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Abstract. In the vertex pursuit game of cops and robbers on finite graphs,

the cop has a winning strategy if and only if the graph admits a dominating
order. Such graphs are called constructible in the graph theory literature. This

equivalence breaks down for infinite graphs and variants of the game have been

proposed to reestablish partial connections between constructibility and being
cop win. We answer an open question of Lehner about one of these variants

by giving examples of weak cop win graphs which are not constructible. We

show that the index set of computable constructible graphs is Π1
1 hard and

the index set of computable constructible locally finite graphs is Π0
4 hard.

Finally, we give an example of a computable constructible graph for which
every dominating order computes 0′′.

1. Introduction

The game of cops and robbers is played on a fixed graph G by two players. To
start, Player C (traditionally a cop, but perhaps a cat instead) chooses an initial
vertex to occupy, then Player R (a robber, or perhaps a rat) chooses an initial
vertex. In subsequent rounds, Player C moves to a vertex adjacent to her current
position, followed by Player R moving to a vertex adjacent to his current position.
If the players are ever on the same vertex, then the game ends and Player C wins.
Otherwise, if the game continues through ω many rounds, Player R wins. This
game is open, so for any fixed graph, one of the players has a winning strategy. We
say G is C-win if Player C has a winning strategy, and G is R-win otherwise.

There are many variations on this game, but the standard version uses reflexive
graphs (which allow each player to remain on their current vertex during their
turn) and assumes the graph G is connected (otherwise Player R can win trivially
by starting in a separate component from Player C). Throughout, we will assume
our graphs are reflexive, connected and countable.

Nowakowski and Winkler [6], and independently Quilliot [7], characterized the
C-win finite graphs using the following observation. Imagine the position of the
players at the start of a round in which Player C wins. Player R cannot avoid
capture, so every vertex adjacent to his current position must also be adjacent
to Player C’s position. That is, Player R’s position is dominated by Player C’s
position. (A vertex y dominates x if y ̸= x and each vertex adjacent to x is also
adjacent to y.)

They proved that a finite graph G is C-win if and only if G can be constructed
in such a way that when each vertex is added to the graph, it is dominated by
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a previously added vertex. More formally, G is C-win if and only if there is an
enumeration of the vertices v0, . . . , vk such that for each i > 0, vi is dominated in
the induced subgraph on {v0, . . . , vi}. An order of the vertices with this property
is called a dominating order (or sometimes a construction order) and a finite graph
G is constructible if it admits such an order.

The notion of a dominating order extends naturally to infinite graphs using well
orders. A dominating order of G is a well order of the vertices, often written as vα,
such that for each α > 0, vα is dominated in the induced subgraph on {vβ | β ≤ α}.
Unfortunately, the equivalence between being C-win and being constructible breaks
down for infinite graphs. The infinite chain graph

v0 v1 v2 v3

is constructible and v0 ≺ v1 ≺ v2 ≺ · · · is a dominating order, but clearly Player
R can win by “running down the chain” ahead of Player C. (We omit drawing the
reflexive edges in this and future graphs.)

On many infinite graphs, Player R can win by simply “running away” from
Player C (e.g. on any locally finite infinite graph, see Stahl [10]). To compensate
for this deficiency, Lehner [5] (building on work of Chastand, Laviolette and Polat
[3]) introduced the notion of a weak C-win graph. Player C gets a weak win either if
she captures Player R in finitely many rounds or if the game continues for infinitely
many rounds but Player R only visits each vertex finitely often. Equivalently, Player
C fails to get a weak win only if Player R avoids capture forever and visits some
vertex infinitely often. G is weak C-win if Player C has a strategy to weak win on
G. By Borel determinacy, for any fixed graph, one of the two players has a winning
strategy under the weak win criterion.

For finite G, being C-win and being weak C-win are equivalent, and so a finite
graph is weak C-win if and only if it is constructible. Lehner [5] proved that if
an infinite graph is constructible, then it is weak C-win. He asked whether the
converse holds.

We answer Lehner’s question in Section 2 by giving an effective method to trans-
form trees T ⊆ ω<ω into graphs GT such that GT admits a dominating order if
and only if T is well founded. We prove that GT is always weak C-win, and there-
fore, for any non-well founded tree T , GT provides a negative answer to Lehner’s
question.

This transformation also gives information about the possible ranks of con-
structible graphs. The rank (or construction time) of a constructible graph G
is the least order type of a dominating order for G. Using the transformation
TG, we show in Section 2 that the ranks of constructible graphs are unbounded in
the countable ordinals. By way of contrast, Lehner [5] showed that the rank of a
constructible locally finite graph is at most ω.

Ivan, Leader and Walters [4] recently extended these two results. They give
a clever construction of a graph G that is C-win (not just weak C-win) but not
constructible. They build G using a finite graph closely related to one of our
coding graphs in Section 3. By carefully gluing together copies of this graph, they
create an infinite graph in which Player C can “get ahead of” Player R on an infinite
path, but which does not allow Player R to use the same shortcut to escape as he
is chased towards a root node and eventually captured in finite time. They also
show how to combine copies of this finite graph in an inductive manner to realize
each countable ordinal as the rank of a graph.
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Our transformation from trees to graphs gives a lower bound for the complexity
of the index set of constructible computable graphs (which is Σ1

2 by its definition).
Because the transformation is effective and being well founded is Π1

1-complete, it
follows that this index set is Π1

1-hard. In Section 2, we use the fact that the rank of
a locally finite graph is bounded by ω to show the index set for constructible locally
finite computable graphs is Σ1

1. While we do not know the precise complexity of
these two index sets in the arithmetic or analytic hierarchy, these results show their
complexities are not the same.

Our original motivation for this project was to understand the complexity of
dominating orders on constructible computable graphs. We turn to this question in
Section 3, where we describe a framework for building such graphs that is suitable
for coding a single jump. Using this framework, we build a locally finite con-
structible computable graph G such that every dominating order on G computes 0′

and we investigate some subtleties in giving an effective version of Lehner’s result
that the rank of a locally finite graph is bounded by ω.

In Section 4, we give a second framework, this time designed to code two jumps.
We use this method to build a locally finite constructible computable graph G for
which every dominating order computes 0′′, and to prove that the index set of
locally finite constructible computable graphs is Π0

4-hard. Although these results
seem to exhaust our particular construction method, we do not see any reason to
suppose they are optimal.

We end this section with a summary of notation, conventions and formal defini-
tions. A graph consists of a vertex set V and a symmetric reflexive edge relation
E ⊆ V × V . We assume our graphs are connected, countable and V ⊆ N. We say
x, y ∈ V are neighbors if E(x, y) and we define NG[x] = {v ∈ G | E(x, v)}. The
vertex y dominates x if x ̸= y and NG[x] ⊆ NG[y]. Because our graphs are reflexive,
if y dominates x, then x and y are connected by an edge. A graph is locally finite
if NG[x] is finite for all x.

For an order ≺ of V and x ∈ V , let V⪯x = {v ∈ G | v ⪯ x}, let G⪯x be the
induced subgraph on V⪯x, and let N⪯x[v] be the neighbor set of v in G⪯x. A
dominating order of G is a well order ≺ of V such that for all x ∈ V , if x is not
the ≺-least element of V , then x is dominated in G⪯x. G is called constructible
if it admits a dominating order. The rank of a constructible graph G is the least
ordinal α such that G has a dominating order of type α.

A tree T ⊆ ω<ω is a set of finite strings which is closed under initial segments.
For finite strings σ, τ ∈ ω<ω, we write σ ⊑ τ to denote that σ is an initial segment
of τ , we let |σ| denote the length of σ and we use λ for the empty string. We say τ
is an immediate successor of σ if σ ⊑ τ and |τ | = |σ|+ 1. A node σ ∈ T is a leaf if
it has no immediate successors. A tree T is well founded if it does not contain an
infinite path.

For an excellent introduction to the game of cops of robbers, see Bonato and
Nowakowski [2]. Our notation and terminology in computability theory follows
Ash and Knight [1], Sacks [8] and Soare [9].

2. Trees and graphs

The main result of this section is a transformation from tree to graphs. Whenever
we describe the edge relation for a graph, we implicitly assume we take the reflexive
and symmetric closure of the described relation.
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A reader who is primarily interested in a graph theoretic counter-example to
Lehner’s question can ignore the computability theory. The fact that the transfor-
mation in Theorem 2.1 is uniformly computable is irrelevant to the counter-example.

Theorem 2.1. There is a computable functional that uniformly transforms trees
T ⊆ ω<ω into graphs GT such that GT is constructible if and only if T is well
founded.

Proof. We start by describing a finite graph H that will be our main building
block. H has vertices VH = {xi | i ≤ 6} ∪ {yi | i ≤ 6} and edge relation defined by
EH(x0, yi) for i ≤ 6, EH(xi, yj) for 1 ≤ i ≤ 6 and j even, and both E(xi, xi+1) and
E(yi, yi+1) for i ≤ 5. Note that x0 is connected to each yj vertex

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

while for 1 ≤ i ≤ 6, xi is only connected to the even index yj vertices.

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

Fix a tree T ⊆ ω<ω. To orient with the pictures of H above, we view T growing
downward, so the successors of a node σ are positioned below σ. To form GT , we
replace each node σ ∈ T with vertices vσi for i ≤ 6 and edges E(vσi , v

σ
i+1). When τ

is an immediate successor of σ in T , we connect the nodes vσi and vτj as the nodes
xi and yj are connected in H.

More formally, the vertices of GT are VT = {vσi | i ≤ 6 and σ ∈ T}. For each
σ ∈ T , we add edges ET (v

σ
i , v

σ
i+1) for σ ∈ T and i ≤ 5. When τ is an immediate

successor of σ, we add edges ET (v
σ
0 , v

τ
i ) for i ≤ 6, and ET (v

σ
i , v

τ
j ) for 1 ≤ i ≤ 6 and

j even. This completes the description of GT .
It is clear that GT is uniformly computable from T . We prove that GT is

constructible if and only if T is well founded in the following series of lemmas. To
simplify the notation, we fix T and drop the subscript T from GT .

Lemma 2.2. For any dominating order ≺ on G, any immediate successor pair
σ ⊑ τ in T , and any k ≤ 3, there can be at most three nodes of the form vσi such
that vσi ≺ vτ2k.

Proof. Suppose four nodes vσj0 , v
σ
j1
, vσj2 and vσj3 satisfy vσjℓ ≺ vτ2k. Consider which

node dominates vτ2k in G⪯vτ
2k
. We have {vσj0 , v

σ
j1
, vσj2 , v

σ
j3
, vτ2k} ⊆ N⪯vτ

2k
[vτ2k]. By the

construction of G, the only nodes which connect to four vσi nodes are of the form:

(1) vτ2u, or
(2) vρw for the unique ρ such that ρ ⊑ σ is an immediate successor pair in T , or
(3) vµ2u for any µ ̸= τ such that σ ⊑ µ is an immediate successor pair in T .

