,i)) = fs(ϕe(we,i)), and f(ϕe(we,j)) = fs(ϕe(we,j)). It follows that ϕe(we,i) ≈ ϕe(we,j)
in H, but we,i 6≈ we,j in G, so Re is satisfied.

If fs(ϕe(we,i)) 6≈s fs(ϕe(we,j)) for all i 6= j, then Re acts at stage s+1. Either Re discovers
that fs(ϕe(we,i)) ≈ fs(ϕe(we,j)) for some i 6= j, in which case Re does not act and is satisfied
as above, or else Re finds an appropriate δ. In that case, fs+1(ϕe(we,i)) ≈ fs+1(ϕe(we,j)) and
Re is declared not active. Since no requirement of higher priority ever acts again and no
witness we,i changes again, we have that Re never acts again. Therefore, Re is satisfied as
above.
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Lemma 4.8. Each Se requirement is satisfied.

Proof. Let s be a stage such that all requirements Ri with i ≤ e have stopped acting. No
requirement is allowed to change fs(e) after this stage, and hence Se is satisfied.

5 Effective Hölder’s Theorem

In this section, we turn to the effective algebra we need to prove Theorems 1.11 and 1.3. In
Sections 5, 6, and 7, G denotes a computable Archimedean ordered group with infinite rank.
Hölder’s Theorem characterizes the Archimedean ordered groups.

Hölder’s Theorem. If G is an Archimedean ordered group, then G is isomorphic to a sub-
group of the naturally ordered additive group R.

Notice that Hölder’s Theorem implies that every Archimedean ordered group is abelian.
It is possible to give an effective proof of Hölder’s Theorem (see [18] for the details of such a
proof). To describe the effective version of Hölder’s Theorem formally, we need the following
definitions. The first definition says that a computable real number is one which has a
computable dyadic expansion.

Definition 5.1. A computable real is a computable sequence of rationals x = 〈qk|k ∈ N〉
such that ∀k∀i ( |qk − qk+i| ≤ 2−k ). Let y = 〈q′k|k ∈ N〉 be another real. We say x = y if
|qk − q′k| ≤ 2−k+1 for all k. Similarly, x < y if there is a k such that qk + 2−k+1 < q′k. (Notice
that the latter condition is Σ0

1.)

The next definition formalizes the notion of a computable ordered subgroup of the reals.
Since reals are second order objects (that is, they are infinite sequences of rationals), we
specify a computable subgroup by uniformly coding a countable sequence of reals such that
we can compute the sum and the order relation of two reals in the sequence effectively in the
indices of these elements.

Definition 5.2. A computable ordered subgroup of R (indexed by a computable set
X) is a computable sequence of computable reals A = 〈rn|n ∈ X〉 together with a partial
computable function +A : X ×X → X, a partial computable binary relation ≤A on X, and
a distinguished number i ∈ X such that

1. ri = 0R.

2. n+A m = p if and only if rn +R rm = rp.

3. n ≤A m if and only if rn ≤R rm.

4. (X,+A,≤A) satisfies the ordered group axioms with i as the identity element.

Effective Hölder’s Theorem. If G is a computable Archimedean ordered abelian group,
then G is isomorphic to a computable ordered subgroup of R, indexed by G, for which +A and
≤A are exactly +G and ≤G.
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To prove this version of Hölder’s Theorem, one builds a uniform sequence of computable
reals rg, for g ∈ G, such that rg +R rh = rg+h and rg ≤R rh if and only if g ≤G h. We will use
this correspondence to give us a measure of distance in G. Notice that while the computable
ordered subgroup of the reals here is not a computable group in the ordinary sense (since
the elements are second order objects), there still is a sense in which the isomorphism is
computable. For each g ∈ G, we can uniformly compute the corresponding real rg. Therefore,
we can think of the isomorphism as effectively giving us an index for the Turing machine
computing the dyadic expansion of the corresponding real in such a way that both the addition
function and the order relation are effective in these indices.

The proof of Proposition 5.3 can be found in [11].

Proposition 5.3. If rank(G) > 1 and G is Archimedean, then G is dense in the sense that
for every g < h, there is an x such that g < x < h.

If {a, b} is independent, then the element x from Proposition 5.3 can be taken to be a
linear combination c1a+ c2b in which both c1 and c2 are nonzero.

Proposition 5.4. Let G be a subgroup of (R,+) with rank ≥ 2. For every r ∈ R with r > 0,
there is an h ∈ G with h ∈ (0, r). Notice, r ∈ R, but it need not be in G.

Proof. Let g ∈ G be such that g > 0. By Proposition 5.3, there is an x ∈ G such that
0 < x < g, and hence, either x ∈ (0, g/2) or g − x ∈ (0, g/2). Thus, there is an h ∈ G such
that h ∈ (0, g/2). Repeat this argument to get elements in (0, g/4), (0, g/8), and so on, until
an element appears in (0, r).

Proposition 5.5. Let G be a subgroup of (R,+) with rank ≥ 2. For every r1 ≤R r2, there is
an h ∈ G with h ∈ (r1, r2). Notice, r1, r2 ∈ R, but they need not be in G.

Proof. Let d = r2 − r1 and let g ∈ G be such that g ∈ (0, d). Then, since R is Archimedean
ordered, there is an m ∈ N such that r1 < mg < r2. Setting h = mg proves the theorem.

If {a, b} is independent, then by the comments following Proposition 5.3, we can assume
that the h in Proposition 5.4 and 5.5 has the form h = c1a+ c2b with c1, c2 6= 0.

Proposition 5.6. Let G be a subgroup of (R,+) with infinite rank, B = {b0, . . . , bm} ⊂ G
be a linearly independent set, X = {x0, . . . , xn} ⊂ G be any set of nonidentity elements, and
d ∈ R with d > 0. Then there are elements ai ∈ G, for 0 ≤ i ≤ n, such that {b0, . . . , bm, (x0 +
a0), . . . , (xn + an)} is linearly independent and for each i, |ai| < d. Furthermore, we can
require that for any fixed p ∈ N, p 6= 0, each ai is divisible by p in G.

Proof. It is enough to consider a single element x0 ∈ G, and proceed by induction. If x0

is independent from B, then let a0 = 0G. Otherwise, let b ∈ G be such that {b0, . . . , bm, b}
is linearly independent. By Proposition 5.4, there are coefficients c1, c2 ∈ Z (which we can
assume are both nonzero) such that c1b + c2b0 ∈ (0, d/p). Let a0 = c1pb + c2pb0. Clearly, a0

is divisible by p in G, |a0| < d, and {b0, . . . , bm, (x0 + a0)} is linearly independent (since we
assumed that c1 6= 0).
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To prove Theorem 1.11, it suffices, by Theorem 1.9, to build a computable ordered group
H which is ∆0

2 isomorphic but not computably isomorphic to G. We build H in stages so
that at each stage we have a finite set Hs and a map fs : Hs → G with range Gs. Assuming
that lims fs(x) converges for each x, the Limit Lemma shows that f = lims fs is ∆0

2. During
the construction, we meet the requirements

Re : ϕe : H → G is not an isomorphism.

Notice that we are treating ϕe as a map from H to G.
We define +H and ≤H as before: a+H b = c if and only if ∃s (fs(a) +G fs(b) = fs(c)), and

a <H b if and only if ∃s (fs(a) ≤G fs(b)). To insure that these operations are well-defined and
computable, we guarantee that

fs(a) + fs(b) = fs(c) ⇒ ∀t ≥ s (ft(a) + ft(b) = ft(c)) (3)

and fs(a) ≤G fs(b) ⇒ ∀t ≥ s (ft(a) ≤G ft(b)). (4)

To defeat a single requirement Re, our strategy is to guess a basis for G. The inverse
image under f of such a basis will be a basis for H. The strategy for Re proceeds as follows.

1. Pick two elements as
e and bse from our guess at the basis for H. We will settle on

longer and longer initial segments of a basis, so eventually, Re will choose two linearly
independent elements. Without loss of generality, we assume as

e <H bse.

2. Do nothing until a stage t ≥ s occurs for which ϕe,t(a
t
e) ↓, ϕe,t(b

t
e) ↓, and ϕe(a

t
e) <G

ϕe(b
t
e). If these calculations do not appear, then ϕe is not an isomorphism from H to

G, so Re is satisfied.

3. Define ft+1(be) 6= ft(be) such that for some large n,m ∈ N, we have nϕe(a
t
e) <G mϕe(b

t
e)

and mft+1(b
t
e) <G nft+1(a

t
e). In this case, we have also satisfied Re. The algebra behind

the definition of ft+1 is discussed in Section 6.

The general idea for Step 3 is to fix an effective map ψ : G→ R, which we use to measure
distances in G. We want to move the image of bte just enough to make the diagonalization
possible, but not so far as to upset the order or addition relations defined to far. Propositions
5.4 and 5.6 will allow us to diagonalize as long as fs(a

t
e) and fs(b

t
e) really are independent.

Therefore, we initiate a search process for an appropriate new image of bte, which, to keep
the requirements Re and Ri from interfering with each other, we require to be in the span
of fs(a

t
e) and fs(b

t
e). Either we find an appropriate image, or we find a dependence relation

between at
e and bte. In the latter case, we know that the witnesses for Re are bound to change.

The injury in this construction is finite. Once the higher priority requirements have ceased
to act, Re can use the next two linearly independent elements to diagonalize.

6 Algebra for Theorems 1.11 and 1.3

From the description in the previous section, it should be clear that when we change the
image of a basis element bte, we need to make sure that we preserve both the addition and
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ordering facts specified so far in H. To preserve the addition facts, we use the notion of an
approximate basis for a finite subset G′ of G.

Before giving the formal definition of an approximate basis, we give some motivation
for the conditions which occur in the definition. Suppose G′ is a finite subset of G and
B = {b0, . . . , bk} is an independent set which spans G′. Then, each g ∈ G′ satisfies a unique
reduced relation of the form αy = c0b0 + · · · + ckbk. Furthermore, if g, h, and g + h ∈ G′,
then the reduced relation satisfied by g + h can be found by adding the relations for g
and h, and dividing by the greatest common divisor of the nonzero coefficients. That is, if
αg = c0b0 + · · · + ckbk and βh = d0b0 + · · · dkbk, then g + h is the solution to the reduced
version of

αβy = (βc0 + αd0)b0 + · · ·+ (βck + αdk)bk.

At each stage of the construction, we will guess at an independent subset of G, and our
guess at each stage will be an approximate basis. We want our guesses to have these two
properties of an actual independent set. Therefore, assume that G′ is the finite subset of G
which is the range of the partial isomorphism fs we have defined at stage s.

To imitate the first property, we want our approximate basis Xs = {xs
0, . . . , x

s
k} at stage

s to be t-independent, where t is large enough that each element g ∈ G′ is the solution to a
unique reduced dependence relation of the form

αy = c0x
s
0 + c1x

s
1 + · · ·+ ckx

s
k,

where each coefficient has absolute value ≤ t. Notice that if g is the solution to more than one
relation of this form, then we know Xs is not independent. Since there is some independent
set which spans G′, there must be a set which is t′-independent (for some t′) and which does
have this uniqueness property.

As new elements enter H during the construction, they will be assigned reduced de-
pendence relations. If h enters H at stage s and is assigned the reduced relation αy =
c0x0 + · · · + ckxk, then for every stage t ≥ s, we will define ft(h) to be the unique solution
to αy = c0x

t
0 + · · · ckxt

k (where xt
0, . . . , x

t
k is an initial segment of our approximate basis at

stage t). Therefore, the second property we want Xs to have is that if g, h, and g + h are all
in G′, then the dependence relation for g + h relative to the approximate basis is the sum of
the dependence relations for g and h, as described above. This property will guarantee that
Equation (3) holds. The key point is that if g + h satisfies some other reduced dependence
relation, then, as above, we know that Xs is not independent, and therefore, there must be
another set with the required properties.

By the comments above, if Xs is independent and spans G′, then it will have both of
these properties. It follows that every finite G′ has an approximate basis and that during
the construction we can add additional requirements on the level of independence of an
approximate basis, such as requiring that it be at least s-independent at stage s.

Definition 6.1. Let G′ be a finite subset of G. An approximate basis for G′ with weight
t > 0 is a finite sequence X = 〈x0, . . . , xk〉 such that

1. {x0, . . . , xk} is t-independent,
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2. every g ∈ G′ ∪ X satisfies a unique reduced dependence relation of the form αy =
c0x0 + · · · ckxk with 0 < α ≤ t and |ci| ≤ t, and

3. for every g, h ∈ G′ ∪X with g + h ∈ G′ ∪X, if g and h satisfy the reduced dependence
relations αg = c0x0 + · · ·+ ckxk and βh = d0x0 + · · ·+ dkxk with α, β, |ci|, and |di| ≤ t,
then the reduced coefficients in

αβ(g + h) = (βc0 + αd0)x0 + · · ·+ (βck + αdk)xk

have absolute value less that t.

We use sequences to represent approximate bases to emphasize the fact that their elements
are ordered. We will abuse notation, however, and simply treat them as sets, with the
understanding that the set {x0, . . . , xk} is really the ordered sequence 〈x0, . . . , xk〉. Also,
whenever we refer to g ∈ G′ satisfying a reduced equation of an approximate basis of weight
t, we assume that the absolute value of all the coefficients is bounded by t.

Returning to the description of the construction, at stage s we have an approximate basis
Xs = {xs

0, . . . , x
s
ks
} for Gs which is ts-independent. Each h which enters H at stage s is

assigned a reduced dependence relation αy = c0x0 + · · · + cksxks with α, |ci| ≤ ts. For every
t ≥ s, we define ft(h) so that

αft(h) = c0x
t
0 + · · ·+ cksx

t
ks
.

The properties of an approximate basis guarantee that Equation (3) holds.
However, it is not clear that Equation (4) will hold or that the relation αy = c0x

t
0 + · · ·+

cksx
t
ks

will have a solution unless we do something to insure that our choices for approximate
bases at stages s and t ≥ s fit together in a nice way. Therefore, we introduce the notion of
coherence between approximate bases.

Definition 6.2. Let G0 ⊂ G1 be finite subsets of G, with approximate bases X0 =
{x0

0, . . . , x
0
k0
} of weight t0 and X1 = {x1

0, . . . , x
1
k1
} with weight t1, respectively. We say that

X1 coheres with X0 if the following conditions are met.

1. k0 ≤ k1 and t0 ≤ t1.

2. For each i ≤ k0, if {x0
0, . . . , x

0
i } is linearly independent, then x1

j = x0
j for every j ≤ i.

3. If g ∈ G0 satisfies the reduced equation αy = c0x
0
0 + · · ·+ ck0x

0
k0

, then there is a solution
to αy = c0x

1
0 + · · ·+ ck0x

1
k0

in G.

4. If g <G h ∈ G0 satisfy the reduced sums αy = c0x
0
0 + · · · + ck0x

0
k0

and βz = d0x
0
0 +

· · · + dk0x
0
k0

, respectively, then the solutions g′, h′ ∈ G, respectively, to the equations
αy = c0x

1
0 + · · ·+ ck0x

1
k0

and βz = d0x
1
0 + · · ·+ dk0x

1
k0

satisfy g′ <G h′.

Lemma 6.3. Let G0 ⊂ G1 be finite subsets of G, and let X0 be an approximate basis for G0.
There exists an approximate basis X1 for G1 which coheres with X0.
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Proof. Since we are not yet worried about effectiveness issues, we can assume by Hölder’s
Theorem that G ⊂ R. If X0 is linearly independent, then we can extend it to a set X1 which
is linearly independent and spans G1. Such a set X1 satisfies the conditions in Definition 6.2.

Therefore, assume that X0 is not linearly independent and that i < k0 is such that
{x0

0, . . . , x
0
i } is linearly independent, but {x0

0, . . . , x
0
i+1} is not. Let d′ be the minimum distance

between any pair g 6= h ∈ G0, and let d = d′/(3t0k0).
Apply Proposition 5.6 with B = {x0

0, . . . , x
0
i }, X = {x0

i+1, . . . , x
0
k0
}, d as above, and

p = t0!. We obtain ai+1, . . . , ak0 such that {x0
0, . . . , x

0
i , (ai+1 +x0

i+1), . . . , (ak0 +x0
k0

)} is linearly
independent, and, for each j with i+ 1 ≤ j ≤ k0, t0! divides aj and |aj| < d.

