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Abstract. We show that if H is an effectively completely decomposable com-

putable torsion-free abelian group, then there is a computable copy G of H such

that G has computable orders but not orders of every (Turing) degree.

1. Introduction3

A recurring theme in computable algebra is the study of the complexity of rela-4

tions on computable structures. For example, fix a natural mathematical relation R5

on some class of computable algebraic structures such as the successor relation in6

the class of linear orders or the atom relation in the class of Boolean algebras. One7

can consider whether each computable structure in the class has a computable copy8

in which the relation is particularly simple (say computable or low or incomplete) or9

whether there are structures for which the relation is as complicated as possible in10

every computable presentation. For the successor relation, Downey and Moses [9]11

show there is a computable linear order L such that the successor relation in every12

computable copy of L is as complicated as possible, namely complete. On the other13

hand, Downey [5] shows every computable Boolean algebra has a computable copy14

in which the set of atoms is incomplete. Alternately, one can explore the connection15

between definability and the computational properties of the relation R.16

More abstractly, one can start with a set S of Turing (or other) degrees and17

ask whether there is a relation R on a computable structure A such that the set of18

degrees of the images of R in the computable copies of A is exactly S. For example,19

Hirschfeldt [13] proved that this is possible if S is the set of degrees of a uniformly20

c.e. collection of sets.21

One can also consider relations such as “being a k-coloring” for a computable22

graph or “being a basis” for a torsion-free abelian group. In these examples, for23

each fixed computable structure, there are many subsets of the domain (or functions24

on the domain) satisfying the property. It is natural to ask whether there are25

computable structures for which all of these instantiations are complicated and26

whether this complexity depends on the computable presentation. In the case27

of k-colors of a planar graph, Remmel [25] proves that one can code arbitrary Π0
128

classes (up to permuting the colors) by the collection of k-colorings. For torsion-free29

abelian groups, there is a computable group G such that every basis computes 0′.30

However, for any computable H, one can find a computable copy of the given group31

in which there is a computable basis (see Dobritsa [4]). Therefore, while every basis32

can be complicated in one computable presentation, there is always a computable33

presentation having a computable basis.34
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In this paper, we present a result concerning computability-theoretic properties35

of the spaces of orderings on abelian groups. To motivate these properties, we36

compare the known results on computational properties of orderings on abelian37

groups with those for fields. We refer the reader to [11] and [16] for a more complete38

introduction to ordered abelian groups and to [18] for background on ordered fields.39

Definition 1.1. An ordered abelian group consists of an abelian group G = (G; +, 0)40

and a linear order ≤G on G such that a ≤G b implies a + c ≤G b + c for all c ∈ G.41

An abelian group G that admits such an order is orderable.42

Definition 1.2. The positive cone P (G;≤G) of an ordered abelian group (G;≤G)43

is the set of non-negative elements44

P (G;≤G) := {g ∈ G | 0G ≤G g}.

Because a ≤G b if and only if b − a ∈ P (G;≤G), there is an effective one-to-one45

correspondence between positive cones and orderings. Furthermore, an arbitrary46

subset X ⊆ G is the positive cone of an ordering on G if and only if X is a semigroup47

such that X ∪X−1 = G and X ∩X−1 = {0G}, where X−1 := {−g | g ∈ X}. We48

let X(G) denote the space of all positive cones on G. Notice that the conditions for49

being a positive cone are Π0
1.50

The definitions for ordered fields are much the same, and we let X(F) denote51

the space of all positive cones on the field F . We suppress the definitions here as52

the results for fields are only used as motivation. As in the case of abelian groups,53

the conditions for a subset of F to be a positive cone are Π0
1.54

Classically, a field F is orderable if and only if it is formally real, i.e., if −1F55

is not a sum of squares in F ; and an abelian group G is orderable if and only if56

it is torsion-free, i.e., if g ∈ G and g 6= 0G implies ng 6= 0G for all n ∈ N with57

n > 0. In both cases, the effective version of the classical result is false: Rabin [24]58

constructed a computable formally real field that does not admit a computable59

order, and Downey and Kurtz [6] constructed a computable torsion-free abelian60

group (in fact, isomorphic to Zω) that does not admit a computable order.61

Despite the failure of these classifications in the effective context, we have a good62

measure of control over the orders on formally real fields and torsion-free abelian63

groups. Because the conditions specifying the positive cones in both contexts are64

Π0
1, the sets X(F) and X(G) are closed subsets of 2F and 2G respectively, and hence65

under the subspace topology they form Boolean topological spaces. If F and G66

are computable, then the respective spaces of orders form Π0
1 classes, and therefore67

computable formally real fields and computable torsion-free abelian groups admit68

orders of low Turing degree.69

For fields, one can say considerably more. Craven [2] proved that for any Boolean70

topological space T , there is a formally real field F such that X(F) is homeomorphic71

to T . Translating this result into the effective setting, Metakides and Nerode [23]72

proved that for any nonempty Π0
1 class C, there is a computable formally real field F73

such that X(F) is homeomorphic to C via a Turing degree preserving map. Fried-74

man, Simpson, and Smith [10] proved the corresponding result in reverse mathe-75

matics that WKL0 is equivalent to the statement that every formally real field is76

orderable.77

Most of the corresponding results for abelian groups fail. For example, a count-78

able torsion-free abelian group G satisfies either |X(G)| = 2 (if the group has79

rank one) or |X(G)| = 2ℵ0 and X(G) is homeomorphic to 2ω. For a computable80
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torsion-free abelian group G, even if one only considers infinite Π0
1 classes of sepa-81

rating sets (which are classically homeomorphic to 2ω) and only requires that the82

map from X(G) into the Π0
1 class be degree preserving, one cannot represent all83

such classes by spaces of orders on computable torsion-free abelian groups. (See84

Solomon [28] for a precise statement and proof of this result.) However, the connec-85

tion to Π0
1 classes is preserved in the context of reverse mathematics as Hatzikiri-86

akou and Simpson [12] proved that WKL0 is equivalent to the statement that every87

torsion-free abelian group is orderable.88

Because torsion-free abelian groups are Z-modules, notions such as linear inde-89

pendence play a large role in studying these groups.90

Definition 1.3. Let G be a torsion-free abelian group. Elements g0, . . . , gn are91

linearly independent (or just independent) if for all c0, . . . , cn ∈ Z,92

c0g0 + c1g1 + · · ·+ cngn = 0G

implies ci = 0 for 0 ≤ i ≤ n. An infinite set of elements is independent if every finite93

subset is independent. A maximal independent set is a basis and the cardinality of94

any basis is the rank of G.95

Solomon [28] and Dabkowska, Dabkowski, Harizanov, and Tonga [3] established96

that if G is a computable torsion-free abelian group of rank at least two and B is a97

basis for G, then G has orders of every Turing degree greater than or equal to the98

degree of B. Therefore, the set99

deg(X(G)) := {d | d = deg(P ) for some P ∈ X(G)}

contains all the Turing degrees when the rank of G is finite (but not one) and con-100

tains cones of degrees when the rank is infinite. As mentioned earlier, Dobritsa [4]101

proved that every computable torsion-free abelian group has a computable copy102

with a computable basis. Therefore, every computable torsion-free abelian group103

has a computable copy that has orders of every Turing degree, and hence has a104

copy in which deg(X(G)) is closed upwards.105

Our broad goal, which we address one aspect of in this paper, is to better un-106

derstand which Π0
1 classes can be realized as X(G) for a computable torsion-free107

abelian group G and how the properties of the space of orders changes as the com-108

putable presentation of G varies. Specifically, is deg(X(G)) always upwards closed?109

If not, does every group H have a computable copy in which it fails to be upwards110

closed? We show that if H is effectively completely decomposable, then there is a111

computable G ∼= H such that deg(X(G)) contains 0 but is not closed upwards. We112

conjecture that this statement is true for all computable infinite rank torsion-free113

abelian groups.114

Definition 1.4 (Khisamiev and Krykpaeva [14]). A computable infinite rank115

torsion-free abelian group H is effectively completely decomposable if there is a116

uniformly computable sequence of rank one subgroups Hi of H, for i ∈ ω, such117

that H is equal to ⊕i∈ωHi (with the standard computable presentation).118

There are a number of recent results concerning computability theoretic prop-119

erties of classically completely decomposable groups in, for example, [7], [8], [15],120

and [22]. Our main result is the following theorem.121
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Theorem 1.5. Let H be an effectively completely decomposable infinite rank122

torsion-free abelian group. There is a computable presentation G of H and a non-123

computable, computably enumerable set C such that:124

• The group G has exactly two computable orders.125

• Every C-computable order on G is computable.126

Thus, the set of degrees of orders on G is not closed upwards.127

If H is effectively completely decomposable, then deg(X(H)) contains all Turing128

degrees because H has a computable basis formed by choosing a nonzero element hi129

from each Hi. Therefore, although the group G in Theorem 1.5 is completely de-130

composable in the classical sense, it cannot be effectively completely decomposable.131

In general, one does not expect the collection of degrees realizing a relation on a132

fixed computable copy of an algebraic structure to be upwards closed and hence this133

result is not surprising from that perspective. However, the corresponding result134

for the basis of a computable torsion-free abelian group fails.135

Proposition 1.6. Let H be an infinite rank torsion-free abelian group with a136

computable basis B. For every set D, there is a basis BD of H such that137

deg(BD) = deg(D).138

Proof. Let B = {b0, b1, . . .} be effectively listed such that bi <N bi+1. Fix a set D.139

Let BD = {n0b0, n1b1, . . .} where the ni ∈ N are chosen so that nibi <N ni+1bi+1140

and ni is even if and only if i ∈ D. It is clear that BD is a basis for H and that141

BD ≤T D. To compute D from BD, let BD = {c0, c1, . . .} be listed in increasing142

order. For each i, we can find ci effectively in BD, and then we can effectively (with143

no oracle) find bi and ni such that ci = nibi. By testing whether ni is even or odd,144

we can determine whether i ∈ D. �145

In Section 2, we present background algebraic information. In Section 3, we146

give the proof of Theorem 1.5. In Section 4, we state some generalizations of our147

results, present some related open questions, and finish with remarks concerning148

the following general question.149

Question 1.7. Describe the possible degree spectra of orders X(G) on a computable150

presentation G of a computable torsion-free abelian group.151

Our notation is mostly standard. In particular we use the following convention152

from the study of linear orders: If ≤G is a linear order on G, then ≤∗G denotes the153

linear order defined by x ≤∗G y if and only if y ≤G x. Note that if (G;≤G) is an154

ordered abelian group, then (G;≤∗G) is also an ordered group.155

2. Algebraic background156

In our proof of Theorem 1.5, we will need two facts from abelian group theory.157

The first fact is that every computable rank one group can be effectively embedded158

into the rationals. To define this embedding for a rank one H, fix any nonzero159

element h ∈ H. Every nonzero element g ∈ H satisfies a unique equation of the160

form nh = mg where n ∈ N, m ∈ Z, n,m 6= 0, and gcd(n,m) = 1. Map H into Q161

by sending 0H to 0Q, sending h to 1Q, and sending g satisfying nh = mg (with162

constraints as above) to the rational n
m . Because this map is effective, the image163

of H in Q is computably enumerable and hence we can view H as a computably164
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enumerable subgroup of Q. Although the image need not be computable, it does165

contain Z and, more generally, is closed under multiplication by any integer.166

If H = ⊕i∈ωHi is effectively completely decomposable, we can effectively map H167

into Qω = ⊕i∈ωQ (with its standard computable presentation) by fixing a nonzero168

element hi ∈ Hi for each i and mapping Hi into Q as above. Therefore, we will169

often treat H as a computably enumerable subgroup of Qω, and, in particular, treat170

elements in each Hi subgroup as rationals.171

The second fact we need is Levi’s Theorem (see [19] and [1]) giving classical172

algebraic invariants for rank one groups called Baer sequences. The Baer sequence173

of a rank one group is a function of the form f : ω → ω∪{∞}modulo the equivalence174

relation ∼ defined on such functions by f ∼ g if and only if f(n) 6= g(n) for at most175

finitely many n and only when neither f(n) nor g(n) is equal to ∞.176

To define the Baer sequence of a rank one group H, fix a nonzero element h ∈ H177

and let {pi}i∈ω denote the prime numbers in increasing order (later, for notational178

convenience, we alter the indexing to start with one). For a prime p, we say pk179

divides h (in H) if pkg = h for some g ∈ H. We define the p-height of an element h180

by181

htp(h) :=

{
k if k is greatest such that pk divides h,

∞ otherwise, i.e., if pk divides h for all k.

The Baer sequence of h is the function BH,h(n) = htpn
(h). If h, ĥ ∈ H are nonzero182

elements, then BH,h ∼ BH,ĥ. The Baer sequence BH of the group H is (any183

representative of) this equivalent class. Levi’s Theorem states that for rank one184

groups, H0
∼= H1 if and only if BH0

∼ BH1
.185

3. Proof of Theorem 1.5186

Fix an effectively completely decomposable group H = ⊕i∈ωHi as in the state-187

ment of Theorem 1.5. We divide the proof into three steps. First, we describe188

our general method of building the computable copy G = (G; +G , 0G) which is ∆0
2-189

isomorphic to H. Second, we describe how the computable ordering ≤G on G is190

constructed. (The second computable order on G is ≤∗G .) Third, we give the con-191

struction of C and the diagonalization process to ensure the only C-computable192

orders on G are ≤G and ≤∗G .193

Part 1. General Construction of G.194

The group G is constructed in stages, with Gs denoting the finite set of elements195

in G at the end of stage s. We maintain Gs ⊆ Gs+1 and let G :=
⋃

s Gs. We define196

a partial binary function +s on Gs giving the addition facts declared by the end of197

stage s. To make G a computable group, we do not change any addition fact once198

it is declared, so we maintain199

x +s y = z =⇒ (∀t ≥ s) [x +t y = z]

for all x, y, z ∈ Gs. Furthermore, for any pair of elements x, y ∈ Gs, we ensure the200

existence of a stage t and an element z ∈ Gt such that we declare x +t y = z.201

To define the addition function, we use an approximation {bs0, bs1, . . . , bss} ⊆ Gs202

to an initial segment of our eventual basis for G. During the construction, each203

approximate basis element bsi will be redefined at most finitely often, so each will204

eventually reach a limit. We let bi := lims b
s
i denote this limit. If k is an even205
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index then the approximate basis element bsk will never be redefined, so although206

we often use the notation bsk (for uniformity), we have bk = bsk for all s. Although G207

will not be effectively decomposable, the group G will decompose classically into a208

countable direct sum using the basis B = {b0, b1, b2, . . .}.209

At stage 0, we begin with G0 := {0, 1}. We let 0 denote the zero element 0G and210

we assign 1 the label b00. We declare 0G+00G = 0G , 0G+0 b
0
0 = b00, and b00+00G = b00.211

More generally, at stage s, each element g ∈ Gs is assigned a Q-linear sum over212

the stage s approximate basis of the form213

qs0b
s
0 + · · ·+ qsnb

s
n

where n ≤ s, qsi ∈ Q for i ≤ n, and qsn 6= 0. (Later there will be further restrictions214

on the values of qsi to ensure that G is isomorphic toH.) This assignment is required215

to be one-to-one, and the zero element 0G is always assigned the empty sum. It216

will often be convenient to extend such a sum by adding more approximate basis217

elements on the end of the sum with coefficients of zero. We define the partial218

function +s on Gs by letting x+s y = z (for x, y, z ∈ Gs) if the assigned sums for x219

and y add together to form the assigned sum for z.220

For each i ∈ ω, we fix a nonzero element hi ∈ Hi and embed Hi into Q by221

sending hi to 1Q as described in Section 2. We equate Hi with its image in Q in222

the sense of treating elements of Hi as rationals. In particular, since hi is mapped223

to 1Q, if a ∈ Hi and a = qhi, we view a as being the rational q.224

At each stage s, we maintain positive integers Ns
i for i ≤ s. These integers225

restrain the (nonzero) coefficients qsi of bsi allowed in the Q-linear sum for each226

element g ∈ Gs by requiring that qsiN
s
i ∈ Hi and that we have seen this fact by227

stage s. Using the fact that Ni := lims N
s
i exists and is finite for all i, we will show228

(using Levi’s Theorem) that in the limit, the i-th component of G is isomorphic229

to Hi, and hence that G is a computable copy of H. (Later we will introduce a230

basis restraint K ∈ ω that will prevent us from changing Ns
i too often.)231

During stage s + 1, we do one of two things – either we leave our approximate232

basis unchanged or we add a dependency relation for a single bs` for some odd index233

` ≤ s. The diagonalization process dictates which happens.234

Case 1. If we leave the basis unchanged, then we define bs+1
i := bsi for all i ≤ s.235

For each g ∈ Gs (viewed as an element of Gs+1), we define qs+1
i := qsi and assign g236

the same sum with bs+1
i and qs+1

i in place of bsi and qsi , respectively. It follows that237

x +s+1 y = z (for x, y, z ∈ Gs) if x +s y = z. We set Ns+1
i := Ns

i for all i ≤ s and238

Ns+1
s+1 := 1.239

We add two new elements to Gs+1, labeling the first by bs+1
s+1 and labeling the240

second by qs+1
0 bs+1

0 + · · · + qs+1
n bs+1

n , where 〈qs+1
0 , . . . , qs+1

n 〉 is the first tuple of241

rationals (under some fixed computable enumeration of all tuples of rationals) we242

find such that n ≤ s, qs+1
n 6= 0, qs+1

i Ns+1
i ∈ Hi at stage s for all i ≤ n, and this243

sum is not already assigned to any element of Gs+1. (We can effectively search for244

such a tuple.) This completes the description of Gs+1 in this case.245

Case 2. If we redefine the approximate basis element bs` (for the sake of diagonal-246

izing) by adding a new dependency relation, then we proceed as follows. We define247

bs+1
i := bsi for all i ≤ s with i 6= `. The diagonalization process will tell us either248

to set bs` = qbs+1
k for some rational q, or to set bs` = m1b

s+1
j + m2b

s+1
k for some249

integers m1 and m2. (We will specify properties of these integers below.) In either250
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case, the index k will be even and greater than the basis restraint K and j, k < `.251

We assign g ∈ Gs the same sum except we replace each bsi by bs+1
i (for i ≤ s and252

i 6= `) and we replace bs` by either qbs+1
k or m1b

s+1
j + m2b

s+1
k (as dictated by the253

diagonalization process).254

For example, if the diagonalization process tells us to make255

bs` = m1b
s+1
j + m2b

s+1
k , then the sum for g ∈ Gs changes from256

qs0b
s
0 + · · · qsj bsj + · · ·+ qskb

s
k + · · ·+ qs`b

s
` + · · ·+ qssb

s
s

at stage s (where we have added zero coefficients if necessary) to

qs0b
s+1
0 + · · ·+ qsj b

s+1
j + · · ·+ qskb

s+1
k + · · ·+ qs` (m1b

s+1
j + m2b

s+1
k ) + · · ·+ qssb

s+1
s

= qs0b
s+1
0 + · · ·+ (qsj + qs`m1)bs+1

j + · · ·+ (qsk + qs`m2)bs+1
k + · · ·+ qssb

s+1
s

at stage s+1. Therefore, we set qs+1
j := qsj +qs`m1, qs+1

k := qsk+qs`m2, and qs+1
` := 0,257

while leaving qs+1
i := qsi for all i 6∈ {j, k, `}. Similarly, if the diagonalization process258

tells us to make bs` = qbs+1
k , then we set qs+1

k := qsk + qqs` and qs+1
` := 0 while259

leaving qs+1
i = qsi for all i 6∈ {k, `}.260

We define Ns+1
i , for i ≤ s, as follows. If bs` = m1b

s+1
j +m2b

s+1
k , then Ns+1

i := Ns
i261

for all i ≤ s. If bs` = qbs+1
k , then Ns+1

i := Ns
i for all i ≤ s with i 6= k and262

Ns+1
k := dqdN

s
k where dq is the denominator of q (when written in lowest terms)263

and d is the product of all the (finitely many) denominators of coefficients qs` for264

g ∈ Gs. In either case, set Ns+1
s+1 := 1.265

We add three new elements to Gs+1, labeling the first by bs+1
` , labeling the second266

by bs+1
s+1, and labeling the third by qs+1

0 bs+1
0 + · · ·+ qs+1

n bs+1
n where 〈qs+1

0 , . . . , qs+1
n 〉267

is the first tuple of rationals we find such that n ≤ s, qs+1
n 6= 0, qs+1

i Ns+1
i ∈ Hi at268

stage s for all i ≤ n, and this sum is not already assigned to any element of Gs+1.269

This completes the description of Gs+1 in this case.270

We note several trivial properties of the transformations of sums in Case 2. First,271

the approximate basis element bs+1
` does not appear in the new sum for any element272

of Gs viewed as an element of Gs+1. Second, for any element g ∈ Gs, if qs` = 0,273

then the coefficients qs+1
j and qs+1

k satisfy qs+1
j = qsj and qs+1

k = qsk. Third, by the274

linearity of the substitutions, if x +s y = z, then x +s+1 y = z.275

We also require two additional properties which place some restrictions on the276

rational q or the integers m1 and m2. The first property is that the assignment277

of sums to elements of Gs (viewed as elements of Gs+1) remains one-to-one. The278

diagonalization process will place some restrictions on the value of either q or m1279

and m2, but as long as there are infinitely many possible choices for these values280

(which we will verify when we describe the diagonalization process), we can assume281

they are chosen to maintain the one-to-one assignment of sums to elements of Gs+1.282

The second property is that for each g ∈ Gs+1, we need each coefficient qs+1
i to283

satisfy qs+1
i Ns+1

i ∈ Hi. We will verify this property below under the assumption284

that when we set bs` = m1b
s+1
j +m2b

s+1
k , the integers m1 and m2 are chosen so that285

they are divisible by the denominator of each qs` coefficient of each g ∈ Gs. (Again,286

we will verify this property of m1 and m2 in the description of the diagonalization287

process.)288
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We now check various properties of this construction under these assumptions289

and the assumption that the limits bi := lims b
s
i and Ni := lims N

s
i exist for all i290

(which will be verified in the diagonalization description).291

Lemma 3.1. For g ∈ Gs, the coefficients in the assigned sum qs0b
s
0 + · · · + qsnb

s
n292

satisfy qsiN
s
i ∈ Hi.293

Proof. The proof proceeds by induction on s. If g is added at stage s, then the294

result for g follows trivially. Therefore, fix g ∈ Gs and assume the condition holds at295

stage s. Note that if we do not add a dependency relation (i.e., we are in Case 1),296

then the condition at stage s + 1 follows immediately. Assume we add a new297

dependency relation; we split into cases depending on the form of this dependency.298

If bs` = qbs+1
k , then for all i 6∈ {k, `}, the condition holds since qs+1

i = qsi and299

Ns+1
i = Ns

i . For the index `, we have qs+1
` = 0 and hence the condition holds300

trivially. For the index k, we have qs+1
k = qsk + qqs` and Ns+1

k = dqdN
s
k . Therefore,301

qs+1
k Ns+1

k = (qsk + qqs` )dqdN
s
k = qskdqdN

s
i + qqs`dqdN

s
k .

Since qskN
s
k ∈ Hk and dqd ∈ Z, we have qskdqdN

s
k ∈ Hk. By definition, qdq ∈ Z and302

qs`d ∈ Z, and hence qqs`dqdN
s
k ∈ Z ⊆ Hk. Therefore, we have the desired property303

when bs` = qbs+1
k .304

If bs` = m1b
s+1
j + m2b

s+1
k , then for all i 6∈ {j, k} the condition holds as above.305

For the index j, we have qs+1
j = qsj + qs`m1 and Ns+1

j = Ns
j . By assumption, the306

integer m1 is divisible by the denominator of qs` and hence qs`m1 ∈ Z. Therefore,307

qs+1
j Ns+1

j = (qsj + qs`m1)Ns
j = qsjN

s
j + qs`m1N

s
j ∈ Hj

since qsjN
s
j ∈ Hj by the induction hypothesis and qs`m1N

s
j ∈ Z. The analysis for308

the index k is identical. �309

Let g ∈ G. Suppose there is a stage t such that g is assigned a sum qt0b
t
0+· · ·+qtnb

t
n310

that is not later changed in the sense that, for all stages u ≥ t, the element g is311

assigned the sum qu0 b
u
0 + · · ·+ qunb

u
n with bui = bti and qui = qti for all i ≤ n. In this312

case, we refer to this sum as the limiting sum for g and denote it by q0b0+· · ·+qnbn.313

Lemma 3.2 (Basic properties of the construction).314

(1) (a) Each g ∈ G has a limiting sum with coefficients qi satisfying qiNi ∈ Hi.315

(b) For each rational tuple 〈q0, . . . , qn〉 such that qn 6= 0 and qiNi ∈ Hi for316

all i ≤ n, there is an element g ∈ G such that the limiting sum for g317

is q0b0 + · · ·+ qnbn.318

(2) (a) If x+s y = z, then x+t y = z for all t ≥ s. In particular, if x+s y = z,319

then the limiting sums for x and y add to form the limiting sum for z.320

(b) For each pair x, y ∈ Gs, there is a stage t ≥ s and an element z ∈ Gt321

such that x +t y = z.322

(c) For each x ∈ Gs, there is a stage t ≥ s and an element z ∈ Gt such323

that x +t z = 0G.324

Proof. Proof of (1a). When g enters G, it is assigned a sum. The coefficients in325

this sum only change when a diagonalization occurs. In this case, some approximate326

basis element bs` with nonzero coefficient in the sum for g is made dependent via a327

relation of the form bs` = qbs+1
k or bs` = m1b

s+1
j + m2b

s+1
k with j, k < `. Therefore,328

each time the sum for g changes, some approximate basis element with nonzero329

coefficient is replaced by rational multiples of approximate basis elements with330
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lower indices. This process can only occur finitely often before terminating. The331

last property of the limiting sum follows from Lemma 3.1.332

Proof of (1b). For a contradiction, suppose there is a rational tuple violating this333

lemma. Fix the least such tuple 〈q0, . . . , qn〉 in our fixed computable enumeration334

of rational tuples. Let s ≥ n be a stage such that bs0, . . . , b
s
n and Ns

0 , . . . , N
s
n have335

reached their limits, each tuple before 〈q0, . . . , qn〉 which satisfies the conditions in336

the lemma has appeared as the limiting sum of an element in Gs, and we have seen337

by stage s that qiNi ∈ Hi for each i ≤ n. By our construction, at stage s+1, either338

there is an element that is assigned the sum q0b
s+1
0 + · · · + qnb

s+1
n or else we add339

a new element to Gs+1 and assign it this sum. In either case, this element has the340

appropriate limiting tuple since bs+1
0 , . . . , bs+1

n have reached their limits (and thus341

we obtain our contradiction).342

Proof of (2). Property (2a) follows by induction and the fact that x +s y = z
implies x +s+1 y = z at each stage s of the construction. For Property (2b), fixing
x, y ∈ Gs, let u ≥ s be a stage at which x and y have been assigned their limiting
sums

x = qu0 b
u
0 + · · ·+ qunb

u
n and y = q̂u0 b

u
0 + · · ·+ q̂unb

u
n,

adding zero coefficients if necessary to make the lengths equal. By Lemma 3.1,343

for all t ≥ u and i ≤ n, we have that qtiN
t
i ∈ Hi and q̂tiN

t
i ∈ Hi. Therefore,344

(qti + q̂ti)N
t
i ∈ Hi. By (1b), there is a stage t ≥ u and an element z ∈ Gt assigned345

to the sum346

z = (qt0 + q̂t0)bt0 + · · ·+ (qtn + q̂tn)btn.

Then x +t y = z. The proof of Property (2c) is similar. �347

By Properties (1b) and (1a) in Lemma 3.2, the limiting sums of elements of G348

are exactly the sums q0b0 + · · · + qnbn with qn 6= 0 and qiNi ∈ Hi for all i ≤ n.349

Using Properties (2a) and (2b) in Lemma 3.2, we define the addition function +G350

on G by putting x + y = z if and only if there is a stage s such that x +s y = z.351

Lemma 3.3. The set G is a computable copy of H.352

Proof. The domain and addition function on G are computable. By Property (2c) in353

Lemma 3.2, every element of G has an inverse, and it is clear from the construction354

that the addition operation satisfies the axioms for a torsion-free abelian group.355

Let Gi be the subgroup of G consisting of all element g ∈ G with limiting sums356

of the form qibi. Since the limiting sums of elements of G are exactly the sums of357

the form q0b0 + · · · + qnbn with qn 6= 0 and qiNi ∈ Hi for i ≤ n, it follows that358

G ∼= ⊕i∈ωGi. Therefore, to show that G ∼= H, it suffices to show that Gi ∼= Hi for359

every i ∈ ω.360

Fix i ∈ ω. The group Gi is a rank one group which is isomorphic to the subgroup361

of (Q,+Q) consisting of the rationals q such that qNi ∈ Hi. Thus, calculating362

the Baer sequence for Gi using the rational 1Q, we note that for any prime pj ,363

1/pkj ∈ Gi if and only if Ni/p
k
j ∈ Hi. Therefore, the entries in the Baer sequences364

for Gi and Hi differ only in the values corresponding to the prime divisors of Ni365

and they differ exactly by the powers of these prime divisors. Therefore, by Levi’s366

Theorem, Gi ∼= Hi. �367

Part 2. Defining the Computable Orders on G. We define the computable368

ordering of G in stages by specifying a partial binary relation ≤s on Gs at each369
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stage s. To make the ordering relation computable, we satisfy370

x ≤s y =⇒ (∀t ≥ s) [x ≤t y] (1)

for all x, y ∈ Gs. Typically, the relation ≤s will not describe the ordering between371

every pair of elements of Gs, but it will have the property that for every pair of372

elements x, y ∈ Gs, there is a stage t ≥ s at which we declare x ≤t y or y ≤t x, and373

not both unless x = y. Since we will be considering several orderings on G, for an374

ordering 4 on G, we let (g1, g2)4 denote the set {g ∈ G | g1 ≺ g ≺ g2}. Moreover,375

given a1, a2 ∈ R, we let (a1, a2)≤R denote the interval {a ∈ R | a1 <R a <R a2}.376

To specify the computable order on G, we build a ∆0
2-map from G into R. (Thus377

our order will be archimedean.) To describe this order, let {pi}i≥1 enumerate the378

prime numbers in increasing order. We map the basis element b0 to r0 = 1R. For379

i ≥ 1, we will assign (in the limit of our construction) a real number ri to the basis380

element bi such that ri is a positive rational multiple of
√
pi. We choose the ri381

in this manner so that they are algebraically independent over Q. If the element382

g ∈ G is assigned a limiting sum383

g = q0b0 + · · ·+ qnbn,

then our ∆0
2-map into R sends g to the real q0r0 + · · ·+ qnrn. It also sends 0G to 0.384

We need to approximate this ∆0
2-map during the construction. At each stage s,385

we keep a real number rsi as an approximation to ri, viewing rsi as our current386

target for the image of bi. The real rs0 is always 1 and the real rsi is always a387

positive rational multiple of
√
pi. Exactly which rational multiple may change388

during the course of the diagonalization process. However, if k is an even index,389

then rsk will never change.390

We could generate a computable order on Gs by mapping Gs into R using a391

linear extension of the map sending each bsi to rsi . However, this would restrict392

our ability to diagonalize. Therefore, at stage s, we assign each bsi (for i ≥ 1) an393

interval (asi , â
s
i )≤R where asi and âsi are positive rationals such that rsi ∈ (asi , â

s
i )≤R394

and âsi − asi ≤ 1/2s. The image of bsi in R (in the limit) will be contained in this395

interval.396

Because each x ∈ Gs is assigned a sum describing its relationship to the current397

approximate basis, we can generate an interval approximating the image of x in R398

under the ∆0
2-map. That is, suppose x is assigned the sum399

x = qs0b
s
0 + · · ·+ qsnb

s
n

at stage s. The interval constraints on the image of each bsi in R translate into a400

rational interval constraint on the image of x in R. The endpoints of this constraint401

can be calculated using the coefficients of the sum for x and the rationals asi and âsi ,402

with the exact form depending on the signs of the coefficients.403

To define ≤s on Gs at stage s, we look at the interval constraints for each pair404

of distinct elements x, y ∈ Gs. If the interval constraint for x is disjoint from the405

interval constraint for y, then we declare x ≤s y or y ≤s x depending on which406

inequality is forced by the constraints. If the interval constraints are not disjoint,407

then we do not declare any ordering relation between x and y at stage s. Of course,408

we also declare x ≤s x for each x ∈ Gs.409

To maintain the implication in Equation (1), we will need to check that x ≤s y410

implies x ≤s+1 y. It suffices to ensure that for each x ∈ Gs, the interval constraint411

for x at stage s + 1 is contained within the interval constraint for x at stage s.412
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It will be helpful for us to know that certain approximate basis elements are413

mapped to elements of R which are close to 0R. Therefore, we will maintain that414

0 ≤ ask ≤ âsk < 1/2k for all stages s and all even indices k. (If we worked in a415

simpler context where each Hi = Q, or even where each Hi 6= Z, we could skip this416

step as any archimedean order on such groups Hi is dense in R.)417

We now describe exactly how rti , a
t
i and âti are defined at each stage t. Recall that418

at stage t = 0, the only elements in Gt are 0G (which is represented by the empty419

sum and is mapped to 0R) and the element represented by b00 (which is mapped420

to 1R). We set r00 := 1R.421

At stage t+ 1, the definitions of rt+1
i , at+1

i and ât+1
i for i ≤ t depend on whether422

we add a dependency relation or not. If we do not add a dependency relation,423

or if i is not an index involved in an added dependency relation, then we define424

rt+1
i := rti (so we maintain our guess at the target rational multiple of

√
pi for bi)425

and define at+1
i and ât+1

i so that426

(at+1
i , ât+1

i )≤R ⊆ (ati, â
t
i)≤R , rt+1

i ∈ (at+1
i , ât+1

i )≤R , and ât+1
i − at+1

i < 1/2t+1.

For the approximate basis element bt+1
t+1 introduced at this stage, we set rt+1

t+1 to be427

a positive rational multiple of
√
pt+1 (requiring rt+1

t+1 < 1/2t+1 if t+1 is even) and let428

at+1
t+1 and ât+1

t+1 be positive rationals so that rt+1
t+1 ∈ (at+1

t+1, â
t+1
t+1)≤R and ât+1

t+1−at+1
t+1 <429

1/2t+1 (and also ât+1
t+1 < 1/2t+1 if t + 1 is even). The diagonalization process may430

place some requirements on the rational multiple of
√
pt+1 chosen. It remains to431

handle the indices involved in a dependency relation of the form bt` = qbt+1
k or432

bt` = m1b
t+1
j −m2b

t+1
k . In either case ` will be odd and we define rt+1

` :=
√
p` and433

at+1
` , ât+1

` ∈ Q+ such that rt+1
` ∈ (at+1

` , ât+1
` )≤R and ât+1

` − at+1
` < 1/2t+1.434

For the other indices involved in an added dependency relation, we split into435

cases depending on the type of relation added.436

(1) If we add a dependency of the form bt` = qbt+1
k , then we set rt+1

k := rtk.437

The action of the diagonalization strategy will ensure that we can choose438

at+1
k , ât+1

k ∈ Q+ such that (at+1
k , ât+1

k )≤R ⊆ (atk, â
t
k)≤R , ât+1

k −at+1
k < 1/2t+1

439

and440

(qat+1
k , qât+1

k )≤R ⊆ (at`, â
t
`)≤R (2)

(2) If we add a dependency of the form bt` = m1b
t+1
j − m2b

t+1
k , then we set441

rt+1
j := rtj and rt+1

k := rtk. We will be in one of two contexts.442

2(a). If we are in a context in which (in R)443

0 < natk < nâtk < at` < ât` < atj < âtj < (n + 1)atk < (n + 1)âtk, (3)

then we will choose m1,m2 ∈ N such that m1 ≤ m2/n and444

(m1a
t+1
j −m2â

t+1
k ,m1â

t+1
j −m2a

t+1
k )≤R ⊆ (at`, â`

t)≤R . (4)

2(b). If we are in a context in which (in R)445

0 < natk < nâtk < atj < âtj < at` < ât` < (n + 1)atk < (n + 1)âtk, (5)

then we will choose m1,m2 ∈ N such that m1 ≤ m2(n + 1) and446

(m1a
t+1
k −m2â

t+1
j ,m1â

t+1
k −m2a

t+1
j )≤R ⊆ (at`, â

t
`)≤R . (6)

By Lemma 3.5 (given below), in each of these contexts, there are infinitely447

many such choices for m1 and m2 satisfying the given conditions. Moreover,448
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we can assume that m1 and m2 satisfy the divisibility conditions required449

by the general group construction.450

To explain why appropriate m1,m2 ∈ N exist for the two contexts above, we451

rely on the following fact about the reals.452

Lemma 3.4. Let r1 and r2 be positive reals that are linearly independent over Q.453

For any rational numbers q1 < q2 and any integer d ≥ 1, there are infinitely many454

m1,m2 ∈ N such that m1r1 −m2r2 ∈ (q1, q2)≤R and both m1 and m2 are divisible455

by d.456

Lemma 3.5. If we are in the context of (3) (respectively (5)), then there are457

infinitely many choices for m1 and m2 that are divisible by any fixed integer d ≥ 1458

and satisfy (4) (respectively (6)).459

Proof. First, suppose we are in the context of (3). We have that btj and btk are460

currently identified with the rational multiples rtj and rtk of
√
pj and

√
pk re-461

spectively, so rtj and rtk are linearly independent over Q. Hence, by Lemma 3.4462

(requiring m1 and m2 to be divisible by nd where n comes from the context (3)463

and d comes from the statement of this lemma), there are infinitely many choices of464

m1,m2 ∈ N such that m1r
t
j −m2r

t
k ∈ (at`, â

t
`)≤R . We let m̃2 := m2

n . We can choose465

at+1
j , ât+1

j , at+1
k , ât+1

k ∈ Q with at+1
j < rtj < ât+1

j and at+1
k < rtk < ât+1

k satisfying466

(4) by shrinking the intervals (atj , â
t
j)≤R and (atk, â

t
k)≤R appropriately.467

It remains to see why we must have m1 ≤ m2

n = m̃2. Suppose m1 > m2

n = m̃2,468

so m1 − 1 ≥ m̃2. Then469

m1r
t
j − m̃2nr

t
k = rtj + (m1 − 1)rtj − m̃2nr

t
k

≥ rtj + m̃2r
t
j − m̃2nr

t
k

= rtj + m̃2(rtj − nrtk)

> rtj

because rtj − nrtk > 0 by (3). We have reached a contradiction since470

m1r
t
j − m̃2nr

t
k ∈ (at`, â

t
`)≤R and rtj ∈ (atj , â

t
j)≤R but ât` < atj . So, m1 ≤ m2

n = m̃2 as471

desired.472

Now suppose we are in the context of (5). Since rtj and rtk are linearly independent473

over Q, by Lemma 3.4 (requiring m1 and m2 to be divisible by (n + 1)d) there are474

infinitely many choices of m1,m2 ∈ N such that m1r
t
k −m2r

t
j ∈ (at`, â

t
`)≤R . We let475

m̃1 := m1

(n+1) . As before, we can choose at+1
j , ât+1

j , at+1
k , ât+1

k ∈ Q satisfying (6).476

It remains to see why m1 = m̃1(n + 1) ≤ m2(n + 1). Suppose477

m1 = m̃1(n + 1) > m2(n + 1), so m̃1 − 1 ≥ m2. Then478

m1r
t
k −m2r

t
j = m̃1(n + 1)rtk −m2r

t
j

≥ m̃1(n + 1)rtk − (m̃1 − 1)rtj

> m̃1(n + 1)rtk − (m̃1 − 1)(n + 1)rtk

= (n + 1)rtk.

The first inequality follows because m̃1− 1 ≥ m2 and rtj is positive, and the second479

inequality follows because rtj < (n + 1)rtk by (5). We have reached a contradiction480

since m1r
t
k −m2r

t
j ∈ (at`, â

t
`)≤R but ât` < (n + 1)atk. �481
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We define ≤G on G by x ≤G y if and only if x ≤s y for some s. We verify482

that ≤G is a computable order under the assumptions that each approximate basis483

element bsi eventually reaches a limit and that we choose our intervals and associated484

rationals in the manner described above.485

Lemma 3.6. The relation ≤G is a computable order on G. Furthermore, G is clas-486

sically isomorphic to an ordered subgroup of (R; +, 0R) under the standard ordering.487

Proof. We begin by verifying the following properties of the construction.488

(1) For every pair of elements x, y ∈ Gs, if x ≤s y, then x ≤s+1 y.489

(2) For each i, the limit ri := lims r
s
i exists and is a rational multiple of

√
pi.490

Furthermore, once rsi reaches its limit, the rational intervals (ati, â
t
i)≤R for491

t ≥ s form a nested sequence converging to ri.492

(3) For each pair x, y ∈ Gs, there is a stage t ≥ s for which either x ≤t y or493

y ≤t x.494

Proof of (1). It suffices to show that for each g ∈ Gs, the interval constraint for g495

at stage s + 1 is contained in the interval constraint for g at stage s. This fact496

follows from three observations. Fix g ∈ Gs. First, if qsi b
s
i occurs in the sum for g497

at stage s and the index i is not involved in an added dependency relation, then498

qs+1
i = qsi and (as+1

i , âs+1
i )≤R ⊆ (asi , â

s
i )≤R . Therefore, the constraint imposed on g499

by these terms at stage s + 1 is contained in the constraint imposed at stage s.500

Second, suppose we add a dependency relation of the form bs` = qbs+1
k and501

qs` 6= 0. From stage s to stage s+ 1, the qskb
s
k + qs`b

s
` part of the sum for g turns into502

(qsk+qqs` )bs+1
k +0bs+1

` where bs+1
k = bsk. Since the constraint on rs+1

` plays no role in503

the constraint on g at stage s+1 and since we have, by (2), that (qas+1
k , qâs+1

k )≤R ⊆504

(as` , â
s
`)≤R , it follows that the constraint imposed by the indices k and ` at stage505

s + 1 is contained in the constraint imposed at stage s.506

Third, if we add a dependency relation of the form bs` = m1b
s+1
j − m2b

s+1
k ,507

then a similar analysis using (4) and (6) yields that the constraint imposed by the508

indices j, k and ` at stage s + 1 is contained in the constraint imposed at stage s.509

Proof of (2). We have rs+1
i 6= rsi only when bs+1

i 6= bsi . Since the latter happens510

only finitely often, each rsi reaches a limit. The remainder of the statement is511

immediate from the construction.512

Proof of (3). Since x ≤s x for all x ∈ Gs, we consider distinct elements x, y ∈ Gs.513

Let t ≥ s be a stage such that x and y have reached their limiting sums and such514

that for each bti occurring in these sums, the real rti has reached its limit ri. Because515

the reals ri are algebraically independent over Q and the nested approximations516

(aui , â
u
i )≤R (for u ≥ t) converge to ri, there is a stage at which the interval constraints517

for x and y are disjoint. At the first such stage, we declare an ordering relation518

between x and y.519

Proof of Lemma. By Statements (1) and (3), ≤G is computable and every pair of520

elements is ordered. By construction, the ∆0
2-map from G to R that sends521

q0b0 + q1b1 · · ·+ qnbn 7→ q0 + q1r1 + · · ·+ qnrn

is order preserving. �522

Part 3. Building C and Diagonalizing. It remains to show how to use this523

general construction method to build the ordered group (G;≤G) together with a524
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noncomputable c.e. set C such that the only C-computable orders on G are ≤G525

and ≤∗G .526

The requirements527

Se : Φe total =⇒ C 6= Φe

to make C noncomputable are met in the standard finitary manner. The strategy528

for Se chooses a large witness x, keeps x out of C, and waits for Φe(x) to converge529

to 0. If this convergence never occurs, the requirement is met because x 6∈ C. If the530

convergence does occur, then Se is met by enumerating x into C and restraining C.531

The remaining requirements are532

Re : If ΦC
e (x, y) is an ordering on G, then ΦC

e is either ≤G or ≤∗G .

We explain how to meet a single Re in a finitary manner, leaving it to the reader533

to assemble the complete finite injury construction in the usual manner. After534

explaining one requirement in isolation, we examine the interaction between Re535

strategies in detail to clarify the finitely nature of the construction.536

To simplify the notation, we let ≤C
e be the binary relation on G computed by ΦC

e .537

We will assume throughout that ≤C
e never directly violates any of the Π0

1 conditions538

in the definition of a group order. For example, if we see at some stage s that ≤C
e539

has violated transitivity, then we can place a finite restraint on C to preserve these540

computations and win Re trivially.541

The strategy to satisfy Re is as follows. For Re, we set the basis restraint542

K := e. (This restraint is used in the verification that each Ns
i reaches a limit.)543

If ≤G 6=≤C
e and ≤∗G 6=≤C

e , then there must eventually be a stage s, an approximate544

basis element bsj , a nonnegative integer n, and an even index k > K such that:545

• we have declared 0 <s nb
s
k <s b

s
j <s (n + 1)bsk in Gs, and546

• the order ≤C
e has declared either (a) bsk >C

e 0G and either bsj <C
e nbsk or547

bsj >
C
e (n + 1)bsk, or (b) bsk <C

e 0G and either bsj >
C
e nbsk or bsj <

C
e (n + 1)bsk.548

We verify such objects exist in Lemma 3.9. In the latter case, we work with the549

ordering ≤C∗

e , transforming the latter case into the former case. We therefore550

assume that we are in the former case.551

While waiting for these witnesses, the construction of G proceeds as in the general552

description with no dependencies added. When such s, bsj , n, and k are found, we553

say Re is activated, and we restrain C to preserve the computations ordering 0G ,554

bsj , nb
s
k, and (n + 1)bsk.555

At stage s+1 (without loss of generality, we assume s+1 is odd), we order the new556

approximate basis element bs+1
s+1 depending on whether bsj <

C
e nbsk or bsj >

C
e (n+1)bsk.557

We say that Re is set up to diagonalize with diagonalization witness bs+1
s+1.558

(D1) If bsj <C
e nbsk, we order bs+1

s+1 so that nbsk <s+1 bs+1
s+1 <s+1 bsj , that is, we559

choose rs+1
s+1 to be a rational multiple of

√
ps+1 and rationals as+1

s+1 and âs+1
s+1560

so that nâsk < as+1
s+1 < rs+1

s+1 < âs+1
s+1 < asj and âs+1

s+1 − as+1
s+1 < 1/2s+1.561

(D2) If bsj >C
e (n + 1)bsk, we order bs+1

s+1 so that bsj <s+1 bs+1
s+1 <s+1 (n + 1)bsk,562

that is, we choose rs+1
s+1 to be a rational multiple of

√
ps+1 and ra-563

tionals as+1
s+1 and âs+1

s+1 so that âsj < as+1
s+1 < rs+1

s+1 < âs+1
s+1 < (n + 1)ask and564

âs+1
s+1 − as+1

s+1 < 1/2s+1.565

We then wait for a stage t+ 1 so that ≤C
e declares bts+1 <C

e nbsk or nbsk <C
e bts+1 <C

e566

(n+1)bsk or bts+1 >C
e (n+1)bsk. While waiting, we assume that no higher priority Si567
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strategy enumerates a number into C below the restraint and that buj = bsj , b
u
k = bsk,568

and bus+1 = bs+1
s+1 at all stages u ≥ s + 1 until Re finds such a stage t + 1 or569

for all u ≥ s + 1 if Re never sees such a stage. (We discuss how to handle Re570

if either of these conditions is violated below when we examine the interaction571

between strategies.) If these conditions hold, then we say Re has been activated572

with potentially permanent witnesses.573

We assume that such a stage t + 1 is found, else Re is trivially satisfied. At574

stage t + 1, Re acts to diagonalize by restraining C to preserve the computations575

ordering bts+1, nbtk, and (n + 1)btk under ≤C
e and adding a dependency relation as576

follows.577

Case 1. If ≤C
e declares bts+1 <C

e nbtk or bts+1 >C
e (n + 1)btk, then we will add a578

relation of the form bts+1 = qbt+1
k . Since nbtk <t b

t
s+1 <t (n + 1)btk, we know that579

nrtk <R ats+1 <R âts+1 <R (n + 1)rtk.

There are infinitely many rationals q ∈ (n, n+ 1)≤R such that qrtk ∈ (as+1, â
t
s+1)≤R .580

For each such q, there are rationals at+1
k and ât+1

k such that581

rt+1
k = rtk ∈ (at+1

k , ât+1
k )≤R ⊆ (atk, â

t
k)≤R ,

ât+1
k − at+1

k ≤R 1/2t+1, and (qat+1
k , qât+1

k )≤R ⊆ (ats+1, â
t
s+1)≤R . Choose q, at+1

k ,582

and ât+1
k to be the first rationals meeting these conditions such that the assignment583

of sums to elements of Gt remains one-to-one.584

These choices satisfy the necessary requirements for both the group construction585

and the ordering construction. Furthermore, we have successfully diagonalized586

against ≤C
e being an ordering of G since any order under which bt+1

k = btk is positive587

must place bts+1 between nbt+1
k and (n + 1)bt+1

k . However, 0G <C
e bt+1

k and either588

bts+1 <C
e nbtk or bts+1 >C

e (n + 1)btk.589

Case 2. If ≤C
e declares nbtk <C

e bts+1 <C
e (n+ 1)btk, then we know 0G <C

e bts+1 since590

0G <C
e btk. We act depending on whether bts+1 <t b

t
j or bts+1 >t b

t
j .591

Case 2(a): If bts+1 <t b
t
j , then it is because we acted in (D1) and hence we592

know that bt+1
j <C

e nbt+1
k and we are in the context of Equation (3) with593

` = s+1. Let d be the product of all denominators of coefficients qts+1 for all594

g ∈ Gt. We declare bts+1 = m1b
t+1
j −m2b

t+1
k for positive integers m1 and m2595

both divisible by d that satisfy m1 ≤N m2/n and the ordering constraints in596

Equation (4) and maintain the one-to-one assignment of sums to elements597

of Gt+1. (This choice is possible by Lemma 3.5.)598

To see that we have successfully diagonalized, we show that ≤C
e must vio-599

late the order axioms. Since bts+1 = m1b
t+1
j −m2b

t+1
k and 0G <C

e bts+1, b
t+1
k ,600

we know 0G <C
e bt+1

j . Because m1 ≤N m2/n and 0G <C
e bt+1

j , we have601

bts+1 = m1b
t+1
j −m2b

t+1
k ≤C

e (m2/n)bt+1
j −m2b

t+1
k .

By our case assumption that bt+1
j <C

e nbt+1
k , we get602

bts+1 ≤C
e (m2/n)bt+1

j −m2b
t+1
k <C

e (m2/n)nbt+1
k −m2b

t+1
k = 0G .

We have arrived at a contradiction since we have both 0G <C
e bts+1 (since603

we are in Case 2) and bts+1 <C
e 0G by this calculation.604
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Case 2(b): If bts+1 >t b
t
j , then it is because we acted in (D2) and hence we605

know (n + 1)bt+1
k <C

e bt+1
j and we are in the context of Equation (5) with606

` = s+ 1. Let d be as in Case 2(a) and declare bts+1 = m1b
t+1
k −m2b

t+1
j for607

positive integers m1 and m2 both divisible by d that satisfy m1 ≤N m2(n+1)608

and the ordering constraints in Equation (6) and maintain the one-to-one609

assignment of sums to elements of Gt+1 (again by Lemma 3.5.)610

We show that <C
e must violate the order axioms. Since 0G <C

e bt+1
k and611

m1 ≤N m2(n + 1), we have612

bts+1 = m1b
t+1
k −m2b

t+1
j ≤C

e m2(n + 1)bt+1
k −m2b

t+1
j .

By our case assumption that (n + 1)bt+1
k <C

e bt+1
j , we have613

bts+1 ≤C
e m2(n + 1)bt+1

k −m2b
t+1
j <C

e m2b
t+1
j −m2b

t+1
j = 0G .

Again, we have arrived at a contradiction since 0G <C
e bts+1 (since we are614

in Case 2) and bts+1 <C
e 0G (by this calculation).615

This completes our description of the action of a single requirement Re.616

In the full construction, we set up priorities between Si requirements and Re617

requirements in the usual way. If i < e, then Si is allowed to enumerate its diago-618

nalizing witness even if it destroys a restraint imposed by Re, but if e ≤ i, then Si619

must pick a new large witness when Re imposes a restraint.620

There is also a potential conflict between different Re requirements. Con-621

sider requirements Re and Ri involved in the following scenario. Assume that622

at stage s0, Ri is the highest priority activated requirement with witnesses bs0j0 , bs0k0
,623

and n0. At stage s0+1,Ri sets up to diagonalize with witness bs0+1
s0+1 (via either (D1)624

or (D2)). At stage s1 > s0, while Ri is still waiting to diagonalize, Re is activated625

with witnesses bs1j1 , bs1k1
, and n1 with j1 = s0 + 1. Then Re sets up to diagonalize626

with bs1+1
s1+1 at stage s1 + 1.627

At stages after s1+1,Re is waiting for≤C
e to declare an ordering relation between628

certain elements (which may never appear) and it needs to maintain buj1 = bs1j1629

(which means bus0+1 = bs1s0+1) to remain in a position to diagonalize. On the other630

hand, when Ri sees ≤C
i declare the appropriate order relations, it wants to add a631

dependency of the form bts0+1 = qbt+1
k0

or bts0+1 = m1b
t+1
j0

+ m2b
t+1
k0

which would632

cause bt+1
s0+1 (and hence bt+1

j1
) to be redefined.633

In this scenario, if e < i, then when Re sets up to diagonalize at stage s1 + 1, it634

cancels Ri’s claim on the diagonalizing witness bs0+1
s0+1, thus removing the potential635

conflict. The requirement Ri remains activated (since the appropriate ≤C
i com-636

putations have been preserved) and at the next odd stage s2 + 1 at which Ri is637

the highest priority activated requirement, it will set up to diagonalize with a new638

witness bs2+1
s2+1.639

If i < e, then no cancelation of setup witnesses takes place when Re sets up to640

diagonalize. If Re acts to diagonalize first, there is no conflict because Re adds a641

dependency relation which causes bt+1
s1+1 to be redefined, but leaves bt+1

j1
= btj1 (and642

hence bt+1
s0+1 = bts0+1). If Ri acts first, then it does cause bt+1

s0+1 (and hence bt+1
j1

) to643

be redefined, injuring Re. In this case, the witnesses in the activation for Re were644

not potentially permanent and Re is deactivated and has to look for new activating645

witnesses.646
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Thus, in the full construction, an Re requirement can be injured by a higher647

priority Si requirement (which becomes permanently satisfied) or by a higher pri-648

ority Ri requirement (either because Ri diagonalizes and is permanently satisfied649

or because Ri cancels Re’s diagonalizing witness and Re can pick a new diagonal-650

izing witness with the same activation witnesses). Thus, the full construction is651

finite injury.652

To verify the construction succeeds, we show that the limits lims b
s
i and lims N

s
i653

exist and that if ≤C
e is an order but is not equal to ≤G or ≤∗G , then Re is eventually654

activated with potentially permanent witnesses.655

Lemma 3.7. The limit bi := lims b
s
i exists for all i.656

Proof. The only approximate basis elements which are redefined are those chosen as657

diagonalizing witnesses by some Re requirement. Therefore, at stage s + 1, if bs+1
s+1658

is not chosen as a diagonalizing witness, then it is never redefined. If bs+1
s+1 is chosen659

as a diagonalizing witness by Re, then it can be redefined at most once when Re660

acts to diagonalize. �661

Lemma 3.8. The limit Ni := lims N
s
i exists for all i.662

Proof. The only time Ns+1
i 6= Ns

i is when we add a dependency relation of the663

form bs` = qbs+1
k causing Ns+1

k = dqdN
s
k . However, in this case, the index k is even664

and a requirement Re can only add such a dependency if k > K = e. Therefore,665

only Re with e < k can cause Ns
k to changes value. Since these requirements only666

act finitely often, the value of Ns
k changes only finitely often. �667

Lemma 3.9. If we fail to find a stage s where Re is activated with potentially668

permanent witnesses, then either ≤C
e is not an order or ≤G=≤C

e or ≤∗G=≤C
e .669

Proof. Assume that ≤C
e is an order on G. Let s′ be a stage such that all higher670

priority requirements have finished acting by s′. It suffices to show that if we fail671

to find a stage s ≥ s′ at which Re is activated with some witnesses bsj , n, and k,672

then ≤C
e is equal to ≤G or ≤∗G .673

First, we claim that if we fail to find a stage s′ ≥ s at which Re is activated,674

then either 0G <C
e bj for all j or bj <

C
e 0G for all j.675

To prove this claim, suppose that Re is never activated after s′ and that j0676

and j1 are indices with bj1 <C
e 0G <C

e bj0 . Fix a stage s ≥ s′ such that bsj1 = bj1 ,677

bsj0 = bj0 and bj1 <C
e 0G <C

e bj0 is permanently fixed by stage s. Consider a stage678

t ≥ s and an even index k greater than the basis restraint for Re such that btk = bk679

has reached its limit and there are n0, n1 ∈ ω for which680

0G <t n0b
t
k <t b

t
j0 <t (n0 + 1)btk and 0G <t n1b

t
k <t bj1 <t (n1 + 1)btk.

Since ≤C
e is an order, there must be a stage u ≥ t at which it declares either681

0G <C
e buk or buk <C

e 0G permanently.682

If 0G <C
e buk , then we must eventually see bvj1 <C

e 0G <C
e n1b

v
k for some v ≥ u.683

Therefore,Re is activated at stage v (with j = j1, k = k, and n = n1) for the desired684

contradiction. Alternately, if buk <C
e 0G , then we must eventually see n0b

v
k <C

e685

0G <C
e bvj0 for some v ≥ u. Again, Re is activated at stage v (with j = j0, k = k,686

and n = n0) for the desired contradiction. This completes the proof of the claim.687

To complete the proof of this lemma, assume that Re is never activated after s′688

and 0G <C
e bj for all j. We show that ≤C

e =≤G . It follows by a similar argument689

that if bj <
C
e 0G for all j, then ≤C

e =≤∗G .690
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By construction, (G; +G , 0G ,≤G) can be embedded (as an ordered group) into691

(R; +R, 0R,≤R) by sending each basis element bi ∈ G to ri ∈ R. To show that692

≤G=≤C
e , it suffices to show that the same map is an ordered group embedding of693

(G; +G , 0G ,≤C
e ) into (R; +R, 0R,≤R).694

For each even index k, we fix n0,k ∈ ω such that695

n0,kbk ≤G b0 ≤G (n0,k + 1)bk.

By the construction, this condition is equivalent to n0,krk ≤R r0 ≤R (n0,k + 1)rk.696

Since k is even, we have (n0,k + 1)rk − n0,krk = rk ≤ 1/2k and hence697

lim
k→∞

n0,krk = lim
k→∞

(n0,k + 1)rk = r0 = 1

where the limits (and all limits throughout this lemma) are taken over even in-698

dices k. More generally, for each index i ∈ ω and each even index k, we fix ni,k ∈ ω699

such that700

ni,kbk ≤G bi ≤G (ni,k + 1)bk.

As above, this condition is equivalent to ni,krk ≤R ri ≤R (ni,k + 1)rk and we have701

lim
k→∞

ni,krk = lim
k→∞

(ni,k + 1)rk = ri.

Combining these limits, we have702

lim
k→∞

ni,k

n0,k + 1
= lim

k→∞

ni,krk
(n0,k + 1)rk

=
ri
1

= ri

and703

lim
k→∞

ni,k + 1

n0,k
= lim

k→∞

(ni,k + 1)rk
n0,krk

=
ri
1

= ri.

We now translate these results to (G,≤C
e ). Because Re is never activated af-704

ter s′ and 0G <C
e bk for all even k, the inequalities ni,kbk ≤C

e bi ≤C
e (ni,k + 1)bk705

hold for all i and all even k such that k is greater than the basis restraint706

for Re. In particular, combining the inequalities n0,kbk ≤C
e b0 ≤C

e (n0,k + 1)bk707

and ni,kbk ≤C
e bi ≤C

e (ni,k + 1)bk, we have708

ni,k

n0,k + 1
b0 ≤C

e bi ≤C
e

ni,k + 1

n0,k
b0

where this inequality is interpreted as representing the corresponding inequality709

after multiplying through by the denominators so all the coefficients are integers.710

(Alternately, this inequality can be viewed in the divisible closure of G using the711

fact that an order on an abelian group has a unique extension to an order on its712

divisible closure.) The limits above show that the map sending bi to ri defines an713

embedding of (G; +G , 0G ,≤C
e ) into (R; +R, 0R,≤R) as required. �714

4. Remarks and Open Questions715

Since the construction of the presentation G and the set C is a typical finite716

injury construction, certain modifications to the constructions are straightforward.717

Remark 4.1. Rather than building G so that there are exactly two computable718

orders, it is an easy modification to build exactly any even number or an infinite719

number of computable orders (with no other C-computable orders).720

For example, to build G with four computable orders, we double the number
of Re requirements. We build a computable order ≤0

G in which 0 <0
G b0 <0

G b1 and
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a computable order ≤1
G in which 0 <1

G b1 <1
G b0. For each of these orders, we meet

a slightly modified requirement for i ∈ {0, 1}:
Ri

e: If ΦC
e is an ordering of G, then 0G ≤C

e bi ≤C
e b1−i implies ≤C

e =≤i
G

and b1−i ≤C
e bi ≤C

e 0G implies ≤C
e = ≤i

G
∗
.

Note that this requirement suffices because (as shown in Lemma 3.9) if b0 and b1 lie721

on opposite sides of 0G under ≤C
e , then Ri

e will be activated and the diagonalization722

will guarantee that ΦC
e is not an order of G. Since these requirements are still723

finitary (both restraint and injury) in nature, these combine easily to yield the724

desired result.725

The result in Remark 4.1 contrasts with the classical situation. As mentioned in726

Section 1, a countable torsion free abelian group admits either two or continuum727

many orders. More generally, it is possible for a countable (nonabelian) group to728

admit either a finite number of orders greater than 2 or countably many orders. In729

the finite case, the number of orders must be even and the best known results are730

that is possible to have exactly 4n or 2(4n + 3) many orders (see [17] and [21]). It731

is an open question whether it is possible to get exactly 2n number of orders for732

each n.733

Remark 4.2. We note that the computably enumerable set C cannot be complete.734

The reason is that 0′ can compute a basis for any computable torsion-free abelian735

group G, and hence G has orders of degree 0′.736

We also note that, as long as the construction remains finitary (both restraint737

and injury), additional requirements on C can be added. For example, lowness re-738

quirements could be added, though this would be counter-productive (the weaker C739

is computationally, the weaker the result).740

Though making C computationally weak is counter-productive, we ask if it is741

possible to make C computationally strong.742

Question 4.3. Can the set C in Theorem 1.5 have high degree?743

Question 4.4. Does Theorem 1.5 remain true when G is allowed to be an arbitrary744

computable torsion-free abelian group?745

We end with a result concerning the general project of understanding the possible746

degree spectra of orders on computable torsion-free abelian groups.747

Proposition 4.5 (With Daniel Turetsky). If G is a computable presentation of748

a torsion-free abelian group with infinite rank, then deg(X(G)) contains infinitely749

many low degrees.750

Proof. We inductively show deg(X(G)) must contain at least n-many low degrees751

for all n. Fix two linearly independent elements g, h ∈ G and let T0 be a com-752

putable tree such that [T0] (the set of infinite paths through T0) contains exactly753

the orders ≤G on G satisfying754

0G <G g <G h <G 4g.

Note that the set of orders on G satisfying this constraint is a Π0
1 class and hence755

can be represented in this manner. The Low Basis Theorem applied to T0 yields756

a low order of some degree d0. To get a second order of low degree d1 6= d0, it757

suffices (as low over low is low) to build a nonempty d0-computable subtree T1 of T0758
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having no d0-computable paths. From this, we obtain a low (low over d0) order of759

some degree d1 not computable from d0.760

The subset T1 of T0 is constructed (using an oracle of degree d0) by killing761

paths that agree with the eth (candidate) d0-computable order ≤e on the relative762

ordering of g and h for a sufficiently large amount of precision. In particular, to763

diagonalize against ≤e, we attempt to find positive rationals q0 <Q q1 such that764

q1 − q0 < 2−e and q0g <e h <e q1g. If and when such rationals are found, we765

kill initial segments of T0 that specify q0g <G h <G q1g (if any exist). Notice766

that [T1] 6= ∅ as
∑∞

e=0 2−e = 2 < 4 and as for every q ∈ (1, 4)≤R and rational ε > 0,767

there is an order on G with (q − ε)g < h < (q + ε)g.768

To get a third order of low degree d2 6∈ {d0,d1}, we repeat this process to con-769

struct a (d0⊕d1)-computable subtree T2 of T1 such that T2 has no d1-computable770

paths. We note that T2 cannot have any d0-computable paths as it is a subtree771

of T1. The only change we need to make is to require the rationals q0 and q1 (being772

used to diagonalize against the eth (candidate) d1-computable order ≤e) to satisfy773

q1 − q0 < 2−(e+1). Since
∑∞

e=0 2−(e+1) = 1 < 2, we guarantee that [T2] 6= ∅.774

Continuing to repeat this process in the obvious way yields the proposition. �775

Note that this proposition also holds for other classes of degrees which form776

a basis for Π0
1 classes and relativize in the appropriate manner. For example,777

deg(X(G)) must contain infinitely many hyperimmune-free degrees.778
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