For (1), vτ2u cannot dominate vτ2k in G⪯vτ
2k

because vτ2u is connected to vτ2k if and
only if u = k. For (2), vρw is not connected to vτ2k because ρ ⊏ σ ⊏ τ and hence τ is
not an immediate successor of ρ in T . For (3), vµ2u is not connected to vτ2k because
|µ| = |τ | and µ ̸= τ . Therefore, none of these nodes can dominate vτ2k in G⪯vτ

2k
,

contradicting the fact that ≺ is a dominating order. □
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For a dominating order ≺ on G and a node σ ∈ T , let mσ
≺ denote the ≺-greatest

vertex in {vσ2ℓ | ℓ ≤ 3}. That is, mσ
≺ is the greatest even index vertex in G with

superscript σ.

Lemma 2.3. For any dominating order ≺ on G and any immediate successor pair
σ ⊑ τ , vτ2k ≺ mσ

≺ for all k ≤ 3. In particular, mτ
≺ ≺ mσ

≺.

Proof. Fix a dominating order ≺ on G and a successor pair σ ⊑ τ . Suppose there
is a node vτ2k such that mσ

≺ ≺ vτ2k. Since vσ2ℓ ⪯ mσ
≺ ≺ vτ2k for all ℓ ≤ 3, there are

four nodes of the form vσi such that vσi ≺ vτ2k, contradicting Lemma 2.2. □

Lemma 2.4. If T has an infinite path, then G does not have a dominating order.

Proof. Let f be an infinite path in T . Assume for a contradiction that G has a
dominating order ≺. Let σn = f ↾ n. For each n, σn ⊑ σn+1 is an immediate
successor pair, so by Lemma 2.3, m

σn+1

≺ ≺ mσn
≺ . Therefore, ≺ contains an infinite

descending chain, contradicting the fact that ≺ is a well order. □

It remains to show that if T is well-founded, then G has a dominating order. We
construct the dominating order using two decompositions of T . The first decom-
position is by levels, where the level of σ ∈ T is the finite ordinal |σ|. For n ∈ ω,
let Ln = {σ ∈ T | |σ| = n}. For σ, τ ∈ Ln, σ <Ln

τ (σ is left of τ) if σ ̸= τ and
σ(i) < τ(i) for the least i < n such that σ(i) ̸= τ(i). For each n, (Ln, <Ln

) is a
well order. We combine these orders on Ln to get a well order <∗

L on T defined by

σ <∗
L τ if and only if |σ| < |τ | or

(
|σ| = |τ | and σ <L|σ| τ

)
.

The second decomposition of T uses the standard notion of ordinal rank on a
well-founded tree. For a leaf σ ∈ T , rankT (σ) = 0. For a non-leaf node σ ∈ T ,

rankT (σ) = sup{rankT (τ) + 1 | τ is an immediate successor of σ}.
Because T is well-founded, every node in T is assigned an ordinal rank by transfinite
recursion and the largest rank is assigned to the root node λ. Let Rα = {v ∈ T |
rankT (v) = α} be the set of nodes in T of rank α. Each set Rα is countable, so we
can fix well orders <α such that (Rα, <α) has order type ≤ ω for each α ≤ rankT (λ).
We combine these orders on Rα to get a well order <∗

r on T defined by

vσi <∗
r vτj if and only if rankT (σ) < rankT (τ) or

(
rankT (σ) = rankT (τ) = α and σ <α τ

)
.

Lemma 2.5. If T does not have an infinite path, then G has a dominating order.

Proof. Fix T with no infinite path. We define a dominating order ≺ on G. The
nodes vσ0 , σ ∈ T , form an initial segment of the dominating order with vσ0 ≺ vτ0 if
and only if σ <∗

L τ . We verify that ≺ has the dominating property on this initial
segment. The least element under ≺ is vλ0 since λ is the only node with length 0.
For τ ̸= λ, let σ be such that σ ⊑ τ is an immediate successor pair. Since |σ| < |τ |,
we have σ <∗

L τ and hence vσ0 ≺ vτ0 . Moreover, vσ0 dominates vτ0 in G⪯vτ
0
because

the only vertices connected to vτ0 in G⪯vτ
0
are vτ0 and vσ0 .

We order the remaining elements of G as follows. To make {vσ0 | σ ∈ T} an
initial segment, set vτ0 ≺ vσi for all τ, σ ∈ T and i ≥ 1. For τ, σ ∈ T and i, j ≥ 1, set

vσi ≺ vτj if and only if
(
σ = τ and i < j

)
or

(
σ ̸= τ and σ <∗

r τ
)
.

If the order type of (T,<∗
r) is β, then the type of ({vσi | σ ∈ T and 1 ≤ i ≤ 6},≺) is

6 ·β because each node σ splits into a discrete interval vσ1 ≺ . . . ≺ vσ6 . In particular,
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≺ well orders {vσi | σ ∈ T and 1 ≤ i ≤ 6}. Since ≺ also well orders the initial
segment {vσ0 | σ ∈ T}, it follows that ≺ well orders G.