For 0 ≤ j ≤ i, set x1
j = x0

j , and for i+1 ≤ j ≤ k0, set x1
j = aj +x

0
j . Since Y = {x1

0, . . . , x
1
k0
}

is linearly independent, we let X1 be a finite linearly independent set that extends Y and that
spans G1. Clearly, X1 is an approximate basis for G1 and satisfies Conditions 1 and 2 of
Definition 6.2.

To see that X1 satisfies Condition 3, fix an arbitrary g ∈ G0, and suppose αg = c0x
0
0 +

· · ·+ ck0x
0
k0

is a reduced dependence relation with α, |ci| ≤ t0. Then,

αy = c0x
1
0 + · · ·+ ck0x

1
k0

= (c0x
0
0 + · · ·+ ck0x

0
k0

) + (ci+1ai+1 + · · ·+ ck0ak0).

Since α ≤ t0 and t0! divides each of the aj in G, the equation αy = c0x
1
0 + · · ·+ ck0x

1
k0

has a
solution g′ ∈ G.

To see that X1 satisfies Condition 4, we consider the distance between the solutions g ∈ G0

and g′ ∈ G1 to the dependence relation above. Since each |cj| ≤ t0, |aj| < d, and there are at
most k0 of the aj’s, we have

|αg − αg′| ≤ |ci+1ai+1 + · · ·+ ckak| ≤ k0t0d ≤ d′/3.

Furthermore, since α > 0 ∈ N, |g − g′| ≤ |αg − αg′| ≤ d′/3. Suppose h ∈ G0 with h 6= g
satisfies βh = d0x

0
0 + · · · + dk0x

0
k0

and h′ ∈ G1 is the solution to βy = d0x
1
0 + · · · + dk0x

1
k0

.
An identical argument shows that |h − h′| ≤ d′/3. Combining the facts that |g − h| ≥ d′,
|g − g′| ≤ d′/3, and |h− h′| ≤ d′/3, it is clear that g <G h implies g′ <G h′.

It remains to fix an effective method for finding bases which cohere. The algorithm below
is not the most obvious one, but it has properties which will be important in our proof.

Suppose G0 ⊂ G1 are finite subsets of G. Let X0 = {x0, x1, · · · , xk0} be an approximate
basis for G0 which is t0-independent. We find an approximate basis X1 for G1 which coheres
with X0 in three phases.

In the first phase, we guess (until we find evidence to the contrary) that X0 is linearly
independent. We perform the following two tasks concurrently.

1. Search for a dependence relation among the elements of X0.

2. Search for a Y such that X0 ∪ Y is an approximate basis for G1 which coheres with X0

as follows. Begin with n = t0 + 1 and i = 0.

(a) Let yi be the N-least element of G such that X ∪ {y0, . . . , yi} is n-independent.
Check if this set spans G1 using coefficients with absolute value ≤ n. If so, then
proceed to (b), and if not, repeat (a) with i set to i+ 1.
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(b) Check if X0 ∪{y0, . . . , yi} satisfies Condition 3 from Definition 6.1. If it does, then
it coheres with X0 and we end the algorithm. If it is not an approximate basis,
then return to (a) with n set to n+ 1 and i = 0.

This phase will terminate, since if X0 is linearly independent, then, at worst, we re-
peat (a) and (b) until we pick elements y0 <N · · · <N yi which are the N-least such that
{x0, . . . , xk0 , y0, . . . , yi} is a linearly independent and spans G1. This set coheres with X0. If
this phase ends because we find an approximate basis in Step 2, then the algorithm termi-
nates. However, if this phase ends because we find a dependence relation in Step 1, then we
proceed to the second phase with the knowledge that X0 is not linearly independent.

For the second phase, assume that we know {x0, . . . , xi+1} is n-dependent, but {x0, . . . , xi}
is n-independent. We search for elements yi+1 through yk0 from which to construct elements
which play the role of the aj’s in the proof of Lemma 6.3. Before starting this phase, fix
a computable embedding ψ : G → R, let d′ be any positive real less than the minimum of
|ψ(g − h)|, where g 6= h range over G0, and set d = d′/3k0t0.

1. For i + 1 ≤ j ≤ k0, pick yj ∈ G to be the N-least such that {x0, . . . , xi, yi+1, . . . , yj} is
n-independent.

2. Check the following Σ0
1 conditions concurrently.

(a) Search for a dependence relation among {x0, . . . , xi, yi+1, . . . , yk0}. If we discover
that {x0, . . . , xj+1} is dependent, then restart Phase 2 with {x0, . . . , xj}. If we
discover that {x0, . . . , xi, yi+1, . . . , yj} is dependent for some j, then we return to
Step 1 of this phase, set n to be large, and repick yi+1 through yk0 .

(b) For each i + 1 ≤ j ≤ k0, search for coefficients bj, dj 6= 0 such that, for ai+1 =
bi+1t0!xi + di+1t0!yi+1 and aj = bjt0!yj−1 + djt0!yj (for j > i+ 1), we have ψ(aj) ∈
(0, d). If we find such aj, then end Phase 2.

Determining if ψ(aj) ∈ (0, d) is a Σ0
1 fact, so by dove-tailing our computations, we can

effectively perform the search in (b). This phase will terminate, since once {x0, . . . , xi} has
shrunk to a linearly independent set (by finitely many discoveries of dependence relations
in (a)), we know that there are linearly independent yj’s and coefficients bj, dj, with the
required properties. By continually choosing the N-least elements which look independent,
we eventually find such elements.

We verify two properties of X ′ = {x0, . . . , xi, xi+1+ai+1, . . . , xk0 +ak0}. First, as in Lemma
6.3, if αy = c0x0 + · · ·+ ck0xk0 , with α, |ci| ≤ t0, has a solution g ∈ G0, then

αy = c0x0 + · · ·+ cixi + ci+1(xi+1 + ai+1) + · · ·+ ck0(xk0 + ak0)

has a solution in g′ ∈ G. Second, |ψ(g) − ψ(g′)| ≤ d′/3, also as in Lemma 6.3. Therefore, if
g < h ∈ G0 and g′, h′ are the solutions to the dependence relations for g and h, respectively,
with xi+1, . . . , xk0 replaced by xi+1+ai+1, . . . , xk0 +ak0 , then g′ < h′. Therefore, any extension
of X ′ which is an approximate basis for G1 will cohere with X0.

To find such an extension, we use a search similar to Phase 1. Perform the following two
tasks concurrently.
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1. Search for a dependence relation among the elements of X ′. If we find such a relation,
then either {x0, . . . , xi} is dependent, in which case we return to the beginning of Phase
2 with a shorter initial segment of X0, or else {x0, . . . , xi, yi+1, . . . , yj} is dependent for
some j ≤ k0. In this case, we return to Step 1 of Phase 2 with {x0, . . . , xi} and repick
yi+1 through yk0 with n chosen to be large.

2. Search for a Y such that X ′ ∪ Y is an approximate basis for G1 which coheres with X0

as follows. Set m to be large and i = 0.

(a) Let wi be the N-least element of G such that X ′ ∪ {w0, . . . , wi} is m-independent.
Check if this set spans G1 using coefficients with absolute value ≤ m. If so, then
proceed to (b), and if not, repeat (a) with i set to i+ 1.

(b) Check if X ′ ∪ {w0, . . . , wi} satisfies Condition 3 from Definition 6.1. If it does,
then, by the comments above, it coheres with X0, and we end the algorithm. If it
is not an approximate basis, then return to (a) with m set to m+ 1.

This phase must terminate since we can return to Phase 2 only finitely often without
picking a linearly independent set {x0, . . . , xi, yi+1, . . . , yk0}. From here, it is clear that we
will eventually pick a spanning set for G1 with the correct level of independence.

We could easily have added requirements that the approximate basis X1 has a specified
higher level of independence or a larger size. We summarize this discussion with the following
lemma.

Lemma 6.4. Let G be a computable Archimedean ordered group with infinite rank, G0 ⊂ G1

be finite subsets of G, and X0 be a t0-independent approximate basis for G0 of size k0. For
any m,n with t0 < m and k0 < n, we can effectively find an approximate basis X1 for G1

which coheres with X0, which is at least m-independent, and which has size at least n.

