
COMPUTING STRATEGIES FOR MULTIPLE COPS ON

INFINITE GRAPHS

ALEXA MCLEOD AND REED SOLOMON

1. Introduction

The game of cops and robbers was introduced independently in Quilliot [14] and
in Nowakowski and Winkler [13]. The original game is played on a graph G by
two players: the cop and the robber. The game begins with the cop, followed by
the robber, choosing a vertex on which to start. In subsequent rounds, the players
take turns (with the cop going first) moving from their current vertex to one of the
neighboring vertices. The game ends, and the cop wins, if she shares a vertex with
the robber at any point in the play. The robber wins if he manages to avoid ever
sharing a vertex with the cop.

There are two standard assumptions made on the graphs used in this game. First,
the robber can always win when the game is played on a disconnected graph by
choosing a starting node in a different component from the cop’s starting position.
To avoid this triviality, we assume our graphs are connected. Second, to allow the
players to choose to remain on their current vertex in any given round, we assume
the edge relation is reflexive. We make the additional assumption here that our
graphs are at most countable because our eventual concern is with computable
graphs and strategies.

Cops and robbers is an open game, and therefore, for any fixed graph G, one
of the players has a winning strategy when the game is played on G. G is called
cop-win when the cop has a winning strategy and robber-win otherwise (when the
robber has a winning strategy). Nowakowski and Winkler [13] gave two structural
characterizations of cop-win graphs. The first characterization applies to finite
graphs and shows there is a polynomial time algorithm to determine if a finite
graph is cop-win. The second characterization applies to all graphs and was used
by Stahl [16] to show the index set of computable cop-win graphs is Π1

1-complete.
From the perspective of computability theory, we would like to understand the

complexity of strategies required to win this game on computable graphs. It is
not difficult to use trees to code information into robber-win strategies. For each
computable ordinal α, Stahl [16] gave an example of a computable graph that is
robber-win and such that every robber-win strategy computes 0(α). It is more
challenging to deal with cop-win strategies. Nonetheless, Stahl [16] constructed a
computable graph that is classically cop-win but not by a computable cop strategy.

In this paper, we extend these results to a variation of cops and robbers in which
there are multiple cops. The version with n cops is played in rounds as before. In
the initial round, the player controlling the cops chooses a starting vertex for each
cop, after which the player controlling the robber chooses a starting vertex for the
robber. In the subsequent rounds, each cop moves to a neighboring vertex, followed

1

2 ALEXA MCLEOD AND REED SOLOMON

by the robber moving to a neighboring vertex. The cops win if any cop shares a
vertex with the robber at any point in the play, and otherwise, the robber wins.

The game with n cops is still an open game, so for any n and G, there is either a
winning strategy for the n cops (and G is n-cop-win) or there is a winning strategy
for the robber (and G is robber-win or not n-cop-win to emphasize the number of
cops in the game). Note that if n = |G|, then G is n-cop-win because the player
for the cops can place one cop on each vertex in the initial round.

The minimum number of cops required to win on a fixed graph G is called the
cop-number of G, denoted c(G). This notion is well studied for finite graphs and
there are many results in the literature giving upper and lower bounds for various
classes of graphs. For example, c(G) ≤ 3 for finite planar graph G (by Aigner and
Fromme [1]), while c(G) ≤ 2 for finite outerplanar graphs (by Clarke [7]).

In Section 2, we consider the complexity of strategies in the game with n cops
on computable graphs. We show that Stahl’s examples for coding information into
robber strategies continue to work in this context. More interestingly, for each
n ≥ 2, we construct a computable graph G such that G is cop-win classically,
G can be won by n cops following a computable strategy, but G cannot be won
by n − 1 cops following a computable strategy. Thus we can achieve any desired
“computable cop-number” with a graph which is classically cop-win.

In Section 3, we show that for each n ≥ 2, the index set of computable graphs that
are n-cop-win is Π1

1-complete. The hardness half of this result comes directly from
Stahl [16], but to show that the index set is Π1

1, we use a structural characterization
of n-cop-win graphs by Clarke and MacGillivray [8].

Our notation for computability theory is standard and follows Soare [15] and
Ash and Knight [2]. Bonato and Nowakowski [5] and Bonato [4] are excellent
introductions to cops and robbers and to vertex pursuit games (and other games
on graphs) more generally.

2. Computable strategies

We consider the game of cops and robbers with n cops on a reflexive connected
graph G with vertices {vn | n ∈ ω}. For determining whether G is n-cop-win
or robber-win, there is no loss of generality in requiring all the cops to start the
game at v0. That is, suppose the cops are initially placed at v0, but a cop-winning
strategy wants the cops to start elsewhere. Since G is connected, each cop can
move along a path from v0 to their desired starting vertex in the opening rounds
of the game. Once all of the cops have reached their locations, they can follow the
cop-winning strategy.

To formalize the definition of a strategy, we denote the position of the robber in
round i by ri ∈ ω (indicating that the robber is on vri) and the positions of the
n cops by a string γi ∈ ωn (indicating that the k-th cop is on vγi(k)). Since we
assume the cops start at v0, we have γ0 = 0n.

The history of the game at any point can be represented by a tuple of the form
⟨γ0, r0, γ1, r1, . . . , γj⟩ or ⟨γ0, r0, γ1, r1, . . . , γj , rj⟩, depending on whether the cops or
the robber moved last. The sequence represents a legal play as long as γ0 = 0n

and there are edges between vri and vri+1
and between γi(k) and γi+1(k) for each

k < n. The sequence represents a cop win if there is an i and k < n such that
ri = γi(k) or ri = γi+1(k).

COMPUTING STRATEGIES FOR MULTIPLE COPS ON INFINITE GRAPHS 3

Coding sequences by numbers, the states of the game become elements of ω.
An n-cop strategy on a graph G is a function f : ω → ω that takes (a code for) a
state of the game as input and outputs an allowable cop move. More formally, if m
represents a legal state of the game ⟨γ0, r0, . . . , γj , rj⟩, then f(m) is (the code for)
an n-tuple τ such that ⟨γ0, r0, . . . , γj , rj , τ⟩ is a legal move.

We say that a (finite or infinite) play of the game γ0, r0, γ1, r1, . . . follows the
n-cop strategy f if γ0 = 0n and γi+1 = f(⟨γ0, r0 . . . , γi, ri⟩) for each i. An n-cop
strategy f is winning if the cops win every legal play that follows f .

Analogously, a robber strategy on G is a function f : ω → ω that outputs an
allowable robber move when it is the robber’s turn. The play γ0, r0, γ1, r1, . . .
follows the robber strategy f if ri = f(⟨γ0, r0 . . . , γi⟩) for each i. A robber strategy
f is winning if the robber wins every legal play that follows f .

Note that the set of strings representing legal plays on a computable graph G is
computable. A computable n-cop strategy for G is a total computable function f
that is an n-cop strategy for G.

We use known results to code information into robber strategies. We can view a
tree T ⊆ ω<ω as a graph by letting the elements of T be the nodes in the graph and
putting an edge between each node and its immediate successors on T (e.g. between
σ and σ⌢n, if both are on T). Without loss of generality, we assume v0 is the root
of the tree. If T has an infinite path, then the corresponding graph is robber-win
because the robber can move along the infinite path ahead of the cop. Otherwise,
T is cop-win because the cop can chase the robber to a leaf. Building on this
intuition, Stahl [16] proved that any robber-win strategy on T computes an infinite
path. Her argument to code hyperarithmetic sets into robber-win strategies carries
over immediately to games with n-cops.

Lemma 2.1 (Stahl [16]). Let T ⊆ ω<ω be a tree with an infinite path. Every
robber-win strategy computes an infinite path in T .

Theorem 2.2. For each computable ordinal α and n ≥ 1, there is a robber-win
graph in the game with n cops such that every robber-win strategy computes 0(α).

Proof. Let T be a computable tree with infinite paths such that every path com-
putes 0(α). We assume without loss of generality that all the cops start at the root
node. Because the graph is a tree, there is a unique shortest path between the cops
and the robber and the distance-minimizing strategy of moving directly towards
the robber is the optimal cop strategy. It follows that there is no advantage from
having n cops and hence Lemma 2.1 (or more precisely, its proof) applies in this
context as well. □

Turning to cop strategies, for each n ≥ 2, we show there is a computable graph
that can be won computably by n cops but not by n− 1 cops, with no limitations
on the complexity of the robber strategy. Furthermore, we realize this behavior on
graphs that are classically cop-win by a single cop.

Theorem 2.3. For each n ≥ 2, there is a computable graph Gn that is cop-win, has
a computable n-cop winning strategy, but does not have a computable (n − 1)-cop
winning strategy.

Proof. Fix n ≥ 2. We suppress the subscript n, writing G in place of Gn. Initially,
G consists of a root node v0 (where the cops start) attached to infinitely many
nodes xe extended by two node chains as shown in Figure 1.

4 ALEXA MCLEOD AND REED SOLOMON

v0

x0

a00

a01

x1

a10

a11

· · · xe

ae0

ae1

· · ·

Figure 1. Initial set-up for G.

To diagonalize against the partial computable function Φe being an (n − 1)-
cop winning strategy, we build a subgraph called the e-section starting with the
nodes xe, ae0 and ae1. The e-sections are disjoint and only accessible through xe,
so we construct them independently. We assume the reflexive edges are added
automatically and will not explicitly mention them or show them in diagrams.

To decide how to expand the e-section, we simulate a play of the game with n−1
cops, allowing Φe to control cops. In the simulated game, the robber starts at ae1.
We do not add points to the e-section unless Φe moves a cop into a position adjacent
to the robber. At that stage, we expand the e-section to give the robber an escape
route in a controlled way so that G remains cop-win and so that n computable cops
can win on G. For ease of notation, we fix e and drop the superscripts.

Consider Φe on the initial cop position 0n−1 (i.e. all start at v0) and the initial
robber position a1. At each stage s, we check if Φe,s(⟨0n−1, a1⟩) converges, and if
so, whether it moves a cop to a0. If Φe,s(⟨0n−1, a1⟩) ↓= γ1 but a0 is not one of
the cop positions in γ1, then we leave the robber at a1 in our simulation and at
future stages, check Φe,s(⟨0n−1, a1, γ1, a1⟩). We continue this process each time Φe

converges without placing a cop at a0 (assuming Φe outputs legal moves).
More formally, suppose we have completed the j-th round without the cop posi-

tions γ1, . . . , γj containing a0. If we see Φe,s(⟨0n−1, a1, . . . , γj , a1⟩)↓= γj+1 but a0
is not one of the cop positions in γj+1, then we check Φe(⟨0n−1, a1, . . . , γj+1, a1⟩)
at future stages. We refer to this process as “watching Φe while keeping the robber
at a1 until a cop is moved adjacent to a1.”

If Φe outputs a non-legal move, then Φe has lost already and we can stop building
the e-section. Therefore, without loss of generality, we assume whenever Φe outputs
a tuple γj+1 representing the cop positions, each node γj+1(k) has already been
placed in G with an edge to the node γj(k).

If Φe eventually moves a cop to a0, then we add vertices a2 and y0i , for i < n, to
the e-section with edges from a2 to a1 and from each each y0i to a0, a1, a2 and x.
For readability, we show the connections just from y00 in Figure 2. (Note that the
y0i nodes are not connected to each other.)

No cop in the simulated game is currently at a neighbor of a2, because we just
added the y0i nodes and because no cop can be at a1 since the first cop only just
arrived at a0. Therefore, in our simulated game, we can move the robber to a2
knowing that each cop is at least two nodes away from a2.

We now enter the main loop of the construction of the e-section. We continue the
process described above to compute the movement of the cops under Φe, keeping

COMPUTING STRATEGIES FOR MULTIPLE COPS ON INFINITE GRAPHS 5

a2

a1

a0

x

y00

y01
·
·
·

y0n−1

Figure 2. Nodes added when a cop moves adjacent to a1

a1

a3

a0

x

a2

z0

y10

y11

y1n−1

·
·
·

Figure 3. Nodes added when a cop moves adjacent to a2.

the robber at a2 unless a cop moves to a node adjacent to a2. If Φe never moves a
cop adjacent to a2, then the robber wins and Φe is not a winning strategy.

Suppose Φe moves a cop to a1 or some y0i . Since Φe only controls n− 1 cops, at
least one node y0j does not contain a cop. Let z0 denote such a node. We expand

the e-section by adding vertices a3 and y1i for i < n. We add edges from a3 to a2
and z0, and from each y1i to a2, a3, z0 and x. For readability, we only show the
edges from y10 in Figure 3 and we don’t show the y0i nodes other than z0.

We repeat this process. No cop is currently adjacent to a3 in the simulated game,
so we move the robber to a3 and continue to compute the trajectory of the cops
using Φe, keeping the robber at a3 unless a cop moves to an adjacent node.

If a cop moves to z0, a2, or some y1i , we expand the e-section by adding vertices
a4 and y2i for i < n. There is at least one y1j that does not contain a cop and we

let z1 denote such a node. We add edges from a4 to a3 and z1, and from each y2i to
a3, a4, z1 and x. In Figure 4, we only show edges from y20 and we don’t show the
y0i or y1i nodes other than z0 and z1.

In general, for k ≥ 1, when ak+2 is added, it is connected to ak+1, zk−1 and
each yki with i < n. We simulate the game using Φe with the robber at ak+2. If
Φe moves a cop to one of these neighbors of ak+2, the graph is expanded by adding
ak+3 and yk+1

i for i < n. We set zk to be a node of the form ykj that does contain

have a cop. We add edges from ak+3 to ak+2 and zk, and from each yk+1
i to ak+3,

ak+2, zk and x. We move the robber to ak+3 and continue the simulated game.

6 ALEXA MCLEOD AND REED SOLOMON

a1

a4

a3

a0

x

a2

z0

z1

y20

y21

y1n−1

·
·
·

Figure 4. Nodes added when a cop moves adjacent to a3.

This completes the description of the construction. Note that the e-section could
be finite or infinite. The nodes zk are connected to ak+1, ak+2, ak+3, x, y

k−1
i and

yk+1
i for i < n (except for z0 which is also connected to a0, and there are no nodes

y−1
i). The other nodes of the form yki are connected to ak+1, ak+2, x and zk−1

(except for y0i which is also connected to a0, and there is no node z−1).
In each e-section, we refer to the set of aj points as the vertical segment and

the set of points yji as the horizontal section. Importantly, x is connected to every
point in the horizontal section.

It remains to check the properties of G stated in the theorem. It is immediate
that if Φe is a computable (n − 1)-cop strategy, then the robber can beat Φe by
starting at the node ae1 and moving up the vertical segment of the e-section each
time a new node aek+1 appears (i.e. when Φe moves a cop adjacent to the robber).

Lemma 2.4. The graph G can be won with n cops following a computable strategy.

Proof. The cops start at v0, so we can assume the robber does not. Fix e such that
the robber starts in the e-section. In the first round, all the cops move to xe. The
remainder of the game will stay in the e-section, so we drop the superscripts. If
the robber’s next move is to the horizontal segment or to a0, then a cop can move
directly there and win. Therefore, assume the robber moves to ak with k ≥ 1.

If k ≥ 2, then the nodes yk−2
i for i < n are already in G. The cops move to place

one cop on each yk−2
i , so one of the cops is on zk−2. The nodes connected to ak

(if they exist in G) are ak−1, ak, ak+1, zk−3, and y
k−2
i and yk−1

i for i < n. There

are cops already on each yk−2
i . The nodes connected to zk−2 (if they exist in G)

are ak−1, ak, ak+1, and y
k−3
i (which includes zk−3) and y

k−1
i for i < n. Therefore,

zk−2 covers every other node the robber could move to.
If k = 1 and the nodes y0i have appeared in G, then the cops move to these nodes

and win as above. However, these nodes might not have appeared in G when the
cop has to move (and might never be added). In this case, the cops all move to a0.
If the robber remains at a1, then he loses on the next turn. Suppose the nodes a2
and y0i appear in G after the cops move to a0. If the robber moves to any node y0i ,

COMPUTING STRATEGIES FOR MULTIPLE COPS ON INFINITE GRAPHS 7

he loses on the next turn. Therefore, his only choice is to move to a2. The cops
can then move from a0 to the nodes y0i and proceed as above to win. □

Lemma 2.5. The graph G can be won by 1 cop following a classical strategy.

Proof. The cop starts at v0. We assume the robber starts in the e-section of the
graph and the cop moves to xe. As above, we assume the robber moves to ak with
k ≥ 1. The key difference in this lemma is that the classical cop knows the entire
graph at the end of the construction rather than having to respond at a finite stage
when the graph is not yet complete. The proof breaks into five cases.

Suppose the robber is at a1 and there is no node a2 in G. The cop moves to a0
and then to a1 to capture the robber.

Suppose the robber is at a1 or a2 and there is no node a3 in G. The cop moves
to a0. The only viable option for the robber is to move to (or stay on) a2. The cop
now moves to a1, which covers all the nodes connected to a2.

Suppose the robber is at ak for k ≥ 3 and there is no node ak+1 in G. The cop
moves to yk−2

0 . The only viable option for the robber is to move to yk−2
i for some

0 < i < n. The cop can move to zk−3 which covers all the nodes connected to yk−2
i .

Suppose the robber is at ak with k ≥ 2 and ak+1 exists in G. The cop moves to
zk−2. As above, the only nodes connected to ak that are not connected to zk−2 are

the y
(k−2)
i (other than zk−2). However, if the robber moves to y

(k−2)
i , the cop can

move to zk−3. The only nodes connected to y
(k−2)
i (which, recall, is not zk−2) are

x, zk−3, ak−1 and ak. However, each of these is connected to zk−3, so the cop can
win on her next turn.

Finally, suppose the robber is at a1 and a3 exists. In this case, the cop can move
to z0. Again, the only nodes connected to a1 that are not connected to z0 are the
y0i (other than z0). However, if the robber moves to y0i , then the cop can move to
a0 which covers all the nodes connected to y0i . □

□

3. Index sets

In this section, we show that for each n ≥ 2, the index set of computable n-
cop-win graphs is Π1

1-complete. The proof resembles the proof in Stahl [16] that
the index set of computable cop-win graphs is Π1

1 complete. The main difference
is that we use a characterization of n-cop-win graphs by Clarke and MacGillivray
[8]. Clarke and MacGillivray prove the characterization for finite graphs, although
they note it can be modified for infinite graphs. For completeness, we make these
modifications and give a proof that works for all graphs.

Let G be a graph with vertex set V and edge relation E. For v ∈ V , we let
NG[v] = {x ∈ V : Evx holds} denote the set of neighbors of v. The n-th categorical
product Gn of G is the graph with vertex set V n and an edge between p, q ∈ V n if
and only if for all i < n, Ep(i)q(i) holds. If G is connected and reflexive, then so is
the product graph Gn. Fixing notation, throughout this section, we use v, x and y
to range over V and p and q to range over V n.

To keep track of the cop positions in the n-cop game, we imagine a single player
moving on Gn rather than n different cops moving on G. We define a family of
relations ≤α on V × V n indexed by ordinals. The intuition for v ≤α p is that the

8 ALEXA MCLEOD AND REED SOLOMON

cops can win in α turns when the robber is on v, the cops are on p(0), . . . , p(n− 1)
and it is the robber’s turn to move.

Formally, the relations ≤α are defined by transfinite recursion. For v ∈ V and
p ∈ V n, v ≤0 p if and only if v = p(i) for some i < n. That is, v ≤0 p indicates
that the cops have captured the robber. For α > 0, v ≤α p if and only if

(1) (∀y ∈ NG[v])(∃q ∈ NGn [p])(∃β < α) (y ≤β q)

In other words, no matter where the robber moves on his next turn, the cops can
improve their positions relative to the robber when they move.

It follows immediately from this definition that γ ≤ α implies ≤γ⊆≤α. There-
fore, there is an ordinal δ at which this sequence stabilizes (i.e. at which ≤α=≤δ

for all α ≥ δ). We let ⪯G denote this limiting relation ≤δ. We prove Clarke and
MacGillivray’s theorem with no restrictions on the size of the graph.

Theorem 3.1 (Clarke and MacGillivray [8]). G is n-cop-win if and only if the
relation ⪯G is trivial (i.e. v ⪯G p for all v ∈ V and p ∈ V n).

Proof. Suppose ⪯G is trivial. Let p0 = ⟨v0, . . . , v0⟩ be the cops’ fixed starting
position, let x0 be the robber’s starting position, and assume p1 = p0 (i.e. the cops
don’t move on their first turn). Since ⪯G is trivial, we can fix an ordinal α0 such
that x0 ≤α0

p1. In general, let xk denote the position of the robber in round k,
pk+1 denote the positions of the cops in round k + 1, and αk be the least ordinal
such that xk ≤αk

pk+1. By condition (1), for any robber move xk+1, the cops can
choose pk+2 so that xk+1 ≤αk+1

pk+2 with αk+1 < αk. Therefore, in finitely many
rounds, we arrive at xℓ ≤0 pℓ+1 and the cops win.

Conversely, suppose that ⪯G is not trivial. Fix α such that ⪯G=≤α=≤α+1.
Consider any x ∈ V and p ∈ V n such that x ̸⪯G p. Since x ̸≤α+1 p, condition (1)
fails, and so there is a node y adjacent to x such that y ̸≤α q (and hence y ̸⪯G q) for
all cop positions q adjacent to p. It follows that if the players are at positions such
that x ̸⪯ p, then the robber can move to maintain this condition and thus avoid
capture forever. In particular, the robber has a strategy to win if the cops start
at the positions specified by p. However, since the starting position for the cops
doesn’t affect whether G is n-cop win or not, we conclude that G is robber-win in
the game with n cops. □

For a total computable function Φe, we define the computable graph Ge to have
vertex set ω with Φe giving the characteristic function of the edge relation: if
Φe(x, y) = 1, then there an edge between x and y, and if Φe(x, y) = 0, then there is
no edge. It is arithmetical (even Π0

2) to say Φe is total and the resulting computable
graph Ge is reflexive and connected. We form the computable product graph Gn

e

in the obvious way by considering computations on n-tuples.

Theorem 3.2. For each n ≥ 2, the index set In = {e : Ge is a n-cop-win graph}
is Π1

1-complete.

Proof. We have already noted that a tree T ⊆ ω<ω is n-cop-win if and only if T
has no infinite path. Since the relation of a computable tree having no infinite path
is Π1

1-hard, it follows that In is Π1
1-hard. Therefore, it suffices to show that In has

a Π1
1 definition.
Our Π1

1 definition will say that e ∈ In if and only if Ge is a computable reflex-
ive connected graph and every relation that “looks like” ⪯Ge

is trivial. The first
condition is arithmetical, so we focus on the second condition.

COMPUTING STRATEGIES FOR MULTIPLE COPS ON INFINITE GRAPHS 9

Suppose Ge is a computable reflexive connected graph. The relation ⪯Ge
has two

fundamental properties. First, since ≤0⊆⪯Ge , we have x ⪯Ge p whenever x = p(i)
for some i < n. Second, by condition (1), if (∀y ∈ NG[x])(∃q ∈ NGn [p]) (y ⪯Ge q),
then x ⪯Ge

p.
We capture these properties by arithmetic formulas with a free variable R ranging

over (n + 1)-arity relations. In these formulas, let x and y be single variables and
let p and q be n-tuples of variables p0, . . . , pn−1 and q0, . . . , qn−1 (i.e. x, y range
over the vertices in Ge and p, q range over the vertices in Gn

e). Let ψ1(R) capture
the first property

(∀x, p)
(
(x = p0 ∨ · · · ∨ x = pn−1) → R(x, p)

)
and let ψ2(R) capture the second property

(∀x, p)
[
(∀y ∈ NG[x])(∃q ