
Dominating orders, vertex pursuit games and
computability theory

Leigh Evron∗, Reed Solomon∗ and Rachel D. Stahl†

April 13, 2021

1 Introduction

Dominating orders on graphs play a significant role in the study of vertex pursuit games. Here,
a graph consists of a vertex set V and a symmetric reflexive edge relation E ⊆ V×V . Although
the definitions below make sense for a wider class of graphs, we are primarily interested in
connected countable graphs for which V ⊆ N. The restriction to V ⊆ N is convenient for
studying computability theoretic properties. We are interested in connected graphs because
connectedness is a necessary condition for a reflexive graph to have a dominating order.

Let G = (V,E) be a graph. We say x, y ∈ V are neighbors if E(x, y) and we define
NG[x] = {v ∈ G | E(x, v)}. The vertex x dominates y if x 6= y and NG[y] ⊆ NG[x]. Because
our graphs are reflexive, x ∈ NG[x], and so if x dominates y, then x and y are connected by
an edge. Given an ordering ≺ of V and x ∈ V , let V�x = {v ∈ G | v � x}, and let G�x be
the induced subgraph on V�x.

Definition 1.1. A dominating order of G is a well ordering ≺ of V such that for all x ∈ V ,
if x is not the ≺-least element of V , then x is dominated in G�x. G is called constructible if
it admits a dominating order.

Note that this notion of constructibility from the graph theory literature is unrelated to
the notion of constructibility in set theory.

Definition 1.2. Let ≺ be a dominating order on G with least element v. A function δ : V →
V is called a dominating map if for every x 6= v, δ(x) ≺ x and δ(x) dominates x in G�x.

Example 1.3. Let G be the graph illustrated by

v0 v1 v2 v3

In this (and future) diagrams, we will not draw the reflexive edges. G has a dominating order
v0 ≺ v1 ≺ v2 ≺ · · · . Each vertex vn+1 is dominated by vn in G�vn+1 because NGvn+1

[vn+1] =

∗Department of Mathematics, University of Connecticut
†Department of Mathematics, Bridgewater State University

1

{vn, vn+1} ⊆ NGvn+1
[vn]. However, vn+1 is not dominated by vn in the full graph G because

there is an edge between vn+1 and vn+2, but no edge between vn and vn+2. For this order ≺,
δ(vn+1) = vn is a dominating map. G has other dominating orders, including orders of type
ω + n, for example vn ≺ vn+1 ≺ · · · ≺ vn−1 ≺ vn−2 ≺ · · · ≺ v0.

Example 1.4. Let Kω be the complete graph on V = {vn | n ∈ ω}. Any well ordering
of the vertices of Kω is a dominating order. Therefore, Kω has dominating orders of every
infinite countable order type. Furthermore, if ≺ is a well order of V , then any map δ such
that δ(v) ≺ v is a domination map.

Definition 1.5. For a constructible graph G, the least ordinal α such that G has a dominating
order of type α is the minimal dominating order type of G.

The only result we are aware of that gives nontrivial bounds on the minimal dominating
order type of countable infinite graphs is from Lehner [4]. G is locally finite if NG[x] is finite
for all x ∈ V .

Proposition 1.6 (Lehner [4]). A countable locally finite graph is constructible if and only if
admits a dominating order of type ≤ ω.

Bonato and Nowakowski [2] is an excellent introduction to the game of cops and robbers,
which is probably the most well studied vertex pursuit game on graphs. We abbreviate this
game by C&R and imagine it more benignly as a game of cats and rats. C&R is played in
rounds by two players. In round 0, Player C chooses an initial vertex to occupy, then Player
R chooses an initial vertex. In subsequent rounds, Player C moves to any vertex adjacent to
her current position, followed by Player R moving to a vertex adjacent to his current position.
Because G is reflexive, each player has the option to remain on their current vertex. If the
players are ever on the same vertex, then the game ends and Player C wins. Otherwise, if the
game continues through ω many rounds, Player R wins.

A strategy for Player C consists of a node c0 ∈ V and a function fC : V × V → V such
that for all x, y ∈ V , fC(x, y) ∈ NG[x]. Player C follows the strategy fC if Player C chooses
c0 as her initial position and whenever it is her turn, if she is on vertex x, and if Player R
is on vertex y, then Player C moves to vertex fC(x, y). The strategy fC is winning if Player
C wins the game on G by following fC no matter what moves Player R makes. A strategy
for Player R is defined similarly. Because C&R is an open game, for any graph G, one of the
two players has a winning strategy. G is C-win if Player C has a winning strategy and G
is R-win otherwise (i.e. if Player R has a winning strategy). Stahl [9] has numerous results
about effective strategies for this game.

For finite graphs, the existence of dominating orders and C-win strategies are equivalent.

Theorem 1.7 (Nowakowski and Winkler [5]; Quilliot [6]). A finite graph is C-win if and only
if it is constructible.

This equivalence breaks down for infinite graphs, primarily because it is too easy for the
robber to win by running away. For example, let G be as in Example 1.3. Suppose Player
C chooses vn as her initial position. Player R can choose vn+2 as his initial position, and
in round k, he can move from v(n+2)+k to v(n+2)+(k+1). Player C will never be able to catch
Player R under these conditions. A more general result of this form is proved in Stahl [9].

2

Theorem 1.8 (Stahl [9]). Every infinite locally finite graph is R-win.

Several variations of C&R have been proposed in the literature that reestablish some
relationship between constructibility and C-winning strategies for infinite graphs. These vari-
ations typically weaken the conditions under which Player C wins the game. Chastand,
Laviolette and Polat proposed a version of C&R for infinite graphs in which Player C wins if
she lands on the vertex occupied by Player R, or if after some initial finite number of rounds,
Player R never occupies the same vertex more than once. That is, if Player R is eventually
forced to run away along a straight path, then Player C wins. We say G is CLP-weakly C-win
if Player C has a winning strategy in this variant. For example, the graph in Example 1.3 is
CLP-weakly C-win.

Chastand, Laviolette and Polat [3] proved a connection between CLP-weakly C-win graphs
and the existence of dominating orders, which allowed them to conclude that a large class of
graphs is CLP-weakly C-win. In the statement of their theorem, a function f : V → V is
a self-contraction of G if f preserves edges in the sense that E(x, y) implies E(f(x), f(y)),
which allows the possibility that f(x) = f(y) since G is reflexive.

Theorem 1.9 (Chastand, Laviolette and Polat [3]). Let G be a graph that admits a domi-
nating order ≺ and an associated dominating map δ such that δ is a self-contraction of G.
Then G is CLR-weakly C-win.

Chastand, Laviolette and Polat asked whether the hypothesis that δ is a self-contraction
could be removed and whether the converse of this theorem was true. Lehner [4] proved the
hypothesis on δ is necessary by building a constructible graph that is not CLP-weakly C-win.
He proposed a further weakening of the requirement for Player to C to win this game. In
Lehner’s version of C&R, Player C wins if either she occupies the same vertex as Player R,
or she forces Player R to only occupy each vertex finitely often. For Player R to win in this
variant, he must escape capture indefinitely while returning to some vertex infinitely often.

Definition 1.10. A graph G is weakly C-win if Player C has a winning strategy in Lehner’s
variant of C&R.

Lehner lifted various desirable properties from finite graphs to infinite graphs using this
definition, such as proving that retracts of weakly C-win graphs are weakly C-win. Most
significantly, he proved the following implication between dominating orders and weakly C-win
graphs, but he left open the question of whether every weakly C-win graph has a dominating
order.

Theorem 1.11 (Lehner [4]). If G is constructible, then G is weakly C-win.

We answer Lehner’s open question in Section 2 using an effective transformation from
trees to graphs. Before describing this transformation, we fix some terminology and notation.
A tree T ⊆ ω<ω is a set of finite strings which is closed under taking initial segments. For
finite strings σ, τ ∈ ω<ω, we write σ v τ to denote that σ is an initial segment of τ and we let
|σ| denote the length of σ. We let λ denote the empty string and we say τ is an immediate
successor of σ if σ v τ and |τ | = |σ| + 1. A node σ ∈ T is a leaf if it has no immediate

3

extensions. A tree T is well founded if it does not contain an infinite path. There is a natural
notion of rank for a well founded tree (which we define in Section 2) such that for every
α < ω1, there is a well founded tree T with rank α.

In Section 2, we describe an effective method to transform any tree T into a graph GT

such that GT admits a dominating order if and only if T is well founded. We prove that GT

is always weakly C-win, regardless of whether T is well founded or not. Therefore, for any
non-well founded tree T , GT provides a negative answer to Lehner’s question.

Because this transformation is computable, it follows that the index set of computable
constructible graphs is Π1

1-hard. Writing out the definition of this index set shows it is Σ1
2 at

worst. We leave open the question of which (if either) bound is tight. However, in Section 2,
we use Proposition 1.6 to show the index set of computable locally finite constructible graphs
is Σ1

1, and hence these index sets are not the same. By way of comparison, Stahl [9] used
a characterization from Nowakowski and Winkler [5] to prove the index set for computable
C-win graphs (in the original game) is Π1

1-complete. For background on index sets and
computability theory, see Ash and Knight [1], Sacks [7] and Soare [8].

Another property of the transformation is that for a well founded tree T , the minimal
dominating order type of GT is at least as large as the rank of T . It follows that the minimal
dominating order types of countable constructible graphs are cofinal in ω1, so Proposition 1.6
cannot be extended to give a nontrivial upper bound on the minimal dominating order type
of a general countable constructible graph. However, this transformation appears to be too
coarse to characterize the ordinals α < ω1 that can be realized as the minimal dominating
order type of a constructible graph.

In Section 3, we turn to the question of how difficult it is to build dominating orders for
computable graphs which are constructible. We describe a convenient framework for building
constructible computable graphs. Using this framework, we build a locally finite constructible
computable graph G such that every dominating order on G computes 0′ and we investigate
some subtleties in giving an effective version of Proposition 1.6.

In Section 4, we give a second general construction method and use it to prove two results.
First, there is a locally finite constructible computable graph G for which every dominating
order computes 0′′. Second, the index set of locally finite constructible computable graphs is
Π0

4-hard. Although these results seems to exhaust our particular construction method, we do
not see any reason to suppose they are optimal.

2 Trees and graphs

The main result of this section is a transformation from tree to graphs. Whenever we describe
the edge relation for a graph, we implicitly assume we take the reflexive and symmetric closure
of the described relation so we end up with an undirected reflexive graph.

Theorem 2.1. There is a computable functional that uniformly transforms trees T ⊆ ω<ω

into graphs GT such that GT is constructible if and only if T is well founded.

Proof. Let H denote the graph with vertices VH = {xi | i ≤ 6} ∪ {yi | i ≤ 6} and with the
edge relation defined by EH(x0, yi) for i ≤ 6, EH(xi, yj) for 1 ≤ i ≤ 6 and j even, and both

4

E(xi, xi+1) and E(yi, yi+1) for i ≤ 5. See the picture below.

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

This graph H will be the key building block in several constructions.
Fix a tree T ⊆ ωω. The following construction uses the graph H if you visualize the tree

growing downward (i.e. the immediate successors of σ sit below σ). The vertices of GT are
VT = {vσi | i ≤ 6 and σ ∈ T}. For each σ ∈ T , we define ET (vσi , v

σ
i+1) for σ ∈ T and i ≤ 5.

When τ is an immediate successor of σ, we connect the nodes vσi and vτj as the nodes xi and
yj are connected in H. That is, ET (vσ0 , v

τ
i) holds for i ≤ 6, and ET (vσi , v

τ
j) holds for 1 ≤ i ≤ 6

and j even. This completes the description of GT .
It is clear that GT is uniformly computable from T . We prove that GT is constructible if

and only if T is well founded in a series of lemmas. To simplify the notation, we fix T and
drop the subscript T from GT .

Lemma 2.2. For any dominating order ≺ on G, any immediate successor pair σ v τ in T ,
and any k ≤ 3, there can be at most three nodes of the form vσi such that vσi ≺ vτ2k.

Proof. Suppose four nodes vσj0 , v
σ
j1

, vσj2 and vσj3 satisfy vσj` ≺ vτ2k. Consider which node domi-
nates vτ2k in G�vτ2k . We have {vσj0 , v

σ
j1
, vσj2 , v

σ
j3
, vτ2k} ⊆ N�vτ2k [v

τ
2k]. By the construction of G, the

only nodes which connect to four vσi nodes are of the form:

(1) vτ2u, or

(2) vρw for the unique node ρ such that ρ v σ is an immediate successor pair in T , or

(3) vµ2u for any node µ 6= τ such that σ v µ is an immediate successor pair in T .

For (1), vτ2u cannot dominate vτ2k in G�vτ2k because vτ2u is connected to vτ2k if and only
if u = k. For (2), vρw is not connected to vτ2k because ρ @ σ @ τ and hence τ is not an
immediate successor of ρ in T . For (3), vµ2u is not connected to vτ2k because |µ| = |τ | and
µ 6= τ . Therefore, none of these nodes can dominate vτ2k in G�vτ2k , contradicting the fact that
≺ is a dominating order.

For a dominating order ≺ on G and a node σ ∈ T , let mσ
≺ denote the ≺-greatest vertex

in {vσ2` | ` ≤ 3}. That is, mσ
≺ is the greatest even index vertex in G with superscript σ.

Lemma 2.3. For any dominating order ≺ on G and any immediate successor pair σ v τ ,
vτ2k ≺ mσ

≺ for all k ≤ 3. In particular, mτ
≺ ≺ mσ

≺.

Proof. Fix a dominating order ≺ on G and a successor pair σ v τ . Suppose there is a node
vτ2k such that mσ

≺ ≺ vτ2k. Since vσ2` � mσ
≺ ≺ vτ2k for all ` ≤ 3, there are four nodes of the form

vσi such that vσi ≺ vτ2k, contradicting Lemma 2.2.

Lemma 2.4. If T has an infinite path, then G does not have a dominating order.

5

Proof. Let f be an infinite path in T . Assume for a contradiction that G has a dominating
order ≺. Let σn = f � n. For each n, σn v σn+1 is an immediate successor pair. By Lemma
2.3, m

σn+1
≺ ≺ mσn

≺ for all n, so ≺ contains an infinite descending chain, contradicting the fact
that ≺ is a well order.

It remains to show that if T is well-founded, then G has a dominating order. We construct
the dominating order using two different decompositions of T . The first decomposition of T
is by levels, where the level of a node σ ∈ T is the finite ordinal |σ|. For n ∈ ω, let
Ln = {σ ∈ T | |σ| = n}. For σ, τ ∈ Ln, σ <Ln τ (σ is left of τ) if σ 6= τ and σ(i) < τ(i) for
the least i < n such that σ(i) 6= τ(i). For each n, (Ln, <Ln) is a well order. We combine these
orders on Ln to get a well order <∗L on T defined by

σ <∗L τ if and only if |σ| < |τ | or
(
|σ| = |τ | and σ <L|σ| τ

)
.

The second decomposition of T uses the standard notion of ordinal rank on a well-founded
tree. For a leaf σ ∈ T , rankT (σ) = 0. For a non-leaf node σ ∈ T ,

rankT (σ) = sup{rankT (τ) + 1 | τ is an immediate successor of σ}.

Because T is well-founded, every node in T is assigned an ordinal rank by transfinite recursion
and the largest rank is assigned to the root node λ. Let Rα = {v ∈ T | rankT (v) = α} be the
set of nodes in T of rank α. Each set Rα countable, so we can fix well orders <α such that
(Rα, <α) has order type ≤ ω for each α ≤ rankT (λ). We combine these orders on Rα to get
a well order <∗r on T defined by

vσi <
∗
r v

τ
j if and only if rankT (σ) < rankT (τ) or

(
rankT (σ) = rankT (τ) = α and σ <α τ

)
.

We make use of the both the well orders <∗L and <∗r in the next lemma.

Lemma 2.5. If T does not contain an infinite path, then G has a dominating order.

Proof. Fix T with no infinite paths. We define a dominating order ≺ on G. The nodes of
the form vσ0 will form an initial segment of the dominating order, so vσ0 ≺ vτi for all σ, τ ∈ T
and i ≥ 1. For nodes of the form vx0 , set vσ0 ≺ vτ0 if and only if σ <∗L τ . Before defining the
order on the remaining elements, we verify that ≺ has the dominating property on this initial
segment. The least element under ≺ is vλ0 since λ is the only node with length 0. For τ 6= λ,
let σ be such that σ v τ is an immediate successor pair. Since |σ| = |τ | − 1, we have σ <∗L τ
and hence vσ0 ≺ vτ0 .

We claim that vσ0 dominates vτ0 in G�vτ0 . To prove this claim, it suffices to show that the
only vertices connected to vτ0 in G�vτ0 are vτ0 and vσ0 . Let vµ0 be a vertex such that vµ0 ≺ vτ0
and µ 6= σ, τ . Since vµ0 ≺ vτ0 , we know that |µ| ≤ |τ |. We split into two cases.

First, suppose |µ| = |τ |. In this case, neither µ nor τ is an immediate successor of the
other. Since µ 6= τ , it follows that there is no edge between vµ0 and vτ0 in G.

Second, suppose |µ| < |τ |. Obviously, in this case, µ is not an immediate successor of τ .
Because µ 6= σ, τ is also not an immediate successor of µ. Therefore, again, there is no edge
in G between vµ0 and vτ0 , completing the proof of the claim.

6

We order the remaining elements vσi with σ ∈ T and 1 ≤ i ≤ 6 as follows. Set vτ0 ≺ vσi for
all τ, σ ∈ T and i ≥ 1. For τ, σ ∈ T and i, j ≥ 1, set

vσi ≺ vτj if and only if
(
σ = τ and i < j

)
or
(
σ 6= τ and σ <∗r τ

)
.

If the order type of (T,<∗r) is β, then the order type of ({vσi | σ ∈ T and 1 ≤ i ≤ 6},≺) is
6 · β because each node σ ∈ T corresponds to an element of β, and the node σ splits into
vertices vσ1 , . . . , v

σ
6 which are ordered as a discrete interval vσ1 ≺ . . . ≺ vσ6 of length 6. In

particular, ≺ well orders {vσi | σ ∈ T and 1 ≤ i ≤ 6}. Since ≺ also well orders the initial
segment {vσ0 | σ ∈ T}, it follows that ≺ well orders G.

It remains to prove that each vertex vσi with i ≥ 1 is dominated in G�vσi . Fix vσi with
i ≥ 1. If σ 6= λ, let µ = σ � (|σ| − 1), so σ is the immediate successor of µ. Note that
rankT (σ) < rankT (µ), so vσi ≺ vµj for j ≥ 1, although vµ0 ≺ vσi . If τ is an immediate successor
of σ, then rankT (τ) < rankT (σ) and so vτj ≺ vσi for all j ≤ 6. With these observations in
mind, the neighbors of vσi in G�vσi are

(1) vσi−1,

(2) vτ2k for each τ ∈ T which is an immediate successor of σ and each k ≤ 3, and

(3) vµ0 (if σ 6= λ).

We claim that vσi−1 dominates vσi in G�vσi . (1) is handled because vσi−1 is connected to itself.
(2) is handled because τ is an immediate predecessor of σ, so vσi−1 either is connected to all
vτj vertices (if i− 1 = 0) or is connected to all vτ2k vertices (if i− 1 > 0). In either case, it is
connected to all the vertices in (2). Finally, if σ 6= λ, then since σ is an immediate successor
of µ in T , vµ0 is connected to every vertex of the form vσj . In particular, vµ0 is connected to
vσi−1, so (3) is handled, completing the proof that vσi−1 dominates vσi in G�vσi .

This completes the proof of Theorem 2.1.

Theorem 2.1 gives us some information about the index set of computable graphs that are
constructible. From its definition, this index set is Σ1

2 since G is constructible if and only if
there is a binary relation ≺ on G such that ≺ is a well order that satisfies the domination
condition. The domination condition is arithmetical, but to say ≺ is a well order is Π1

1, and
hence the definition is Σ1

2. Since the index set of well founded computable trees in ω<ω is Π1
1

complete and the functional in Theorem 2.1 is computable, we get the following corollary.

Corollary 2.6. The index set of computable constructible graphs is Π1
1-hard.

We contrast this situation with the index set of computable locally finite graphs that are
constructible.

Proposition 2.7. The index set of computable locally finite constructible graphs is Σ1
1.

7

Proof. By Proposition 1.6, to say a locally finite graph is constructible, it suffices to say it has
a dominating order of type ω. An infinite linear order has type ω if and only if every element
has finitely many predecessors. Therefore, a locally finite graph G is constructible if there
is a binary relation ≺ on G such that ≺ is a linear order in which every vertex has finitely
many predecessors and which satisfies the domination condition. Saying ≺ is a linear order
in which each vertex has finite many predecessors is arithmetical, so the entire statement is
Σ1

1.

We return to the question of proving a lower bound on the complexity of this index set in
Section 4. The next theorem shows there is no upper bound in the countable ordinals for the
minimal dominating order types of countable constructible graphs. Thus, there is no analog
of Proposition 1.6 for countable constructible graphs.

Theorem 2.8. Let T ⊆ ω<ω be a well-founded tree. The minimal dominating order type of
GT is greater than or equal to rankT (λ).

Proof. Fix T with rankT (λ) = α. Let ≺ be an arbitrary dominating order on G. It suffices
to show the order type of (GT ,≺) is at least α. Recall that for σ ∈ T , mσ

≺ is the ≺-greatest
element of {vσ2k | k ≤ 3}. We drop the subscripts on GT and mσ

≺. By Lemma 2.3, if σ @ τ ,
then mτ ≺ mσ. For σ ∈ T , let βσ be the order type of (G�mσ ,≺).

Claim. For every σ ∈ T , rankT (σ) ≤ βσ.

The theorem follows from the claim because α = rankT (λ) ≤ βλ ≤ order-type(G,≺).
Therefore, to complete the theorem, it suffices to prove the claim.

We prove the claim by induction on rankT (σ). When rankT (σ) = 0, the claim follows
because 0 ≤ βσ trivially. For the induction case, assume rankT (σ) = γ. If τ is an immediate
successor of σ, then rankT (τ) ≤ βτ by induction, and mτ ≺ mσ by Lemma 2.3. It follows
that βτ < βσ because G�mτ (G�mσ . Therefore,

rankT (σ) = sup { rankT (τ) + 1 | τ is immediate successor of σ}
≤ sup { βτ + 1 | τ is immediate successor of σ}
≤ βσ

completing the proof of the claim.

Corollary 2.9. The set of minimal dominating order types is cofinal in ω1.

The last theorem in this section shows that the graphs GT for non-well founded trees T
provide examples of weakly C-win graphs that are not constructible.

Theorem 2.10. For every tree T ⊆ ω<ω, GT is weakly C-win.

Proof. We describe Player C’s strategy and then verify the strategy is weakly winning. When
describing the strategy, we let vσi denote Player C’s position and vτj denote Player R’s position.
We maintain a list of inductive hypotheses depending on which player’s turn it is to move.

• If it is Player R’s turn, then σ v τ . If σ = τ , then i < j, and if |σ| < |τ |, then i = 0.

8

• If it is Player C’s turn, then σ and τ are comparable. If σ = τ , then i < j, and if
|τ | < |σ|, then |τ | = |σ| − 1.

Player C starts at vertex vλ0 . For subsequent rounds, assume Player C is at vσi and Player
R is at vτj . Player C moves as follows.

(1) If τ @ σ, then by the inductive hypothesis, |τ | = |σ|−1. If j = 0 or i is even, then there
is an edge from vσi to vτj . In this case, she moves to vτj and wins. Otherwise, j > 0 and
i is odd. In this case, she moves to vτ0 .

(2) If σ = τ , then by the inductive hypothesis, i < j. She moves to vσi+1 (and wins if
j = i+ 1).

(3) If |σ|+ 1 = |τ |, we break into two cases. If i = 0 or j is even, there is an edge between
vσi and vτj . In this case, she moves to vτj and wins. Otherwise, i > 0 and j is odd. In
this case, she moves to vτj−1.

(4) If |σ|+ 1 < |τ |, then she moves to v
σaτ(|σ|)
0 .

This completes the description of Player C’s strategy. It is straightforward to check that the
induction hypotheses for Player R’s move hold in each case. Next, we verify that the inductive
hypotheses for Player C’s move hold after Player R moves. Assume it is Player R’s turn to
move and we break into two cases.

First, suppose σ = τ . By the inductive hypothesis, i < j, so in particular, j 6= 0. Player
R’s options are: (i) move to vτj−1, v

τ
j or vτj+1 (assuming j < 6); (ii) move to a vertex of the form

v
τ�(|τ |−1)
k (assuming τ 6= λ); or (iii) move to a vertex of the form vµ2k where µ is an immediate

successor of τ on T . In each case, the induction hypothesis for Player C’s move holds.
Second, suppose |σ| < |τ |. By the inductive hypothesis, σ v τ and i = 0. Player R’s

options are: (iv) move to vτj−1 (assuming j > 0), vτj or vτj+1 (assuming j < 6); (v) move to a

vertex of the form v
τ�(|τ |−1)
k ; or (vi) move to a vertex of the form vµk where µ is an immediate

successor of τ in T (where the index k must be even if j > 0). Again, the induction hypothesis
for Player C’s move holds in each case.

It remains to prove Player C’s strategy is weakly winning. Assume for a contradiction
that Player R has a strategy that allows him to avoid losing in a finite round and to occupy
a fixed vertex vνn infinitely often. Let vσmim denote Player C’s position after her move in the
m-th round, and let vτmjm denote Player R’s position after his move in the m-th round. The
inductive relationship between σs and τs is given by the hypotheses for Player C’s move, and
the inductive relationship between σs+1 and τs is given by the hypotheses for Player R’s move.

Claim. There is a value u such that either σu = τu or σu+1 = τu.

Assume for a contradiction there is no such value u. The proof proceeds in several small
steps. First, we claim |σs+1| < |τs| for all s. By the induction hypothesis, σs+1 v τs for all s.
By the assumption that σs+1 6= τs, we must have |σs+1| < |τs| for all s.

Second, we claim |σs| ≤ |τs| for all s. Since σ0 = λ, this holds trivially for s = 0. For
s > 0, |σs| < |τs−1| by the first claim. Since the difference in the values of |τs| and |τs−1| is at
most 1, we have |σs| ≤ |τs|.

9

Third, we claim |σs| < |τs| for all s. By the induction hypothesis, σs and τs are comparable.
By the second claim, |σs| ≤ |τs|, so σs v τs. Since σs 6= τs by assumption, it follows that
|σs| < |τs|.

Fourth, we claim |σs|+ 1 < |τs| for all s. Suppose this inequality fails for a fixed s. Since
|σs| < |τs|, it follows that |σs|+ 1 = |τs|. Player C acts in (3) to set σs+1 = τs (since we have
assumed she cannot win in a finite round), contradicting our assumption the claim is false.

Finally, having established that |σs| + 1 < |τs| for all s, we know Player C acts in (4) at
every round. In particular, |σs+1| = |σs| + 1. Since |τs| > |σs|, it follows that lims |τs| = ∞,
contradicting our assumption that Player R occupies the vertex vνn infinitely often.

Claim. There is a value u for which σu+1 = τu.

Fix u from the previous claim. If σu+1 = τu, then we are done. Otherwise, σu = τu and
it is Player C’s turn. She acts in (2) to keep σu+1 = τu since we assume she cannot win in a
finite round.

Claim. For each t ≥ u, σt+1 = τt.

We prove this claim by induction on t. When t = u, it follows from the previous claim.
For the induction case, assume that σt+1 = τt. By the inductive hypotheses on Player R’s
turn to move, we know it+1 < jt and hence jt 6= 0. Player R’s possible moves are described
in (i)-(iii) above. In (i), Player R maintains τt+1 = τt, so Player C acts in (2) to set σt+2 =
σt+1 = τt = τt+1. In (ii), Player R sets τt+1 = τt � (|τt| − 1), so Player C acts in (1) to set
σt+2 = τt+1 (since we assume she does not win in a finite round).

In (iii), Player R would set τt+1 = µ for some immediate successor µ of τt in T . We prove
this case cannot occur. Since jt 6= 0, the value of jt+1 must be even. Therefore, there is an
edge between v

σt+1

it+1
and v

τt+1

jt+1
. Player C acts in (3) to win by moving to v

τt+1

jt+1
, contradicting

our assumption that she does not win in a finite round.

Claim. At each round t ≥ u, Player R sets τt+1 = τt or τt+1 = τt � (|τt| − 1). Moreover, he
can only set τt+1 = τt for finitely many rounds before setting τt+1 = τt � (|τt| − 1).

The first sentence follows directly from the proof of the previous claim. To prove the
second sentence, notice that if Player R sets τt+1 = τt, then σt+1 = τt+1 by the previous claim.
Player C acts in (2) to set σt+2 = τt+1 and it+2 = it+1 + 1. That is, she chases Player R down
the finite chain v

τt+1

0 , . . . , v
τt+1

6 . Since we assume he does not lose in a finite round, Player R
must eventually set τt+1 = τt � (|τt| − 1). This completes the proof of the claim.

By the last claim, once we reach the stage u, Player R can only maintain a given value of
τt for finitely many rounds before setting |τt+1| < |τt|. Therefore, there is a round s at which
τs = λ. Player C sets σs+1 = λ and wins in finite many more moves by chasing Player R
down the finite chain vλ0 , . . . , v

λ
6 , contradicting our assumption that she doesn’t win in a finite

round and completing the verification that Player C’s strategy is weakly winning.

Corollary 2.11. For any tree T ⊆ ω<ω that is not well-founded, the graph GT is weakly
C-win but not constructible.

Corollary 2.12. There is a locally finite graph G that is weakly C-win but not constructible.

10

Proof. Let T consist of a single infinite path, such as T = {0n | n ∈ ω}. GT is weakly C-win
by Theorem 2.10, is locally finite because T is finitely branching, and is not constructible by
Theorem 2.1.

3 Tree-form graphs and coding one jump

In this section, we develop a general framework for constructing graphs which we can use to
code information into dominating orders.

Lemma 3.1. Let ≺ be a dominating order on G. For every v ∈ G, the induced subgraph G�v
is connected.

Proof. For a contradiction, suppose v is ≺-least such that G�v is not connected. Since any
singleton subgraph is connected, v is not the ≺-least element of G. Fix u ≺ v such that u
dominates v in G�v, and so E(u, v) holds. G�v = (∪w≺vG�w) ∪ {v} and u ∈ ∪w≺vG�w, so it
suffices to prove ∪w≺vG�w is connected. By the minimality of v, ∪w≺vG�w is the union of a
chain of connected subgraphs and hence is connected.

Definition 3.2. Let Gi = (Vi, Ei), i ∈ ω, be a sequence of disjoint connected graphs, each
with a designated node ai. The tree-form graph G = (V,E) with spine xi, connectors ai and
graph branches Gi is the graph defined by

V =
⋃
i∈ω

(Vi ∪ {xi}) and E =
⋃
i∈ω

(Ei ∪ {〈xi, xi+1〉, 〈xi+1, xi〉, 〈xi, ai〉, 〈ai, xi〉}).

A tree-form graph looks like

G2 a2 x2

G1 a1 x1

G0 a0 x0

where the notation Gi ai xi indicates that the graph Gi is attached to G by connecting
xi to ai, but making no other connections between xi and nodes in Gi.

Lemma 3.3. Let G be a tree-form graph with graph branches Gi and let ≺ be a dominating
order on G. Let ≺i be the restriction of ≺ to Gi. For all i, ≺i is a dominating order on Gi,
and for all i except possibly one, ≺i has least element ai.

Proof. Fix a dominating order ≺ of G. Let v0 be the ≺-least element of G. Let i0 be such
that either v0 = xi0 or v0 ∈ Gi0 . We claim xi0 is the ≺-least element of the form xj for j ∈ ω.
The claim is clear if v0 = xi0 , so suppose v0 ∈ Gi0 . Let w be the ≺-least vertex such that

11

w 6∈ Gi0 . By Lemma 3.1, G�w is connected, so the node w must be connected to some node
in Gi0 . The only node with this property is xi0 , so we must have w = xi0 .

Fix an index i ∈ ω such that i 6= i0 and let wi be the ≺-least element of Gi. We claim
that wi = ai and xi ≺ ai. Since i 6= i0 and G�wi is connected, there must be an edge between
wi and some node v ∈ G \Gi with v ≺ wi. The only edge connecting an element of Gi with
an element of G \Gi is E(ai, xi). Therefore, wi = ai, v = xi and xi ≺ ai.

Continuing with our fixed index i 6= i0, let ≺i be the restriction of ≺ to Gi. We show
≺i is a dominating order on Gi with least element ai. The relation ≺i is a well-order of Gi,
and by the second claim, ai is the least element of Gi. Let v ∈ Gi with v 6= ai. It suffices
to show there is a node u ∈ Gi such that u ≺i v and u dominates v in Gi,�v. Since ≺ is a
dominating order of G, we fix u ∈ G such that u ≺ v and u dominates v in G�v. Therefore,
u ∈ NG�v [v] ⊆ NG�v [u]. Because v ∈ Gi and v 6= ai, NG[v] ⊆ Gi. Therefore, u ∈ Gi and

NGi,�v [v] = NG�v [v] ∩Gi ⊆ NG�v [u] ∩Gi ⊆ NGi,�v [u]

showing that u dominates v in Gi,�v.
It remains to show ≺i0 is a dominating order of Gi0 . When v0 = xi0 or v0 = ai0 , this fact

follows from the argument in the preceding paragraph. Assume v0 ∈ Gi0 and v0 6= ai0 . We
need to show each v ∈ Gi0 with v 6= v0 is dominated in Gi0,�v by some u ≺i0 v. For v 6= ai0 ,
this follows as in the preceding paragraph. However, in this case, we need an argument for ai0 .
Suppose b ≺ ai0 dominates ai0 in G�ai0 , so NG�ai0

[ai0] ⊆ NG�ai0
[b]. By the first claim above,

each v ≺ xi0 is in Gi0 , and ai0 ≺ xi0 . Therefore, b ∈ Gi0 , NGi0,�ai0
[ai0] = NG�ai0

[ai0] and

NGi0,�ai0
[b] = NG�ai0

[b]. It follows that NGi0,�ai0
[ai0] ⊆ NGi0,�ai0

[b], and hence b dominates ai0
in Gi0,�ai0 .

Lemma 3.4. Let G be a tree-form graph with graph branches Gi such that each Gi has a
dominating order with least element ai. Let ≺i be a sequence of dominating orders for the
graphs Gi with least element ai. There is a dominating order ≺ of G such that for every i, the
restriction of ≺ to Gi is ≺i. In particular, if each Gi admits a dominating order with least
element ai, then G admits a dominating order.

Proof. Fix the sequence of dominating orders ≺i with least elements ai. Define an order ≺
on G by setting u ≺ v if and only if (i) u ∈ Gi ∪ {xi}, v ∈ Gj ∪ {xj} and i < j, (ii) u = xi
and v ∈ Gi, or (iii) u, v ∈ Gi and u ≺i v. The order ≺ can be visualized as

x0 ≺ (G0,≺0) ≺ x1 ≺ (G1,≺1) ≺ · · · ≺ xi ≺ (Gi,≺i) ≺ xi+1 ≺ · · ·

where xi ≺ (Gi,≺i) ≺ xi+1 denotes that xi comes before all the elements of Gi, that all the
elements of Gi come before xi+1, and that the elements of Gi are ordered among themselves
by ≺i. It is straightforward to verify that ≺ is a well order of G using the fact that each ≺i
is a well order of Gi. Furthermore, it is clear that the restriction of ≺ to Gi is ≺i.

To show that ≺ is a dominating order, it suffices to show that for each v 6= x0, there is a
u ≺ v such that u dominates v in G�v. We break into three cases.

12

First, suppose that v = xi for some i > 0. By the definition of a tree-form graph, NG[xi] =
{xi−1, xi, ai, xi+1}. Since xi−1 ≺ xi ≺ ai ≺ xi+1, it follows that NG�xi

[xi] = {xi−1, xi}, and
therefore, xi−1 ≺ xi dominates xi in G�xi .

Second, suppose that v = ai for some i. Since ai is the ≺i-least element of Gi and
NG[ai] ⊆ Gi ∪ {xi}, we have that NG�ai

[ai] = {xi, ai}. Therefore, xi ≺ ai dominates ai in
G�ai .

Third, suppose that v ∈ Gi and v 6= ai. In this case, NG[v] = NGi [v]. Let u ∈ Gi be such
that u ≺i v and u dominates v in Gi,�iv. By the definition of ≺, we have u ≺ v. Furthermore,
NG�v [v] = NGi,�v [v] ⊆ NGi,�v [u] ⊆ NG�v [u], so u dominates v in G�v as required.

Lemma 3.5. Let G be a tree-form graph with finite graph branches Gi such that each Gi has
a dominating order with least element ai. G has a dominating of order of order type ω.

Proof. Since each Gi is finite, the dominating order defined in the proof of Lemma 3.4 has
order type ω. Alternately, since G is finitely branching, it has a dominating order of type ω
by Proposition 1.6.

Lemma 3.6. For any uniform computable sequence of connected graphs Gi with distinguished
elements ai, the tree-form graph G with graph branches Gi is computable.

Proof. Fix a uniform computable construction of the sequence Gi and let Gi,s be the finite
portion of Gi built at the end of stage s. Without loss of generality, we can assume that the
first element to appear in Gi,s is ai. We build G in stages with the approximation at stage s
consisting of the spine nodes x0, . . . , xs with attached graph branches G0,s, . . . , Gs,s.

We end this section with two results using this framework for constructing graphs. The
first application, given in the following theorem, will be improved in Theorem 4.9.

Theorem 3.7. There is a computable graph G such that G is constructible and every domi-
nating order computes 0′.

Proof. We build G as a tree-form graph in which each branch graph Gi will have one of two
isomorphism types. Let Xi have domain {ai, bi, ci, di} and edges EXi given by

ai bi ci di

and let Yi have domain {ai, bi, ci, di, ei, fi, gi, hi} and edges EYi given by

ai

ei fi bi

hi gi

di ci

13

Because Xi ⊆ Yi and EXi = EYi ∩X2
i , there is a uniformly computable sequence of graphs Gi

such that if i 6∈ 0′, then Gi
∼= Xi, and if i ∈ 0′, then Gi

∼= Yi. Therefore, there is a computable
tree-form graph G with branches Gi.

By Lemma 3.1, the only dominating order of Xi starting with ai is ai ≺ bi ≺ ci ≺ di.
Therefore, in every dominating order of Xi starting with ai, we have ci ≺ di.

There are several dominating orders of Yi that start with ai, for example ai ≺ fi ≺ gi ≺
hi ≺ bi ≺ ei ≺ di ≺ ci. However, we claim that di ≺ ci in each such dominating order. Since
Yi is finite, the last element in any dominating order must be dominated in the full graph
Yi. Therefore, because only ai and ci are dominated in Yi, every dominating order on Yi that
starts with ai must end with ci. In particular, di ≺ ci.