It remains to discuss the diagonalization process for an Re requirement. Recall that Re

has two witnesses, ae and be ∈ Hs such that fs(ae) and fs(be) are elements of our approximate
basis Xs (of weight ts) for Gs, where Gs is the image of Hs under fs. Also, we have a fixed map
ψ : G→ R. If we want to diagonalize for Re at stage s, then we search for an element x in the
subgroup generated by ts!fs(ae) and ts!fs(be) such that ψ(x) is sufficiently close to 0 in R and
x meets the diagonalization strategy discussed at the end of Section 5. (We will provide the
exact bounds for ψ(x) and the exact diagonalization properties during the construction when
we have established the necessary notation.) If we find an appropriate x, then we replace
fs(be) in our approximate basis by fs(be)−x. As above, the fact that ts! divides x allows us to
solve the necessary equations in G to preserve addition and the fact that ψ(x) is sufficiently
close to 0 guarantees that the new solutions have the same ordering relations as ones from
Gs. However, since we have introduced large multiples of fs(ae) and fs(be), it need not be the
case that X ′ = (Xs − {fs(be)}) ∪ {fs(be)− x} is still ts-independent.

We handle this situation as follows. If we are diagonalizing for Re, assume that

Xs = {fs(a0), fs(b0), . . . , fs(ae), fs(be), fs(y1), . . . , fs(yk)}.
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Every element g ∈ Gs is the solution to a unique reduced dependence relation over Xs with
coefficients whose absolute value is bounded by ts. We want to find a new approximate basis
X ′

s (of weight ≥ ts) for some subset G′
s of G such that we have met our diagonalization

requirements and such that all the equations which were satisfied by some g ∈ Gs over Xs

are also satisfied by some g′ ∈ G′
s over X ′

s. Notice that addition is automatically preserved
because g1 + g2 = g3 in Gs if and only if the defining equations for g1, g2, and g3 satisfy this
additive relationship. Therefore, if g′1, g

′
2, and g′3 are the solutions in G′

s to the equations for
g1, g2, and g3 over X ′

s, we must have g′1 + g′2 = g′3. Lastly, we want that < is preserved in the
sense that if g < h in Gs, then g′ < h′ holds in G′

s.
Therefore, we perform two searches concurrently. First, we search for a dependence rela-

tion among {fs(a0), fs(b0), . . . , fs(ae), fs(be)}. If we find such a dependence relation, we know
that the witnesses ae and be are going to change, so there is no need to diagonalize at this
point. Second, we search for nonzero coefficients c1 and c2 and for elements u1, . . . , uk of G
such that

1. ψ(c1ts!fs(ae) + c2ts!fs(be)) is as close to 0 as we want it to be and meets our diagonal-
ization strategy (and we set x = c1ts!fs(ae) + c2ts!fs(be)), and

2. ts! divides each ui and ψ(ui) is as close to 0 as we want it to be, and

3. X ′
s = {fs(a0), fs(b0), . . . , fs(ae), fs(be)−x, fs(y1)+u1, . . . , fs(yk)+uk} is t′s independent

for some t′s ≥ 2(ts)
3, and

4. for every g ∈ Gs, the equation satisfied by g over Xs has a solution g′ over X ′
s (and we

let G′
s be the set of solutions to these equations), and

5. < is preserved in the sense mentioned above.

Assuming that {fs(a0), fs(b0), . . . , fs(ae), fs(be)} is independent, Propositions 5.4 and 5.5 will
tell us that we can find an appropriate x and Proposition 5.6 will tell us that we can find
appropriate ui elements.

Now, we define f ′s : Hs → G′
s on the approximate basis X ′

s by f ′s(ai) = fs(ai) for i ≤ e,
f ′s(bi) = fs(bi) for i < e, f ′s(be) = fs(be)−x, and f ′s(yi) = fs(yi)+ui. We can extend this map
across Hs by mapping h ∈ Hs to the solution over X ′

s for the equation defining fs(h) over Xs.
The map f ′s preserves all the ordering and addition facts about Hs.

To see that X ′
s is an approximate basis for G′

s, we need to check Condition (3) of Definition
6.1. Therefore, assume that g, h ∈ Gs satisfy the equations

αg = c0fs(a0) + c1fs(b0) + · · ·+ c2efs(ae) + c2e+1fs(be) + c2e+2fs(y1) + · · ·+ c2e+1+kfs(yk)

βh = d0fs(a0) + d1fs(b0) + · · ·+ d2efs(ae) + d2e+1fs(be) + d2e+2fs(y1) + · · ·+ d2e+1+kfs(yk)

over Xs with |ci|, |di| ≤ ts and 0 < α, β ≤ ts. Let g′, h′ be the solutions to these equations over
X ′

s, and suppose g′ + h′ ∈ G′
s. Then, since G′

s is exactly the set of solutions to the equations
(over X ′

s) for the elements g ∈ Gs, we know that g′ + h′ satisfies an equation of the form

γ(g′ + h′) = l0f
′
s(a0) + · · ·+ l2e+1f

′
s(be) + l2e+2f

′
s(y1) + · · ·+ l2e+1+kf

′
s(yk) (5)
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with |li| ≤ ts and 0 < γ ≤ ts. However, summing the equations for g and h, we see that g′+h′

also satisfies

αβ(g′ + h′) = (βc0 + αd0)fs(a0) + · · ·+ (βc2e+1+k + αd2e+1+k)fs(yk). (6)

We need to show that Equations (6) and (5) are equivalent when reduced. If we multiply
Equation (5) by βα and Equation (6) by γ, we obtain two equations for αβγ(g′ + h′). Each
of these equations has its coefficients bounded by 2(ts)

3, and since X ′
s is 2(ts)

3 independent,
these equations must have equal coefficients. Therefore, they remain the same when reduced.
This completes the proof that X ′

s is an approximate basis for G′
s.

To finish the stage, we let Xs+1 be an approximate basis for Gs ∪ G′
s which coheres

with the basis {f ′s(a0), f
′
s(b0), . . . , f

′
s(ae), f

′
s(be), f

′
s(y1), . . . , f

′
s(yk)} for G′

s. We can assume
that f ′s(a0), f

′
s(b0), . . . , f

′
s(ae), f

′
s(be) forms an initial segments of Xs+1, since otherwise there

must be a dependence relation between fs(a0), fs(b0), . . . , fs(ae), fs(be).
For each h ∈ Hs, the dependence relation defining fs(h) over Xs has a solution over X ′

s,
and hence it has a solution in G over Xs+1. Let G′′

s be the set of solutions to the equations
for h ∈ Hs over Xs+1.

We let Gs+1 = Gs∪G′
s∪G′′

s ∪Xs+1 and we expand Hs to Hs+1 by adding |Gs+1 \Gs| many
new elements. To define the map fs+1 on Hs+1, we first consider fs+1(h) for h ∈ Hs. We know
that fs(h) satisfies a reduced equation over Xs and that this equation has a solution in Gs+1

over Xs+1. Therefore, we defined fs+1(h) to be the solution to this equation in Gs+1. For
the new elements in Hs+1, we map these elements to the elements of Gs+1 which are not hit
by elements of Hs under fs+1. Each of the new elements in Hs+1 is assigned the dependence
relation satisfied by fs+1(h) over Xs+1.

The final thing to notice is that since f ′s(a0), f
′
s(b0), . . . , f

′
s(ae), f

′
s(be) forms an initial seg-

ments of Xs+1, we have that fs+1(ae) = fs(ae) and fs+1(be) = fs(be) − x. Hence, we have
diagonalized as we wanted.

7 Proof of Theorems 1.11 and 1.3

At stage s of the construction, we will have an approximate basis Xs = {xs
0, . . . , x

s
ks
} ⊂ G,

with ks ≥ 2s, which is ts-independent, with ts > s. If h enters H at stage s + 1, then h
is assigned a reduced dependence relation of the form αy = c0x0 + · · · + cks+1xks+1 . We say
that g ∈ G satisfies this relation relative to the approximate basis Xt, with t ≥ s + 1, if
αg = c0x

t
0 + · · ·+ cks+1x

t
ks+1

. Each requirement Re, with e ≤ s, has two distinct witnesses, as
e

and bse, such that fs(a
s
e) ∈ Xs and fs(b

s
e) ∈ Xs. Re does not need attention at stage s if

any of the following conditions hold:

1. ϕe,s(a
s
e) ↑ or ϕe,s(b

s
e) ↑, or

2. for some 0 < m,n < s, mϕe,s(b
s
e) ↓≤G nϕe,s(a

s
e) ↓ and nfs(a

s
e) <G mfs(b

s
e), or

3. for some 0 < m,n < s, mϕe,s(a
s
e) ↓≤G nϕe,s(b

s
e) ↓ and nfs(b

s
e) <G mfs(a

s
e), or

4. Re was declared satisfied at some stage t < s and both as
e and bse are the same as at

e and
bte.
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Re requires attention at stage s if none of these conditions hold.

Construction

Stage 0: Fix a computable embedding ψ : G → R. Set H0 = {0}, f0(0) = 0G, and X0 = ∅.
Assign 0 ∈ H the empty reduced dependence relation.

Stage s + 1: Assume we have defined Hs and fs : Hs → G, with Gs = range(fs). We have
a set Xs ⊂ Gs which is an approximate basis for Gs, which is ts-independent and which has
size ks ≥ 2s. Each element h ∈ Hs has been assigned a reduced dependence relation of the
form αy = c0x0 + · · ·+ cixi for some i ≤ ks. We split the stage into four steps.

Step 1 : Let g be the N-least element of G not in Gs. Let X ′
s = {x′0,s, . . . x

′
k′s,s} be an

approximate basis for Gs ∪ {g} which coheres with Xs, which has size k′s ≥ 2(s + 1), and
which is t′s-independent, for some t′s > (s+1). Because X ′

s coheres with Xs, every dependence
relation assigned to an element h ∈ Hs has a solution over X ′

s. Let G′
s contain Gs, {g}, X ′

s,
and the solution to the dependence relation for each h ∈ Hs over X ′

s. Let n = |G′
s \ Gs|,

let h1, . . . hn be the n least elements of N not in Hs, and let H ′
s = Hs ∪ {h1, . . . , hn}. Define

f ′s : H ′
s → G′

s as follows. For h ∈ Hs, f
′
s(h) is the solution to the dependence for h over X ′

s.
For hi, 1 ≤ i ≤ n, let f ′s(hi) map to the elements of G′

s not in the image of Hs under f ′s.
Each new hi ∈ H ′

s is assigned the reduced dependence relation αy = c0x0 + · · ·+ ck′sxk′s with
α, |cj| ≤ t′s such that

αf ′s(hi) = c0x
′
0,s + c1x

′
1,s + · · ·+ ck′sx

′
k′s,s.

Step 2 : Define the witnesses for Re with e ≤ s by setting as+1
e and bs+1

e to be the elements of
H ′

s such that f ′s(a
s+1
e ) = x′2e,s and f ′s(b

s+1
e ) = x′2e+1,s. Check if any Re requires attention. If

so, let Re be the least such requirement and go to Step 3. Otherwise, proceed to Step 4.

Step 3 : In this step we do the actual diagonalization. First, calculate a safe distance to move
the image of bs+1

e . Set d′ ∈ R to be such that d′ > 0 and

d′ ≤ min{ |ψ(f ′s(h))− ψ(f ′s(g))| | h 6= g ∈ H ′
s }.

We can find such a d′ effectively since H ′
s is finite. Set d = d′/(3t′s(1 + k′s)).

Second, we search for an appropriate x ∈ G to set fs+1(b
s+1
e ) = f ′s(b

s+1
e )− x. We say that

x diagonalizes for Re if there are n,m > 0 such that either

nf ′s(a
s+1
e ) <G m(f ′s(b

s+1
e )− x) and nϕs

e(a
s+1
e ) ≥G mϕs

e(b
s+1
e )

or nf ′s(a
s+1
e ) >G m(f ′s(b

s+1
e )− x) and nϕs

e(a
s+1
e ) ≤G mϕs

e(b
s+1
e ).

We search concurrently for

1. elements x, u2e+2, . . . , uk′s in G such that

(a) x has the form c1t
′
s!f

′
s(a

s+1
e ) + c2t

′
s!f

′
s(b

s+1
e ) with c1, c2 6= 0 such that ψ(x) ∈ (0, d),

and x diagonalizes for Re, and

(b) t′s! divides each ui in G and |ψ(ui)| < d, and
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(c) X ′′
s = {f ′s(as+1

0 ), f ′s(b
s+1
0 ), . . . , f ′s(a

s+1
e ), f ′s(b

s+1
e )− x, f ′s(x

′
2e+2) + u2e+2, . . . , f

′
s(x

′
k′s

) +

uk′s} is at least 2(t′s)
3 independent, or

2. n,m ∈ N such that nf ′s(a
s+1
e ) <G mf ′s(b

s+1
e ) and nϕe,s(a

s+1
e ) ≥G mϕe,s(b

s+1
e ), or

3. n,m ∈ N such that nf ′s(b
s+1
e ) <G mf ′s(a

s+1
e ) and nϕe,s(b

s+1
e ) ≥G mϕe,s(a

s+1
e ), or

4. a dependence relation among {f ′s(as+1
0 ), f ′s(b

s+1
0 ), . . . , f ′s(a

s+1
e ), f ′s(b

s+1
e )} in G.

This process terminates (see Lemma 7.1). Furthermore, if we found X ′′
s , then because t′s!

divides all the elements we are adding to the approximate basis elements, this set has the
property that each dependence relation assigned to an h ∈ H ′

s has a solution over X ′′
s . Also,

because |ψ(ui)| < d and ψ(x) < d, these solutions preserve < in the sense described at the
end of Section 6 (see Lemma 7.3).

If the process terminates with Conditions 2, 3, or 4, then skip to Step 4. Otherwise, we
define fs+1 using x and the ui. For every h ∈ H ′

s, there is a solution to the dependence relation
for h over X ′′

s . Therefore, we can define G′′
s as the set of solutions to the dependence relations

assigned to h ∈ H ′
s. As explained at the end of Section 6, because X ′′

s is 2(t′s)
3 independent, it

is an approximate basis for G′′
s . Let Xs+1 be an approximate basis for G′

s ∪G′′
s which coheres

with the approximate basis X ′′
s for G′

s. Let Gs+1 = G′
s ∪G′′

s ∪Xs+1 and let Hs+1 contain H ′
s

plus |Gs+1 \ G′
s| many new elements. Define fs+1 : Hs+1 → Gs+1 as follows. For h ∈ H ′

s,
set fs+1(h) to be the solution to the dependence relation for h over Xs+1. Map the elements
h ∈ Hs+1 \H ′

s to the elements of Gs+1 which are not in the image of H ′
s under fs+1 and assign

to each such h the reduced dependence relation satisfied by fs+1(h) over Xs+1. Proceed to
stage s+ 2.

Step 4 : If we arrived at this step, then there is no diagonalization to be done. Define fs+1 = f ′s,
Xs+1 = X ′

s, Hs+1 = H ′
s, Gs+1 = G′

s, ks+1 = k′s, and ts+1 = t′s. If we arrived at Step 4 because
Condition 2 or 3 was satisfied in the search procedure in Step 3, then declare Re satisfied.
Proceed to stage s+ 2.

End of Construction

To prove the construction works, we verify the following lemmas.

Lemma 7.1. The search procedure in Step 3 of stage s+ 1 terminates.

Proof. Each condition in the search procedure is Σ0
1. Therefore, it suffices to show that if

Conditions 2, 3, and 4 do not hold, then Condition 1 does hold.
Suppose Conditions 2, 3, and 4 are not true. Because Condition 4 does not hold, f ′s(a

s+1
e )

and f ′s(b
s+1
e ) are linearly independent. Therefore, by Proposition 5.4, there are n,m ∈ N such

that |mψ(f ′s(b
s+1
e ))−nψ(f ′s(a

s+1
e ))| <R d. Fix such n,m, and without loss of generality, assume

that nψ(f ′s(a
s+1
e )) <R mψ(f ′s(b

s+1
e )) (the case for the reverse inequality follows by a similar

argument). Because ψ is an embedding, nf ′s(a
s+1
e ) <G mf ′s(b

s+1
e ), and because Condition 2

does not hold, nϕe,s(a
s+1
e ) <G mϕe,s(b

s+1
e ).
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Since t′s!f
′
s(a

s+1
e ) and t′s!f

′
s(b

s+1
e ) are linearly independent, we use Proposition 5.5 to con-

clude that there are nonzero c1 and c2 such that

mψ(f ′s(b
s+1
e ))− nψ(f ′s(a

s+1
e ))

m
<R c1t

′
sψ(f ′s(a

s+1
e )) + c2t

′
sψ(f ′s(b

s+1
e )) <R

d

m
.

We set x = c1t
′
sf

′
s(a

s+1
e ) + c2t

′
sf

′
s(b

s+1
e ), and note that mf ′s(b

s+1
e ) − nf ′s(a

s+1
e ) <G mx, ψ(x) ∈

(0, d), and t′s! divides x in G. Furthermore, since c2 6= 0, f ′s(b
s+1
e ) − x is independent from

f ′s(a
s+1
e ). Finally, to see that x diagonalizes for Re:

0 <R mψ(f ′s(b
s+1
e ))− nψ(f ′s(a

s+1
e )) <R mψ(x)

⇒ mf ′s(b
s+1
e )−mx <G nf ′s(a

s+1
e ),

which implies that m(fs(b
s+1
e )− x) <G nfs(a

s+1
e ) as required.

Finally, Proposition 5.6 implies that elements u2e+2, . . . , uk′s exist with the required level
of independence.

Lemma 7.2. Each h ∈ H is assigned a unique reduced dependence relation of the form
αy = c0x0 + · · ·+ cnxn. Furthermore, if h ∈ Hs and xs

0, . . . , x
s
n are the initial elements of Xs,

then this relation has a solution in G.

Proof. The first time an approximate basis is chosen after h enters H, h is assigned a unique
reduced dependence relation. If h ∈ Hs \Hs−1, then fs(h) satisfies a dependence relation of
the form αy = c0x

s
0 + c1x

s
1 + · · · + cksx

s
ks

with α, |ci| ≤ ts. We show by induction that for all
u ≥ s this equation has a solution in G. Notice that if u ≥ s, then |Xu| ≥ |Xs|, so there are
enough approximate basis elements in Xu for this equation to make sense. Assume that the
equation has a solution at stage u, and we consider it at stage u+ 1.

X ′
u coheres with Xu, so αy = c0x

′
0,u + c1x

′
1,u + · · · + cksx

′
ks,u has a solution. If we do not

diagonalize at stage u + 1, then Xu+1 = X ′
u, and we are done. If we do diagonalize at stage

u+1, then our conditions on X ′′
u guarantee that the equation has a solution over X ′′

u . We then
choose Xu+1 so that it coheres with X ′′

u , and hence the equation has a solution over Xu+1.

Lemma 7.3. Suppose s + 1 is a stage at which we diagonalize, and a <G b ∈ G′
s satisfy the

dependence relations αy = c0x
′
0,s + · · · + ckx

′
k,s and βy = d0x

′
0,s + · · · + dkx

′
k,s. If a′′, b′′ ∈ G

are the solutions to αy = c0x
s+1
0 + · · ·+ ckx

s+1
k and βy = d0x

s+1
0 + · · ·+dkx

s+1
k , then a′′ <G b′′.

Proof. At stage s+ 1, we set d′ to be <R the least distance between any pair ψ(h) and ψ(g),
with h 6= g ∈ G′

s, and we set d = d′/(3ts+1(1 + k′s)). Let a′ and b′ be the solutions to the
equations for a and b over X ′′

s . We first show that a′ < b′.
IfX ′′

s = {x′′0,s, . . . , x
′′
k′s,s}, then by our restrictions on ψ(x) and ψ(ui), we have that |ψ(x′i,s)−

ψ(x′′i,s)| ≤ d for each i. Therefore, since α > 0,

|ψ(a)− ψ(a′)| ≤ |ψ(αa)− ψ(αa′)| ≤ (k′s + 1)t′sd = d′/3.

Similarly, |ψ(b)−ψ(b′)| ≤ d′/3. However, since |ψ(a)−ψ(b)| ≥ d′, we have that ψ(a′) < ψ(b′)
and hence, a′ < b′.

Finally, since Xs+1 coheres with X ′′
s , we know that a′ < b′ implies that a′′ < b′′, as

required.
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Lemma 7.4. For each s ∈ N, each a, b, c ∈ Hs and each t ≥ s, we have

fs(a) + fs(b) = fs(c) ⇒ ft(a) + ft(b) = ft(c)

and fs(a) ≤ fs(b) ⇒ ft(a) ≤ ft(b).

Proof. First, we check that addition is preserved. If a and b are assigned the dependence
relations αy = c0x0 + · · · + ckxk and βy = d0x0 + · · · + dkxk, respectively, then by the
definition of an approximate basis, c is assigned the reduced version of

αβ(g + h) = (βc0 + αd0)x0 + · · ·+ (βck + αdk)xk.

At every stage t after the assignment of these dependence relations, ft(a), ft(b), and ft(c) are
defined to be the solutions of these relations relative to Xt. Therefore, ft(a) +G ft(b) = ft(c).

Second, we check that the ordering is preserved. Assume that a, b ∈ Gs are such that
fs(a) <G fs(b). We show by induction on t ≥ s that ft(a) <G ft(b). Since X ′

t+1 coheres with
Xt, we know that if a′, b′ ∈ G are the solutions to the dependence relations assigned to a and
b, respectively, relative to the basis X ′

t+1, then a′ <G b′. If we do not diagonalize at stage
t+ 1, then Xt+1 = X ′

t+1, so we are done. If we do diagonalize, then we apply Lemma 7.3.

Lemma 7.5. Each approximate basis element xs
i reaches a limit, and the set of these limits

forms a basis for G. Furthermore, each witness as
e and bse reaches a limit and each requirement

Re is eventually satisfied.

Proof. It is clear that if the elements xs
i reach limits, then they will form a basis for G.

Therefore, since each xs
i is eventually chosen to be an as

e or a bse, it suffices to show by induction
on e that as

e and bse reach limits and that each Re requirement is eventually satisfied. Since
as

0 = xs
0 is always defined to be the first nonidentity element in G, this element never changes,

and hence reaches a limit a0.
Consider bs0 = xs

1. Let y be the N least element of G such that {a0, z} is independent.
Since our algorithm for choosing a coherent basis always chooses the N least elements it can,
we eventually find a stage when we recognize that {as

0, b
s
0} is dependent and we pick y1 to

be z in Phase 2 of the coherent basis algorithm. From this stage on, whenever we run this
algorithm, we choose y1 to be z, so eventually by Proposition 5.6 we will find an appropriate
linear combination of bs0 and z and set bs+1

0 to be this linear combination. Since bs+1
0 is now

independent from a0, it will not change again unless R0 diagonalizes.
Once bs0 has reached a limit, R0 is guaranteed to win if it ever chooses to diagonalize.

This is because once {as
0, b

s
0} is independent, the search procedure in Step 3 cannot end in

Condition 4. If R0 never wants to diagonalize, then R0 is satisfied for trivial reasons. If R0

does diagonalize, then bs0 changes one last time, but it remains independent of a0 and hence
will never change again.

We can now consider the case for e + 1. Assume we have passed a stage such that
as

0, b
s
0, . . . , a

s
e, b

s
e have all reached their limits and no requirement Ri, with i ≤ e, ever

wants to act again. As above, let z1 and z2 be the N least elements of G such that
{as

0, b
s
0, . . . , a

s
e, b

s
e, z1, z2} is independent. It is possible that the action of diagonalization for

a higher priority requirement will have made as
e+1 and bse+1 independent from the elements
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above. If not, then the algorithm for picking a coherent basis eventually finds that they are
dependent and redefines as

e+1 to be a linear combination with z1 and redefines bse+1 to be a
linear combination with z2. After this point, as

e+1 will never change again, and bse+1 will only
change if Re+1 wants to act. As above, if Re+1 ever wants to act, then it is guaranteed to
win because the search in Step 3 cannot end in Condition 4. Therefore, Re+1 is eventually
satisfied and bse+1 reaches a limit.

Lemma 7.6. For each s and each h ∈ Hs, the sequence ft(h) for t ≥ s reaches a limit.

Proof. Suppose h ∈ Hs and h is assigned the relation αy = c0x0 + · · · + ckxk. For t ≥ s,
ft(h) is the solution to this equation over Xt. Therefore, once each xt

i reaches a limit, so does
ft(h).

This ends the proof of Theorem 1.11. To finish the proof of Theorem 1.3, we need one
more lemma.

Lemma 7.7. H admits a computable basis.

Proof. For i ∈ N, define di to be the element assigned the reduced equation y = xs
i and let f

be the pointwise limit of fs. Then, f(di) = lims x
s
i = xi. Since {xi|i ∈ N} is a basis for G,

{di|i ∈ N} is a basis for H.

8 Proofs of Theorems 1.12 and 1.4

For this section, we fix a computable ordered abelian group G with infinite rank which is not
Archimedean, but has only finitely many Archimedean classes. Assume G has r nontrivial
Archimedean classes and fix positive representatives Γ1, . . . ,Γr for these classes. Since every
nonidentity element g ∈ G satisfies g ≈ Γi for a unique i, we can effectively determine the
Archimedean class of each g.

For each 1 ≤ i ≤ r, let Li be the computable subgroup {g ∈ G|g � Γi}. Also, let Ei be the
least nontrivial Archimedean class of the quotient group G/Li. Since Ei is an Archimedean
ordered group (with the induced order), we can fix maps ψi : Ei → R by Hölder’s Theorem.
Since G has infinite rank, at least one of the Ei groups must have infinite rank. We will say
that Γi represents an infinite rank Archimedean class if Ei has infinite rank. Otherwise,
Γi represents a finite rank Archimedean class.

The key to proving Theorems 1.12 and 1.4 is to find the correct analogues of Propositions
5.4 and 5.6 and Lemma 6.3. Once we have these results, the arguments presented in Sections
6 and 7 can be used with minor changes.

Definition 8.1. A finite subset G0 ⊂ G is closed under Archimedean differences if for
all g, h ∈ G0 such that g ≈ h but g − h 6≈ g, we have g − h ∈ G0.

Lemma 8.2. If G0 ⊂ G is finite, then there is a finite set G′
0 such that G0 ⊂ G′

0 and G′
0 is

closed under Archimedean differences.
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Proof. Start with the largest Archimedean class occurring in G0 and compare all pairs of
elements in this class. For each pair such that g ≈ h and g − h 6≈ g, add g − h to G0.
Considering each Archimedean class in G0 in decreasing order, we close G0 under Archimedean
differences by adding only finitely many elements.

Definition 8.3. X ⊂ G is nonshrinking if for all x0 ≈ · · · ≈ xn ∈ X and coefficients
c0, . . . , cn with at least one ci 6= 0, we have c0x0 + · · · + cnxn ≈ x0. X is t-nonshrinking if
this property holds with the absolute values of the coefficients bounded by t.

Theorem 8.4. There is a nonshrinking basis for G.

Proof. For each 1 ≤ i ≤ r, fix a set Bi of elements bij such that each bij ≈ Γi and the set of
elements bij + Li is a basis for Ei. The fact that the bij elements are independent modulo Li

means that for any coefficients c1, . . . , ck with at least one cj 6= 0, we have

(c1b
i
1 + · · ·+ ckb

i
k) + Li 6= Li

and hence c1b
i
1 + · · ·+ ckb

i
k 6∈ Li. Since each bij ≈ Γi, this implies that c1b

i
1 + · · ·+ ckb

i
k ≈ Γi.

Therefore, Bi is nonshrinking.
It remains to show that B =

⋃
1≤i≤r Bi is a basis for G. First, B is independent since each

Bi is independent and nonshrinking. Second, to see that B spans G, let g ∈ G be such that
g ≈ Γi. For some choice of coefficients α, c1, . . . , ck and elements bi1, . . . , b

i
k, we can write

αg + Li = (c1b
i
1 + · · ·+ ckb

i
k) + Li.

Therefore, c1b
i
1 + · · · + ckb

i
k − αg � Γi. If this element is equal to 0G, then we are done.

Otherwise, we can repeat this process with c1b
i
1 + · · ·+ ckb

i
k−αg. Since there are only finitely

many Archimedean classes, this process must stop and show that some multiple of g is a
linear combination of elements of B.

Definition 8.5. Let G0 ⊂ G be finite. X0 is a approximate nonshrinking basis for G0

with weight t0 if X0 is an approximate basis for G0 with weight t0 and X0 is t0-nonshrinking.

As before, an approximate nonshrinking basis is a sequence, but we abuse notation and
treat it as a set. Furthermore, we think of X0 as broken down into Archimedean classes, and
we treat X0 as a sequence of sequences, 〈X1

0 , . . . , X
r
0〉, where X i

0 is the sequence of elements
x ∈ X0 for which x ≈ Γi.

Definition 8.6. If G0 ⊂ G1 are finite subsets and X0 = {x0
0, . . . , x

0
k0
} is an approx-

imate nonshrinking basis for G0 of weight t0, then the approximate nonshrinking basis
X1 = {x1

0, . . . , x
1
k1
} for G1 of weight t1 coheres with X0 if

1. Conditions 1, 3, and 4 from Definition 6.2 hold, and

2. for each Archimedean class X i
0 inside X0, if X i

0 = {x0
i0
, . . . , x0

il
} and j is such that

{x0
i0
, . . . , x0

ij
} is independent, but {x0

i0
, . . . , x0

ij+1
} is not, then {x0

i0
, . . . , x0

ij
} ⊂ X1.

We can now give the analogues of Propositions 5.4 and 5.6 and of Lemma 6.3.
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Proposition 8.7. Let {b0, b1} ⊂ G be independent and nonshrinking such that b0 ≈ b1 ≈ Γi.
Then, for any d > 0 ∈ R, there are nonzero coefficients c0, c1 such that

|ψi((c0b0 + Li) + (c1b1 + Li))| < d.

Proof. This lemma is a direct consequence of Proposition 5.4.

Proposition 8.8. Let B = {b0, . . . , bm} ⊂ G be independent and nonshrinking such that
bj ≈ Γi for each j, and assume that Γi represents an infinite rank Archimedean class. Let
X = {x0, . . . , xn} ⊂ G be such that xj ≈ Γi for each j, and fix d > 0 ∈ R and p > 0 ∈ N.
There are elements a0, . . . , an ∈ G such that

1. {b0, . . . , bm, x0 + a0, . . . , xn + an} is independent and nonshrinking, and

2. for each j, (p divides aj), (xj + aj ≈ Γi), and |ψi(aj + Li)| < d.

Proof. As in Proposition 5.6, we prove this lemma for x0 and then proceed by induction. If
B ∪{x0} is independent and nonshrinking, then let a0 = 0G. Otherwise, there are coefficients
c0, . . . , cm, α with α > 0 such that c0b0 + · · · + cmbm + αx0 = y � Γi. Solving for αx0 gives
αx0 = y − c0b0 − · · · − cmbm.

Since Γi represents an infinite rank Archimedean class, we can fix a b ≈ Γi such that
{b0 + Li, . . . , bm + Li, b + Li} is independent in G/Li. Clearly, B ∪ {b} is independent, but
by the argument in Theorem 8.4, it is also nonshrinking. Next, we apply Proposition 8.7
to get nonzero coefficients c0, c1 such that |ψi((c0b0 + Li) + (c1b + Li))| < d/p and we let
a0 = pc0b0 + pc1b.

To see that B ∪ {x0 + a0} is independent and nonshrinking, suppose there are coefficients
d0, . . . , dm, β such that d0b0 + · · ·+ dmbm + β(x0 + a0) = z � Γi. Since B is independent and
nonshrinking, we know β 6= 0. Multiplying by α and performing several substitutions, we get

αd0b0 + · · ·+ αdmbm + βαx0 + βαa0 = αz � Γi,

αd0b0 + · · ·+ αdmbm + β(y − c0b0 − · · · − cmbm) + βα(pc0b0 + pc1b) = αz, and

(αd0 − βc0 + βαpc1)b0 + (αd1 + βc1)b1 + · · ·+ (αdm − βcm)bm + βαpc1b = αz − βy � Γi.

Since βαpc1 6= 0, the bottom equation contradicts the fact that B ∪ {b} is independent and
nonshrinking.

Lemma 8.9. Let G0 ⊂ G1 be finite sets and assume that G0 is closed under Archimedean
differences. Let X0 be an approximate nonshrinking basis for G0 with weight t0. There exists
an approximate nonshrinking basis X1 for G1 which coheres with X0.