To finish the proof, note that each vertex vσi with i ≥ 1 is dominated in G⪯vσ
i
by

vσi−1 because the neighbors of vσi in G⪯vσ
i
are (1) vσi−1, (2) v

τ
2k for each immediate

successor τ of σ and each k ≤ 3, and (3) vµ0 when σ ̸= λ and σ is an immediate
successor of µ. Each of these nodes is connected to vσi−1. □

This completes the proof of Theorem 2.1. □

The key property of the graphs GT is that they are all weak C-win.

Theorem 2.6. For every tree T ⊆ ω<ω, GT is weak C-win.

Proof. Player C starts at the vertex vλ0 and has two basic strategies. Her initial
strategy is to use nodes of the form vσ0 to try to chase Player R down an infinite
path in T , and so weak win because Player R never visits a node infinitely often.

More specifically, suppose it is Player C’s turn, Player C is at vσ0 and Player
R is at vτj with σ ⊑ τ and |σ| < |τ |. If τ is an immediate successor of σ, then
there is an edge from vσ0 to vτj and so Player C can win immediately. Otherwise, if

|σ|+ 1 < |τ |, then let m = τ(|σ|). Player C moves from vσ0 to vσ
⌢m

0 .
Player R has two options to react to this strategy. He can move down the tree,

occupying vertices of the form vτj for strings τ with (occasionly) increasing length,
so that he keeps at least two tree levels between his position and Player C’s position.
However, if he does this forever, then he will occupy each vertex only finitely often,
allowing Player C to weak win.

On the other hand, he could allow Player C’s level in the tree to “catch up” to
his until on his turn, he is at a vertex vτj and Player C is at a vertex vσ0 with τ
an immediate successor of σ. Player R can now move to a vertex vσk , occupying a
vertex associated to the same node of T as Player C’s position. Of course, he will
pick k ≥ 1 to avoid losing immediately.

At this point, Player C switches to her back-up strategy which is guaranteed to
catch Player R in finitely many more rounds. Specifically, Player C moves to vσ1 .
Player R has four options for his move.

(1) He moves to vσk−1 or vσk+1, or stays put on vσk . In this case, Player C moves
to vσ2 . If Player R continues to take this option, Player C chases him down
the finite chain of elements associated to σ and wins in a finite round.

(2) He moves to vρ2ℓ for some immediate successor ρ of σ on T . However, vσ1 is
also connected to vρ2ℓ, so in this case, he loses immediately. (In fact, every
vertex vσi is connected to vρ2ℓ, so no matter where Player C is in the row
corresponding to σ, she can win immediately.)

(3) He moves to vµ0 where µ is the immediate predecessor of σ in T . As in (2),
vσ1 (and in fact, every vertex vσi ) is connected to vµ0 , so he loses immediately.

(4) If k is even, then he can move to vµk′ for 1 ≤ k′ ≤ 6, where µ is the immediate
predecessor of σ. The vertex vσ1 (or vσi for any odd i) is not connected to
vµk′ , so Player C cannot necessarily win immediately. However, she can
move to vµ0 , so the players are again occupying vertices associated to the
same node of T with Player C at the 0 indexed node. The key point is that
the length of the corresponding node on T has decreased.

Repeating this analysis, Player R has no choice but to move slowly up the tree
towards the root, perhaps taking a few turns at each level to move along the row
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of vertices corresponding to a particular node in the tree. When Player R reaches
a vertex of the form vλk corresponding to the root, option (4) is no longer available
and he loses in finitely many more rounds. □

Corollary 2.7. For any tree T ⊆ ω<ω that is not well-founded, the graph GT is
weak C-win but not constructible.

Corollary 2.8. There is a locally finite graph G that is weak C-win but not con-
structible.

Proof. Let T be an infinite finitely branching tree. For example, take a single
infinite path T = {0n | n ∈ ω}. GT is weak C-win by Theorem 2.6, is locally finite
because T is finitely branching, and is not constructible by Theorem 2.1. □

In addition to giving examples of weak C-win graphs that are not constructible,
Theorem 2.1 gives information about the index set of computable constructible
graphs. This index set is (at worst) Σ1

2 since G is constructible if and only if there
is a binary relation ≺ on G such that ≺ is a well order that satisfies the domination
condition. The domination condition is arithmetical, but to say ≺ is a well order is
Π1

1, and hence the definition is Σ1
2. Since the index set of well founded computable

trees is Π1
1-complete and the functional in Theorem 2.1 is computable, we get the

following corollary.

Corollary 2.9. The index set of computable constructible graphs is Π1
1-hard.

Using the following proposition, we can contrast this situation with the index
set of computable locally finite graphs that are constructible.

Proposition 2.10 (Lehner [5]). A countable locally finite graph is constructible if
and only if admits a dominating order of type ≤ ω.

Proposition 2.11. The index set of computable locally finite constructible graphs
is Σ1

1.

Proof. By Proposition 2.10, a locally finite graph is constructible if and only there
is a linear order on G in which every vertex has finitely many predecessors and
which satisfies the domination condition. Saying that a linear order has the finite
predecessor property is arithmetical, so the entire statement is Σ1

1. □

We return to the question of proving a lower bound on the complexity of this
index set in Section 4. The next theorem shows there is no analog of Proposition
2.10 for general countable constructible graphs. The rank of a constructible graph
G is the least ordinal α such that G has a dominating order of type α.

Theorem 2.12. Let T ⊆ ω<ω be a well-founded tree. The rank of GT as a con-
structible graph is greater than or equal to rankT (λ).

Proof. Fix T . Let α = rankT (λ) and let ≺ be a dominating order on G. We show
the order type of (GT ,≺) is at least α. Below, we drop the subscript T .

Recall that for σ ∈ T , mσ is the ≺-greatest element of {vσ2k | k ≤ 3}. Let βσ be
the order type of (G⪯mσ ,≺). We claim that for every σ ∈ T , rankT (σ) ≤ βσ. The
theorem follows from this claim because α = rankT (λ) ≤ βλ ≤ order-type(G,≺).

We prove the claim by induction on rankT (σ). When rankT (σ) = 0, we have
0 ≤ βσ trivially. Suppose rankT (σ) > 0. If τ is an immediate successor of σ, then
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rankT (τ) < rankT (σ), and so by the induction hypothesis, rankT (τ) ≤ βτ . By
Lemma 2.3, mτ ≺ mσ and hence G⪯mτ ⊊ G⪯mσ and so βτ < βσ. Therefore,

rankT (σ) = sup { rankT (τ) + 1 | τ is immediate successor of σ}
≤ sup {βτ + 1 | τ is immediate successor of σ}
≤ βσ.

□

Corollary 2.13. The ranks of countable constructible graphs are cofinal in ω1.

3. Comb graphs and coding one jump

In this section, we develop a general framework to code information into domi-
nating orders. The following useful fact is straightforward to verify.

Lemma 3.1. Let ≺ be a dominating order on G. For every v ∈ G, the induced
subgraph G⪯v is connected.

Definition 3.2. Let Gi = (Vi, Ei), i ∈ ω, be a sequence of disjoint connected
graphs, each with a designated node ai. The comb graph G = (V,E) with spine xi,
connectors ai and teeth graphs Gi is the graph defined by

V =
⋃
i∈ω

(Vi ∪ {xi}) and E =
⋃
i∈ω

(Ei ∪ {⟨xi, xi+1⟩, ⟨xi, ai⟩}).

A comb graph looks like

G2 a2 x2

G1 a1 x1

G0 a0 x0

where the notation Gi ai xi indicates that Gi is attached to G by con-

necting xi to ai, but making no other connections between xi and nodes in Gi.
Note that if the sequence of graphs Gi with distinguished elements ai is uniformly
computable, then the corresponding comb graph has a computable presentation.

Lemma 3.3. Let G be a comb graph with teeth graphs Gi, let ≺ be a dominating
order on G, and let ≺i be the restriction of ≺ to Gi. For all i, ≺i is a dominating
order on Gi, and for all i except possibly one, ≺i has least element ai.

Proof. Let ≺ be a dominating order of G with ≺-least element v0. Let i0 be such
that either v0 = xi0 or v0 ∈ Gi0 .

Three observations follow from Lemma 3.1. First, xi0 is the ≺-least element of
the form xj . Second, if xi0 ≺ ai0 , then xi0 is the ≺-least element of G and ai0 is
the ≺-least element of Gi0 . Third, if i ̸= i0, then xi ≺ ai and ai is the ≺-least
element of Gi. By the third observation, ai is the ≺i-least element of Gi for all i
except possibly i0.
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The fact that ≺i is a dominating order on Gi follows from the observations above
plus the facts that NG[ai] = NGi [ai] ∪ {xi} and that NGi [v] = NG[v] for all v ∈ Gi

with v ̸= ai. □

Lemma 3.4. Let G be a comb graph with teeth graphs Gi. For any sequence of
dominating orders ≺i on the graphs Gi with least element ai, there is a dominating
order ≺ of G such that for every i, the restriction of ≺ to Gi is ≺i.

Proof. Define an order ≺ on G by setting u ≺ v if and only if (i) u ∈ Gi ∪ {xi},
v ∈ Gj ∪ {xj} and i < j, (ii) u = xi and v ∈ Gi, or (iii) u, v ∈ Gi and u ≺i v. The
order ≺ can be visualized as

x0 ≺ (G0,≺0) ≺ x1 ≺ (G1,≺1) ≺ · · · ≺ xi ≺ (Gi,≺i) ≺ xi+1 ≺ · · ·
where xi ≺ (Gi,≺i) ≺ xi+1 denotes that xi comes before all the elements of Gi,
that all the elements of Gi come before xi+1, and that the elements of Gi are
ordered among themselves by ≺i. It is straightforward to verify that ≺ is the
desired dominating order on G. □

Note that if the graphs Gi in Lemma 3.4 are finite, then the dominating order
given in the proof has order type ω. We end this section with two results using this
framework for constructing graphs. The first application, given in the following
theorem, will be improved in Theorem 4.11.

Theorem 3.5. There is a computable graph G such that G is constructible and
every dominating order computes 0′.

Proof. We build G as a comb graph in which each Gi will have one of two isomor-
phism types. Let Xi have domain {ai, bi, ci, di} and edges EXi

given by

ai bi ci di

and let Yi have domain {ai, bi, ci, di, ei, fi, gi, hi} and edges EYi
given by

ai

ei fi bi

hi gi

di ci

Because Xi is an induced subgraph of Yi, there is a uniformly computable sequence
of graphs Gi such that if i ̸∈ 0′, then Gi

∼= Xi, and if i ∈ 0′, then Gi
∼= Yi.

Therefore, there is a computable comb graph G with teeth graphs Gi.
The only dominating order of Xi starting with ai is ai ≺ bi ≺ ci ≺ di. Therefore,

in every dominating order of Xi starting with ai, we have ci ≺ di.
There are several dominating orders of Yi that start with ai, for example ai ≺

fi ≺ gi ≺ hi ≺ bi ≺ ei ≺ di ≺ ci. However, we claim that di ≺ ci in each such
order. To see why, note that since Yi is finite, the last element in any dominating
order must be dominated in the full graph Yi. Therefore, because only ai and ci
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are dominated in Yi, every dominating order on Yi that starts with ai must end
with ci. In particular, di ≺ ci in such an order.

Each Gi has a dominating order starting with ai, so by Lemma 3.4, G admits a
dominating order. Fix any dominating order ≺ on G and let ≺i be the restriction
to Gi. By Lemma 3.3, ≺i is a dominating order of Gi starting with ai, with the
possible exception of one index i0. Let K≺ = {i ∈ N | di ≺ ci}. For any i ̸= i0,
i ∈ K≺ if and only if i ∈ 0′, and therefore, 0′ is computable from an arbitrary
dominating order of G. □

For the second application of this method, we distinguish two ways that a com-
putable dominating order on a locally finite graph could have order type ω.

Definition 3.6. Let G be a computable locally finite graph and let ≺ be a com-
putable dominating order of G. We say ≺ is a computable dominating order of
type ω if the classical order type of (G,≺) is ω. We say ≺ is a computable dom-
inating order of strong type ω if there is a computable order preserving bijection
f : (ω,≤) → (G,≺).

Theorem 3.7. There is a computable locally finite graph G such that G has a
computable dominating order of type ω but not a computable dominating order of
strong type ω.

Proof. We build our computable graph G with domain ω. For each index e, if φe

is a bijection of ω onto G, then we let ≺e be the binary relation on G defined
by v ≺e w if and only if φ−1

e (v) < φ−1
e (w). To ensure that G does not have a

computable order of strong type ω, it suffices to meet the following requirements.

Re : If φe : ω → G is a bijection, then ≺e is not a dominating order on G

We build G as a comb graph and we use Ge to satisfy the requirement Re.
As in the proof of Theorem 3.5, Ge will have one of two isomorphism types. We

start with Ge equal to the graph Xe from Theorem 3.5. Our construction of Ge

then proceeds in stages.

(1) Wait for a stage s0 such that {ae, be, ce, de} ⊆ range(φe,s0). If there is no
such stage, we stay in (1) forever and Ge = Xe.

(2) Set ne = max{x | φe,s0(x) ∈ {ae, be, ce, de}}. Wait for a stage s1 > s0 such
that φe,s1(x) converges for all x ≤ ne. If there is no such stage (or if we see
φe is not injective), we stay in (2) forever and Ge = Xe.

(3) At stage s1 + 1, we add a vertex ye to Ge to form the following graph Ze.

ae be ce de

ye

We choose ye so that φe(x) ̸= ye for all x ≤ ne. We retain Ge = Ze at all
future stages.

Since Xe is an induced subgraph of Ze and the switch from Ge = Xe to Ge = Ze

is determined by a Σ0
1 event, the sequence of graphs Ge is uniformly computable.

Therefore, there is a computable comb graph G with teeth graphs Ge.
We have already seen that Xe has a dominating order starting with ae. Ze has

several dominating orders starting with ae, for example, ae ≺ be ≺ ye ≺ ce ≺ de.
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However, no dominating order of Ze can end with ye because ye is not dominated
in the full graph Ze.

G has a computable dominating order of type ω constructed as in the proof of
Lemma 3.4. At stage 0, we start with the empty order. At stage s + 1, we attach
xs ≺ as ≺ bs ≺ cs ≺ ds to the end of the order determined at stage s. Next, we
check if any Ge (for e ≤ s) changed from Xe to Ze at stage s. If so, then we add
ye to the order so that be ≺ ye ≺ ce. Although the addition of the element ye is
delayed until we see Ge change to Ze, the order ≺ (in the end) has the form

x0 ≺ G0 ≺ x1 ≺ G1 ≺ · · ·

Therefore, ≺ is a computable dominating order of type ω.
To finish the proof, suppose for a contradiction that there is a computable dom-

inating order ≺ of G of strong type ω. Fix an index e such that φe : ω → G is a
bijection with i < j ⇔ φe(i) ≺ φe(j).

Consider the construction of Ge. Since φe is a bijection, we find stages s0 < s1
and define the parameter ne in Steps (1) and (2). Therefore, Ge is isomorphic to
Ze. Fix m such that φe(m) = ye. By construction, ne < m. It follows that for all
v ∈ {ae, be, ce, de}, v ≺ ye. Therefore, N⪯ye

[ye] = {ae, be, ce, de, ye}. However, no
other node in G contains this set within its neighbors, and so no node can dominate
ye in G⪯ye . This contradicts the fact that ≺ is a dominating order. □

4. Second computability construction

To prove additional computability theoretic results about dominating orders, we
use a family of graphs K(X), parameterized by a set X ⊆ ω. We begin with the
graph formed by applying Theorem 2.1 to a tree which consists of a single infinite
path. The resulting graph consists of ω many rows vℓi , 0 ≤ i ≤ 6, in which vℓi is

connected to vℓi+1. The rows are connected by adding edges from vℓ0 to every vℓ+1
j ,

and from vℓi to vℓ+1
j when i > 0 and j even.

v00 v01 v02 v03 v04 v05 v06

v10 v11 v12 v13 v14 v15 v16

v20 v21 v22 v23 v24 v25 v26

We refer to this graph as K. It will be an induced subgraph of a larger graph K̂.

To form K̂, for each ℓ, we add an auxiliary node cℓ connected to all the elements
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of rows ℓ and ℓ+ 1, and we connect cℓ and cℓ+1 as shown below.

vℓ0 vℓ1 vℓ2 vℓ3 vℓ4 vℓ5 vℓ6

cℓ

vℓ+1
0 vℓ+1

1 vℓ+1
2 vℓ+1

3 vℓ+1
4 vℓ+1

5 vℓ+1
6

cℓ+1

vℓ+2
0 vℓ+2

1 vℓ+2
2 vℓ+2

3 vℓ+2
4 vℓ+2

5 vℓ+2
6

K̂ is the graph consisting of vℓi and cℓ for all ℓ ∈ ω and 0 ≤ i ≤ 6. The nodes vℓi ,
0 ≤ i ≤ 6 form the ℓ-th row of this graph, and the nodes cℓ are called auxiliary

nodes. Because of these auxiliary nodes, K̂ is constructible, although the induced
subgraph K is not constructible (by Theorem 2.1).

Lemma 4.1. K̂ has a dominating order with least element v00.

Proof. The dominating order starts with the initial segment

v00 ≺ c0 ≺ v01 ≺ v02 ≺ v03 ≺ v04 ≺ v05 ≺ v06 .

Each of these elements is dominated by the preceding element in the appropriate
initial subgraph. We continue to construct the dominating order row by row, with
row ℓ and the auxiliary element cℓ ordered as

vℓ0 ≺ cℓ ≺ vℓ1 ≺ vℓ2 ≺ vℓ3 ≺ vℓ4 ≺ vℓ5 ≺ vℓ6.

These elements are dominated by cℓ−1 in the appropriate initial subgraph because
cℓ−1 is connected to each of them and to all the elements in row ℓ− 1, and because
none of the elements in row ℓ+ 1 have entered the dominating order yet. □

Definition 4.2. For X ⊆ ω, K(X) is the induced subgraph of K̂ containing the
nodes vℓi for ℓ ∈ ω and 0 ≤ i ≤ 6 and the auxiliary nodes ck for k ∈ X.

The set X specifies the nodes ck to add to K to form K(X). We will generalize

the fact that K̂ = K(ω) is constructible, while K = K(∅) is not, by showing that
K(X) is constructible if and only if X is cofinite.

Definition 4.3. Let ≺ be a dominating order on K(X). For each row r, let mr
≺

(or mr when ≺ is clear from context) denote the ≺-greatest even indexed node vr2i
in row r. We say row r is ≺-special (or special when ≺ is clear) if mr ≺ mr+1.

If ≺ is a dominating order on K(X), there must be a special row since otherwise
m0 ≻ m1 ≻ m2 ≻ · · · would be an infinite descending sequence. For the next
several lemmas, assume ≺ is a dominating order on K(X).

Lemma 4.4. If r ̸∈ X, then mr+1 ≺ mr. That is, if r is special, then r ∈ X.
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Proof. If r ̸∈ X, then the auxiliary node cr is not in K(X). It follows that mr+1 ≺
mr by the same argument given in Lemmas 2.2 and 2.3. □

Lemma 4.5. For all rows r, mr+1 ≺ max{mr,mr+2}.

Proof. Suppose mr,mr+2 ≺ mr+1. The neighbors of mr+1 in K(X)⪯mr+1 include

all the even indexed nodes in rows r and r + 2. Only vertices of the form vr+1
2j are

connected to all of these nodes, regardless of which auxiliary nodes are in K(X).
However, no node vr+1

2j can dominate mr+1 in K(X)⪯mr+1 . □

Lemma 4.6. If row r is special, then every row ℓ ≥ r is special, and hence ℓ ∈ X
for all ℓ ≥ k.

Proof. If row r is special, then mr ≺ mr+1. It follows from Lemma 4.5 that
mr+1 ≺ mr+2, and hence row r+1 is special. By induction, we get every row ℓ ≥ r
is special, and hence by Lemma 4.4, ℓ ∈ X for all ℓ ≥ r. □

Lemma 4.7. K(X) is constructible if and only if X is cofinite. Furthermore, if X
is cofinite, then K(X) admits a dominating order with least element v00.

Proof. For the forward direction, fix a dominating order on K(X). As observed
above, K(X) has a special row r, and so by Lemma 4.6, ℓ ∈ X for all ℓ ≥ r.

For the other direction, assume X is cofinite. The case when X = ω follows
from Lemma 4.1, so assume X = ω −X is nonempty. Let k be the largest element
X and let y0 < y1 < · · · < yi be the numbers y < k that are in X. The auxiliary
nodes in K(X) are {cy0

, . . . , cyi
} ∪ {cℓ : ℓ > k}. We construct a dominating order

starting with the initial segment

v00 ≺ v10 ≺ · · · ≺ vk+1
0 ≺ cy0 ≺ cy1 ≺ · · · ≺ cyi ≺ ck+1.

This initial segment satisfies the dominating conditions because vℓ+1
0 is dominated

by vℓ0 in K(X)⪯vℓ+1
0

, cyj
is dominated by v

yj

0 in K(X)⪯cyj
, and ck+1 is dominated

by vk+1
0 in K(X)⪯ck+1

.
We next add the remaining elements from rows 0 through k + 1, starting with

row k + 1 and working down to row 0.

vk+1
1 ≺ vk+1

2 ≺ vk+1
3 ≺ vk+1

4 ≺ vk+1
5 ≺ vk+1

6 ≺ vk1 ≺ vk2 ≺ · · ·

The domination property is satisfied because each of these vertices vℓj is dominated

by vℓj−1 in K(X)⪯vℓ
j
. We order the rest of K(X) row by row starting with the

remainder of row k + 1.

vk+1
1 ≺ vk+1

2 ≺ vk+1
3 ≺ vk+1

4 ≺ vk+1
5 ≺ vk+1

6 ≺ ck+2 ≺ vk+2
0 ≺ vk+2

1 ≺ · · ·

The remaining elements of row k+1 and ck+2 are dominated by ck+1 in the appro-
priate subgraph. Following this pattern, the elements of each row ℓ for ℓ > k + 1,
as well as the vertex cℓ+1 are dominated by cℓ in the appropriate subgraph. □

Lemma 4.8. Let Ak, k ∈ ω, be a uniformly c.e. sequence of sets. There is a
computable presentation of the comb graph G with teeth graphs Gk = K(Ak) in
which the designated element ak is the v00 node. Furthermore, G is constructible if
and only if every set Ak is cofinite.
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Proof. We can uniformly construct a computable copy of K(Ak) from an enumer-
ation of Ak by building a computable copy of the graph K and adding auxiliary
nodes cn as n is enumerated into Ak. By Lemma 4.7, if Ak is not cofinite, then
K(Ak) is not constructible, and hence by Lemma 3.3, G is not constructible. If each
Ak is cofinite, then each graph K(Ak) has a dominating order with least element
v00 , and hence G has a dominating order. □

Our first application of these graphs is to show the index set of computable
locally finite constructible graphs is Π0

4-hard.

Theorem 4.9. The index set of computable locally finite constructible graphs is
Π0

4-hard.

Proof. Let R be an arbitrary Π0
4 relation on ω. It suffices to build a uniform

computable sequence of locally finite graphs Gk such that for all k, R(k) holds if
and only if Gk admits a dominating order.

The index set Cof = {e : We is cofinite} is Σ0
3-complete, so we can fix a uniform

c.e. sequence of sets Ak
e for e, k ∈ ω such that for all k

R(k) holds ⇔ ∀e (Ak
e is cofinite).

For each k, let Gk be the comb graph with teeth graphs K(Ak
e) for e ∈ ω. We can

uniformly construct the sequence of computable graphs Gk. By Lemma 4.7, Gk is
constructible if and only if for all e, Ak

e is cofinite. Therefore, R(k) holds if and
only if Gk is constructuble. □

Our second application improves Theorem 3.5. It uses the following lemma,
which is a straightforward exercise to verify.

Lemma 4.10. If a function f : ω → ω satisfies f(e) ≥ maxWe for each finite
c.e. set We, then 0′′ ≤T f .

Theorem 4.11. There is a computable locally finite constructible graph G such
that every dominating order on G computes 0′′.

Proof. It suffices to build G such that for every dominating order computes the
index set Inf = {e : We is infinite}. G will be a comb graph with teeth graphs
K(Ae), where Ae is a uniformly c.e. family of cofinite sets.

We enumerate Ae in stages with Ae,s denoting the set at the end of stage s.
We simultaneously define markers me,s and the finite sets Ae,s by recursion. Set
me,0 = 0 and Ae,0 = ∅. Define

me,s+1 =

{
me,s if We,s+1 = We,s

s+ 1 otherwise

and Ae,s+1 = {0, . . . , s+ 1} − {me,s+1}. That is, if an element enters We at stage
s+ 1, then we enumerate me,s into Ae and reset our marker me,s+1 = s+ 1. If no
element enters We,s+1, then leave our marker fixed and enumerate s+ 1 into Ae.

IfWe is infinite, then lims me,s = ∞ and Ae = ω. IfWe is finite, then lims me,s =
me and Ae = ω − {me} where me is the least stage such that We,me+1 = We. In
this case, by the usual conventions on uses, maxWe ≤ me.

Let G be a computable copy of the comb graph with teeth graphs K(Ae). Fix a
dominating order ≺ on G. For each e, using ≺, we can find a special row in K(Ae)
by searching. Let f(e) = the row number of the first special row we find in K(Ae)
and note that f is computable from ≺. If We is finite, then Ae = ω − {me}, and
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hence by Lemmas 4.4 and 4.6, f(e) > me. Therefore, f(e) > maxWe when We is
finite. It follows by Lemma 4.10 that 0′′ ≤T f and hence ≺ computes 0′′. □

5. Open questions

By Theorems 2.1 and 2.12, the ranks of computable constructible graphs are co-
final in ωCK

1 . Is there a computable constructible graph without a hyperarithmetic
dominating order?

There are large gaps in the index set results. It remains open to close the gap
between Π1

1 and Σ1
2 for the index set of computable constructible graphs, and to

close the gap between Π0
4 and Σ1

1 for the index set of computable locally finite
constructible graphs.

Finally, we see no reason to believe Theorem 4.11 is optimal. For which com-
putable ordinals α is it possible to construct a computable graph G such that every
dominating order computes 0(α)?
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