Each Gi has a dominating order starting with ai, so by Lemma 3.4, G admits a dominating
order. Fix any dominating order ≺ on G and let ≺i be the restriction to Gi. By Lemma 3.3,
≺i is a dominating order of Gi starting with ai, with the possible exception of one index i0.
Let K≺ = {i ∈ N | di ≺ ci}. For any i 6= i0, i ∈ K≺ if and only if i ∈ 0′, and therefore, 0′ is
computable from an arbitrary dominating order of G.

For the second application of this method, we distinguish two ways that a computable
dominating order on a locally finite graph could have order type ω.

Definition 3.8. Let G be a computable locally finite graph and let ≺ be a computable
dominating order of G. We say ≺ is a computable dominating order of type ω if the classical
order type of (G,≺) is ω. We say ≺ is a computable dominating order of strong type ω if there
is a computable order preserving bijection f : (ω,≤)→ (G,≺).

Theorem 3.9. There is a computable locally finite graph G such that G has a computable
dominating order of type ω but not a computable dominating order of strong type ω.

Proof. We build our computable graph G with domain ω. For each index e, if ϕe is a permu-
tation of ω (and hence could be a bijection ω → G), then we let ≺e be the binary relation
defined on G by v ≺e w if and only if ϕ−1e (v) < ϕ−1e (w). To ensure that G does not have a
computable order of strong type ω, it suffices to meet the following requirements.

Re : If ϕe : ω → G is a bijection, then ≺e is not a dominating order on G

We build G as a tree-form graph with graph branches Ge and we use Ge to satisfy the
requirement Re.

As in the proof of Theorem 3.7, Ge will have one of two isomorphism types. We start with
Ge equal to the graph Xe with vertices {ae, be, ce, de} and edge relation EXe given by

ae be ce de

Our construction of Ge proceeds in stages.

(1) Wait for a stage s0 such that {ae, be, ce, de} ⊆ range(ϕe,s0). If there is no such stage, we
stay in (1) forever and Ge = Xe.

14

(2) Set ne = max{x | ϕe,s0(x) ∈ {ae, be, ce, de}}. Wait for a stage s1 > s0 such that ϕe,s1(x)
converges for all x ≤ ne. If there is no such stage (or if we see ϕe is not injective), we
stay in (2) forever and Ge = Xe.

(3) At stage s1 + 1, we add one vertex ye to Ge to form the graph Ze with vertices
{ae, be, ce, de, ye} and edge relation EZe given by

ae be ce de

ye

Ge is not changed again, so the final value of Ge is Ze.

Since Xe ⊆ Ze, EXe = EZe ∩ X2
e and the switch from Ge = Xe to Ge = Ze is determined

by a Σ0
1 event, the sequence of graphs Ge is uniformly computable. Therefore, there is a

computable tree-form graph G with graph branches Ge. Furthermore, we can assume that G
is constructed with domain ω and such that ϕe(x) 6= ye for all x ≤ ne in (3).

Since each Ge is finite, G is locally finite. We have already seen that Xe has a unique
dominate order starting with ae given by ae ≺ be ≺ ce ≺ de. Ze has several dominating orders
starting with ae, for example, ae ≺ be ≺ ye ≺ ce ≺ de. However, no dominating order of Ze
can end with ye because ye is not dominated in the graph Ze.

By Lemma 3.5, G has a dominating order of type ω. In fact, we can define a computable
dominating order of type ω for G in stages as follows. At stage 0, we start with the empty
order. At stage s+1, we first attach xs ≺ as ≺ bs ≺ cs ≺ ds to the end of the order determined
at stage s. Second, we check if for any e ≤ s, the graph Ge changed from Xe to Ze at stage s.
If so, then for each such e, we add ye to the order so that be ≺ ye ≺ ce. Although the addition
of the element ye is delayed until we see Ge change from Xe to Ze, the order ≺ (in the end)
has the form

x0 ≺ G0 ≺ x1 ≺ G1 ≺ · · ·
as in the proof of Lemma 3.4. Therefore, ≺ is a computable dominating order of type ω.

To finish the proof of the theorem, we need to show that G does not have a computable
dominating order of strong type ω. For a contradiction, suppose≺ is a computable dominating
order on G of strong type ω. Fix an index e such that ϕe : ω → G is a bijection with i < j ⇔
ϕe(i) ≺ ϕe(j). Consider the construction of Ge. Since ϕe is a bijection, we will find stages
s0 < s1 and define the parameter ne in Steps (1) and (2). Therefore, Ge is isomorphic to Ze.
Fix m such that ϕe(m) = ye. By construction, we know ϕe(x) 6= ye for all x ≤ ne, so ne < m.
It follows that for all v ∈ {ae, be, ce, de}, v ≺ ye. Therefore, N�ye [ye] = {ae, be, ce, de, ye}.
However, no other node in G contains this set within its neighbors, and so no node can
dominate ye in G�ye , giving the desired contradiction.

4 Second computability construction

To prove additional computability theoretic results about dominating orders, we use a family
of graphs K(X), parameterized by a set X ⊆ ω. We begin with the graph formed by applying

15

Theorem 2.1 to a tree which consists of a single infinite path. The resulting graph consists
of ω many rows v`i , 0 ≤ i ≤ 6, in which v`i is connected to v`i+1. The rows are connected by
adding edges from v`0 to every v`+1

j , and from v`i to v`+1
j when i > 0 and j even.

v00 v01 v02 v03 v04 v05 v06

v10 v11 v12 v13 v14 v15 v16

v20 v21 v22 v23 v24 v25 v26

We refer to this graph as L. It consists of the rows in a larger graph K. To form K, for each
`, we add an auxiliary node c` connecting the elements of row ` and `+ 1, and we connect c`
and c`+1 as shown below.

v`0 v`1 v`2 v`3 v`4 v`5 v`6

c`

v`+1
0 v`+1

1 v`+1
2 v`+1

3 v`+1
4 v`+1

5 v`+1
6

c`+1

v`+2
0 v`+2

1 v`+2
2 v`+2

3 v`+2
4 v`+2

5 v`+2
6

K is the graph consisting of v`i and c` for all ` ∈ ω and 0 ≤ i ≤ 6. The nodes v`i , 0 ≤ i ≤ 6
form the `-th row of the graph, and the nodes c` are called auxiliary nodes. The induced
subgraph L is not constructible by Theorem 2.1. However, because of the auxiliary nodes, K
is constructible.

Lemma 4.1. K has a dominating order with least element v00.

Proof. The dominating order starts with the initial segment

v00 ≺ c0 ≺ v01 ≺ v02 ≺ v03 ≺ v04 ≺ v05 ≺ v06.

Each of these elements is dominated by the preceding element in the appropriate initial
subgraph. We continue to construct the dominating order row by row, with row ` and the
auxiliary element c` ordered as

v`0 ≺ c` ≺ v`1 ≺ v`2 ≺ v`3 ≺ v`4 ≺ v`5 ≺ v`6.

16

Each of these elements is dominated by c`−1 in the appropriate initial subgraph because c`−1
is connected to all of these elements and to all the elements in row ` − 1, and because none
of the elements in row `+ 1 have entered the dominating order yet.

Definition 4.2. For X ⊆ ω, K(X) is the induced subgraph of K containing the nodes v`i for
` ∈ ω and 0 ≤ i ≤ 6 and the auxiliary nodes ck for k 6∈ X.

The set X specifies the nodes ck to remove from K to form K(X). For example, K(∅) = K,
and K(ω) = L. We will generalize the fact that K is constructible, while L is not, by showing
that K(X) has a dominating order if and only if X is finite.

If X is co-c.e., then X is the c.e. set of auxiliary nodes we need to add to L to form K(X),
so we can build a computable copy of K(X) uniformly in a c.e. index for X. In fact, K(X)
has a computable copy if and only if X is co-c.e.

Definition 4.3. Let ≺ be a dominating order on K(X). For each row r, let gr be such that
vrgr is the ≺-greatest element of row r. Row r is ≺-special (or special if ≺ is clear from context)
if there is an index j 6= 0 such that vr0 ≺ vr+1

gr+1
and vrj ≺ vr+1

gr+1
. That is, row r is special if both

vr0 and another element of row r enter the dominating order before the last element of row
r + 1.

Lemma 4.4. For every dominating order ≺ on K(X), there is a ≺-special row.

Proof. Let r be the≺-least element of {v`g` : ` ∈ ω}. All elements of row r enter the dominating
order before vr+1

gr+1
, so row r is special.

The following lemma will be the main tool we use to classify when K(X) is constructible
and to recover information that is coded in a dominating order for K(X).

Lemma 4.5. Let X ⊆ ω be nonempty. For every dominating order ≺ on K(X) and for every
k ∈ X, if row r is ≺-special, then r > k.

Proof. Fix ≺ and k. We prove by downward induction that each row ` ≤ k is not special.
Suppose for a contradiction that row k is special. Fix j 6= 0 such that vk0 , v

k
j ≺ vk+1

gk+1
.

We claim that either vk+2
0 ≺ vk+1

gk+1
or ck+1 ≺ vk+1

gk+1
. Note that ck+1 may not be in K(X), in

which case, this claim should be read as stating that vk+2
0 ≺ vk+1

gk+1
. References below to other

auxiliary vertices which may not be in K(X) should be read in the same manner.
To prove this claim, suppose neither inequality holds and suppose vk+1

gk+1
≺ vk+2

0 ≺ ck+1.

Consider which node dominates vk+2
0 in K(X)�vk+2

0
. Because vk+1

gk+1
≺ vk+2

0 , vk+2
0 is connected

to every node in row k + 1 in K(X)�vk+2
0

. The only other nodes in K(X) (or that could

be in K(X)) that are connected to every node in row k + 1 are vk0 and ck+1. However, vk0
is not connected to vk+2

0 in K(X), and ck+1 is not in K(X)�vk+2
0

by our assumption that

vk+2
0 ≺ ck+1. Therefore, neither of these nodes dominates vk+2

0 in K(X)�vk+2
0

. The argument

when vk+1
gk+1
≺ ck+1 ≺ vk+2

0 is similar.
Having established the claim, we derive a contradiction by considering which node dom-

inates vk+1
gk+1

in K(X)�vk+1
gk+1

. All references to domination in the next two paragraphs are

17

relative to the subgraph K(X)�vk+1
gk+1

. By the claim, at least one of ck+1 and vk+2
0 is in this

subgraph. Therefore, no vertex in row k dominates vk+1
gk+1

. Since vk0 is in this subgraph, neither

ck+1 nor any vertex in row k + 2 dominates vk+1
gk+1

. Finally, since ck is not in the subgraph

(because k ∈ X, so ck is not even in K(X)), the only vertices left that could dominate vk+1
gk+1

are in row k + 1.
We eliminate the vertices in row k + 1 in two cases. First, if 1 ≤ gk+1 ≤ 5, then vk+1

gk+1
is

connected to both vk+1
gk+1−1 and vk+1

gk+1+1, so neither of these nodes dominates it, ruling out this

case. Second, if gk+1 = 0 or gk+1 = 6, then vk+1
gk+1

is connected to vkj , while neither vk+1
1 nor

vk+1
5 are connected to vkj . Therefore, vk+1

1 does not dominate vk+1
gk+1

when gk+1 = 0, and vk+1
5

does not dominate vk+1
gk+1

when gk+1 = 6. This completes the proof that row k is not special.
We proceed by downward induction. Assume 0 < ` ≤ k and row ` is not special. We

show row ` − 1 is not special. Assume for a contradiction that row ` − 1 is special and fix
j 6= 0 such that v`−10 , v`−1j ≺ v`g` . Since row ` is not special, every vertex in row ` + 1 is in

K(X)�v`g`
. We derive a contradiction by considering which vertex dominates v`g` in K(X)�v`g`

.

The references to domination in the next paragraph are relative to this subgraph.
Since v`g` is connected to v`+1

0 , it is not dominated by c`−1 or by a vertex in row ` − 1.

Also, because v`g` is connected to v`−10 , it is not dominated by c` or by a vertex in row ` + 1.
Therefore, the only vertices left that could dominate v`g` are in row `. These vertices do not
dominate v`g` by the same argument given in the proof that row k is not special.

Lemma 4.6. K(X) is constructible if and only if X is finite. Furthermore, if X is finite,
K(X) admits a dominating order with least element v00.

Proof. For a contradiction, assume X is infinite and ≺ is a dominating order on K(X). By
Lemma 4.5, there is no ≺-special row since if row r is ≺-special, then r > k for all k ∈ X.
Since every dominating order on K(X) has a special row, we have a contradiction.

For the other direction, assume X is finite. The case when X = ∅ follows from Lemma 4.1,
so assume X is nonempty. Let k be the largest element X and let y0 < y1 < · · · < yi be the
numbers y < k that are in X. The auxiliary nodes in K(X) are {cy0 , . . . , cyi} ∪ {c` : ` > k}.
We construct a dominating order starting with the initial segment

v00 ≺ v10 ≺ · · · ≺ vk+1
0 ≺ cy0 ≺ cy1 ≺ · · · ≺ cyi ≺ ck+1.

This initial segment satisfies the dominating conditions because v`+1
0 is dominated by v`0 in

K(X)�v`+1
0

, cyj is dominated by v
yj
0 in K(X)�cyj , and ck+1 is dominated by vk+1

0 in K(X)�ck+1
.

We next add the remaining elements from rows 0 through k + 1, starting with row k + 1
and working down to row 0.

vk+1
1 ≺ vk+1

2 ≺ vk+1
3 ≺ vk+1

4 ≺ vk+1
5 ≺ vk+1

6 ≺ vk1 ≺ vk2 ≺ · · ·

The domination property is satisfied because each of these vertices v`j is dominated by v`j−1 in
K(X)�v`j . We order the rest of K(X) row by row starting with the remainder of row k + 1.

vk+1
1 ≺ vk+1

2 ≺ vk+1
3 ≺ vk+1

4 ≺ vk+1
5 ≺ vk+1

6 ≺ ck+2 ≺ vk+2
0 ≺ vk+2

1 ≺ · · ·

18

The remaining elements of row k + 1 and ck+2 are dominated by ck+1 in the appropriate
subgraph. Following this pattern, the elements of each row ` for ` > k + 1, as well as the
vertex c`+1 are dominated by c` in the appropriate subgraph.

Lemma 4.7. Let Ak, k ∈ ω, be a uniformly c.e. sequence of sets. There is a computable
presentation of the tree-form graph G with graph branches Gk = K(Ak) and distinguished
elements ak = v00. Furthermore, G is constructible if and only if every set Ak is cofinite.

Proof. We can uniformly construct a computable copy of K(Ak) from an enumeration of Ak by
building a computable copy of the graph L and adding auxiliary nodes cn as n is enumerated
into Ak. Therefore, by Lemma 3.6, we can build a computable copy of G.

By Lemma 4.6, if Ak is infinite, then K(Ak) is not constructible, and hence by Lemma 3.3,
G is not constructible. If each Ai is finite, then each graph branch K(Ak) has a dominating
order with least element v00, and hence G has a dominating order.

Our first application of these graphs is to show the index set of computable locally finite
constructible graphs is Π0

4-hard. Recall from Proposition 2.7 that this index set is Σ1
1.

Theorem 4.8. The index set of computable locally finite constructible graphs is Π0
4-hard.

Proof. Let R be an arbitrary Π0
4 relation on ω. It suffices to build a uniform computable

sequence of locally finite graphs Gk such that for all k, R(k) holds if and only if Gk admits a
dominating order.