Proof. If X0 is independent and nonshrinking, then let X1 be any independent nonshrinking
extension of X0 which spans G1. If X0 is either not independent or not nonshrinking, then
we begin by partitioning X0 into Archimedean classes. For simplicity of notation, assume
that there are only two Archimedean classes in X0. The general case follows by a similar
argument, which is sketched after the case of two Archimedean classes. Let X0 = {b1, . . . , bl}∪
{e1, . . . , em}, where bi ≈ Γb and ei ≈ Γe for Archimedean representatives Γb � Γe.
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Second, consider each Archimedean class in X0 and separate out the initial segment which
is independent and nonshrinking. That is,

X0 = {b1, . . . , bi} ∪ {bi+1, . . . , bl} ∪ {e1, . . . , ej} ∪ {ej+1, . . . , em},

where {b0, . . . , bi} is independent and nonshrinking, but {b0, . . . , bi+1} is not (and similarly
for ej). Let d > 0 ∈ R be less than the minimum of all the following conditions:

1. |ψb(x+ Lb)| for x ∈ G0, x ≈ Γb, and

2. |ψb(x+ Lb)− ψb(y + Lb)| for x, y ∈ G0 with x ≈ y ≈ Γb and x+ Lb 6= y + Lb, and

3. |ψe(x+ Le)| for x ∈ G0 with x ≈ Γe, and

4. |ψe(x+ Le)− ψe(y + Le)| for x, y ∈ G0 with x ≈ y ≈ Γe and x+ Le 6= y + Le.

Let d′ = d/(3t0(l +m)).
Apply Proposition 8.8 with B = {b1, . . . , bi}, ψb, d

′, t0!, and X = {bi+1, . . . , bl} to get
{ai+1, . . . , al}. Also, apply Proposition 8.8 with B = {e1, . . . , ej}, ψe, d

′, t0!, and X =
{ej+1, . . . , em} to get {a′j+1, . . . , a

′
m}. Let

Y = {b1, . . . , bi} ∪ {bi+1 + ai+1, . . . , bl + al} ∪ {e1, . . . , ej} ∪ {ej+1 + a′j+1, . . . , em + a′m}.

Since Y is independent and nonshrinking, we can extend it to X1 which is independent,
nonshrinking, spans G1, and for which |X1| ≥ |X0|. Clearly, X1 is an approximate non-
shrinking basis for G1. To see that X1 coheres with X0, notice that X1 is t1-independent and
t1-nonshrinking for arbitrarily large t1. Also, the fact that t0! divides each ak and a′k shows
that every equation over X0 which defines an element of G0 has a solution over X1.

To check the last condition, suppose g < h ∈ G0 satisfy the reduced equations

αy = c1b1 + · · ·+ clbl + cl+1e1 + · · ·+ cl+mem and

βy = d1b1 + · · ·+ dlbl + dl+1e1 + · · ·+ dl+mem,

respectively. Let g′, h′ ∈ G be the solutions to these equations over X1, that is, with (bi+1 +
ai+1) through (bl + al) in place of bi+1 through b1, and (ej+1 + a′j+1) through (em + a′m) in
place of ej+1 through em.

We need to show that g′ < h′. There are several cases to consider. First, suppose g ≈ Γb

and h ≈ Γe. g < h implies that h > 0G, and g ≈ Γb implies that the coefficients cl+1, . . . , cl+m

are all 0. Therefore, g′ ≈ Γb, and similarly, h′ ≈ Γe. We claim that h > 0G implies that
h′ > 0G. To see this fact, notice

βh− βh′ = di+1ai+1 + · · ·+ dlal + dl+j+1a
′
j+1 + · · ·+ dl+ma

′
m.

Therefore, |ψe((βh−βh′)+Le)| ≤ (l+m)t0d
′ ≤ d/3. Since |ψe(h+Le)| > d and |ψe((h−h′)+

Le)| ≤ |ψe((βh − βh′) + Le)|, we have that ψe(h
′ + Le) > 0. The definition of the quotient

order and the fact that ψe is an embedding imply that h′ > 0G. Putting these facts together,
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we have that g′ ≈ Γb � Γe ≈ h′ and h′ > 0G, and therefore g′ < h′. A similar analysis applies
when g ≈ Γe and h ≈ Γb.

It remains to consider the case when g ≈ h. Assume g ≈ h ≈ Γe and consider the
case when g − h ≈ Γe. In this case, g + Le 6= h + Le, so g + Le < h + Le, and hence
ψe(g + Le) < ψe(h + Le). By calculations similar to those above and those in Lemma 6.3
involving our choice of d′, we have that ψe(g

′+Le) < ψe(h
′+Le). Therefore g′+Le < h′+Le,

which implies g′ < h′.
If g ≈ h ≈ Γe, but h− g � Γe, then since G0 is closed under Archimedean differences, we

know that h − g ∈ G0 and since g < h, we have 0G < h − g. Again, by our choice of d, this
means that 0G < h′ − g′, and so g′ < h′.

Finally, if g ≈ h ≈ Γb, then since G0 is closed under Archimedean differences and Γb

represents the smallest Archimedean class in G0, we know g − h ≈ Γb. The analysis for the
case when g ≈ h ≈ Γe applies in this case as well.

We now sketch the general case. Suppose there are k Archimedean classes in X0. We
partition X0 into Archimedean classes, X0 = {b11, . . . , b1n1

} ∪ · · · ∪ {bk1, . . . , bknk
} corresponding

to the representatives Γb1 , . . . ,Γbk
. Next, for each j ≤ k, we separate out the initial segment

of {bj1, . . . , bjnj
} which is independent and nonshrinking, {bj1, . . . , bjmj

} ∪ {bjmj+1, . . . , b
j
nj
}. We

fix d > 0 ∈ R, as above, which is less that the minimum for all j ≤ k of

1. |ψbj
(x+ Lbj

)| for x ∈ G0, x ≈ Γbj
, and

2. |ψbj
(x+Lbj

)− ψbj
(y +Lbj

)| for each x, y ∈ G0 with x ≈ y ≈ Γbj
and x+Lbj

6= y +Lbj
.

Let d′ = d/3t0(n1+· · ·+nk). For each j ≤ k, we apply Proposition 8.8 to get {aj
mj+1, . . . , a

j
nj
}.

Let Y = ∪j≤k{bj1, . . . , bjmj
, bjmj+1+a

j
mj+1, . . . , b

j
nj

+aj
nj
}. Since Y is independent and nonshrink-

ing, we can extend it to X1 which is independent, nonshrinking, and spans G1. As above,
our definition of d′ implies that if h ∈ G0 is positive and satisfies a reduced equation over X0,
then the solution h′ to the same equation over X1 is also positive. The proof that X1 coheres
with X0 now breaks into cases exactly as above.

Now that we have the appropriate replacements for Propositions 5.4 and 5.6 and Lemma
6.3, we sketch the remainder of the argument. There is a search procedure to make Lemma
8.9 effective just as in Section 6, except when we search for dependence relations, we also
search for sums which shrink in terms of the Archimedean classes.

For our given group G, we build H and a ∆0
2 isomorphism f : H → G in stages as before.

We again meet the requirements

Re : ϕe : H → G is not an isomorphism

by diagonalization. The first change in the construction is to use approximate nonshrink-
ing bases instead of just approximate bases. These insure that our basis at the end of the
construction is nonshrinking.

The second change is to fix the part of the basis for the finite rank Archimedean classes
at stage 0. For each Γi which represents a finite rank Archimedean class, let ni = rank(Ei),
where Ei is the subgroup of G/Li consisting of the least nontrivial Archimedean class. Pick
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a set Bi which is independent, nonshrinking, has size ni, and such that for all x ∈ Bi, x ≈ Γi.
Place these elements in the approximate nonshrinking basis at stage 0. Since these elements
are in fact independent and nonshrinking, they will remain in all approximate nonshrinking
bases chosen later in the construction.

The third change is to fix the least i such that Γi represents an infinite rank Archimedean
class. We perform the diagonalization to meet Re using approximate basis elements which
are ≈ Γi. Just as Proposition 5.4 is used in Lemma 7.1 to perform the diagonalization,
Proposition 8.7 is used here.

With these changes, the proofs for Theorems 1.12 and 1.4 proceed just as those for The-
orems 1.11 and 1.3.
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