The index set Cof = {e : We is cofinite} is Σ0
3-complete, so we can fix a uniform c.e. se-

quence of sets Ake for e, k ∈ ω such that for all k

R(k) holds ⇔ ∀e (Ake is cofinite).

For each k, let Gk be the tree-form graph with graph branches K(Ake) for e ∈ ω. By Lemma
4.7, we can uniformly construct the sequence of computable graphs Gk. Gk is constructible if
and only if for all e, Ake is finite. Therefore, R(k) holds if and only if Gk is constructuble.

Our second application of these graphs improves the result in Theorem 3.7.

Theorem 4.9. There is a computable locally finite constructible graph G such that every
dominating order on G computes 0′′.

Proof. It suffices to build G such that for every dominating order computes the index set
Inf = {e : We is infinite}. G will be a tree-form graph with graph branches K(Ak), where Ak
is a uniformly c.e. family of sets.

We enumerate the family Ak in stages with Ak,s denoting the set at the end of stage s.
While s < k, we set Ak,s = ∅. For each k, we keep a parameter mk,s such that for s < k, mk,s

is undefined, mk,k = k, and for s ≥ k, mk,s ≤ s and mk,s ≤ mk,s+1. The limit limsmk,s may
be infinite, but we let mk = limsmk,s when the limit is finite. For each index k and stage
s ≥ k, we define As = {0, . . . , s}− {mk,s}. It follows that if limsmk,s =∞, then Ak = ω, and
if limsmk,s = mk, then Ak = ω − {mk}.

19

It remains to describe the definition of the markers mk,s. Although Ak,s is completely
determined by mk,s, we will specify Ak,s for clarity. At stage 0, set m0,0 = 0 and A0,0 = ∅. At
stage s > 0, set ms,s = s and As,s = {0, . . . , s− 1}. For k < s, break into two cases.

For k = 2e, if e ∈ 0′s − 0′s−1, then set m2e,s = s and enumerate m2e,s−1, into A2e so
A2e,s = {0, . . . , s − 1}. Otherwise, set m2e,s = m2e,s−1 and enumerate s into A2e, so A2e,s =
{0, . . . , s} − {m2e,s}.

For k = 2e + 1, if there is an x > m2e+1,s−1 such that x ∈ We,s, then set m2e+1,s = s and
enumerate m2e+1,s−1 into A2e+1, so A2e+1,s = {0, . . . , s−1}. Otherwise, set m2e+1,s = m2e+1,s−1
and enumerate s into A2e+1, so A2e+1,s = {0, . . . , s} − {m2e+1,s}.

This completes the construction of the uniform c.e. sequence Ak. By Lemma 4.7, let G be
a computable copy of the tree-form graph with graph branches K(Ak).

Lemma 4.10. For k = 2e, limsmk,s = mk exists, and e ∈ 0′ if and only if e ∈ 0′mk .

Proof. After the initial definition mk,k = k, the value of mk,s can change at most once. This
change occurs if e enters 0′s+1 at a stage s + 1 ≥ k. Therefore, the limit mk exists. To prove
the second property, assume e enters 0′ at stage s+ 1. If s+ 1 ≤ k, then s+ 1 ≤ mk,k = mk.
If k < s + 1, then at stage s + 1, we set mk,s+1 = s + 1 and hence s + 1 = mk,s+1 = mk. In
either case, we have s+ 1 ≤ mk as required.

Lemma 4.11. For k = 2e+ 1, limsmk,s = mk exists if and only if We is finite. Furthermore,
if We is finite, then for all x ∈ We, x < mk.

Proof. Suppose We is infinite. We definite a sequence of stages t0 < t1 < · · · such that
mk,ti = ti, and hence limsmk,s =∞. Let t0 = k and note that mk,k = k as required. Assume
mk,ti = ti. Since We is infinite, there is a least stage ti+1 > ti at which an element x > ti
enters We. At stage ti+1, we set mk,ti+1

= ti+1.
Suppose We is finite. Since we only change the value of mk,s when a new element enters

We,s, the parameter mk,s must reach a finite limit mk. Let t be the stage at which we set
mk,t = t = mk. No element x ≥ t can enter We after stage t or else we would increase the
value of mk,s. Since x ∈ We,t implies x < t, we have x < mk for all x ∈ We.

Lemma 4.12. G is constructible.

Proof. If limsmk,s = mk, then Ak = ω − {mk}, and if limsmk,s =∞, then Ak = ω. In either
case, Ak is finite, and hence by Lemma 4.6, each graph branch K(Ak) admits a dominating
order with least element v00. Therefore, by Lemma 3.4, G is constructible.

Lemma 4.13. For any dominating order ≺ on G, 0′′ ≤T≺.

Proof. Let f≺(k) = the least ` such that row ` is ≺-special in Gk. Note that f≺ is computable
from ≺ since each row is finite. To show 0′′ ≤T f≺, we prove two claims.

First, we claim 0′ ≤T f≺. It suffices to show that e ∈ 0′ if and only if e ∈ 0′f≺(2e). By

Lemma 4.10, e ∈ 0′ if and only if e ∈ 0′m2e
. However, since G2e = K({cm2e}), it follows from

Lemma 4.5 that m2e ≤ f≺(2e). This inequality proves the claim.
Second, we claim We is infinite if and only if there is an x ∈ We such that x ≥ f≺(2e+ 1).

The forward direction is obviously true. For the backward direction, assume We is finite.

20

By Lemma 4.11, We does not contain an element x ≥ m2e+1. Furthermore, since G2e+1 =
K({cm2e+1}), it follows from Lemma 4.5 that m2e+1 ≤ f≺(2e + 1). Therefore, We cannot
contain an element x ≥ f≺(2e+ 1).

To see that 0′′ is computable from the dominating order ≺, it suffices to show that f≺
can compute the index set Inf. Note that f≺ can determine if e ∈ Inf by using the oracle 0′

to decide whether there is an x ∈ We with x ≥ f≺(2e + 1). Since 0′ ≤T f≺, this process is
computable in f≺.

This completes the proof of Theorem 4.9.

5 Open questions

By Corollary 2.9, the set of minimal dominating order types for countable graphs is cofinal
in ω1. Is every α < ω1 the minimal dominating order type for some countable graph? If not,
is there some characterization of these ordinals?

On the computability side, it follows from Theorems 2.1 and 2.8 that the minimal dominat-
ing order types of computable constructible graphs are cofinal in ωCK1 . Is there a computable
constructible graph without a hyperarthmetic dominating order?

There are large gaps in the index set results. It remains open to close the gap between Π1
1

and Σ1
2 for the index set of computable constructible graphs, and to close the gap between Π0

4

and Σ1
1 for the index set of computable locally finite constructible graphs.

Finally, we see no reason to believe Theorem 4.9 is optimal. For which computable ordinals
α is it possible to construct a computable graph G such that every dominating order computes
0(α)?

References

[1] C.J. Ash and J.F. Knight, Computable Structures and the Hyperarithmetic Hierarchy,
Elsevier, 2000.

[2] A. Bonaton and R.J. Nowakowski, The Game of Cops and Robbers on Graphs, American
Mathematical Society, 2011.

[3] M. Chastand, F. Laviolette and N. Polat, “On constructible graphs, infinite bridged
graphs and weakly cop-win graphs,” Discrete Mathematics 224, 2000, 61-78.

[4] F. Lehner, “Pursuit evasion on infinite graphs,” Theoretical Computer Science 655
(Part A), 2016, 30-40.

[5] R.J. Nowakowski and P. Winkler, “Vertex-to-vertex pursuit in a graph,” Discrete Math-
ematics 43, 1983, 235-239.

[6] A. Quilliot, “Jeux et pointes fixes sur les graphes,” Thèses de 3ème cycle, Université de
Paris VI, 1978, 131-145.

21

[7] G.E. Sacks, Higher Recursion Theory, Springer-Verlag, 1990.

[8] R.I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, 1987.

[9] R.D. Stahl, “Computability and the game of cops and robbers on graphs,” Archive for
Mathematical Logic, to appear.

22

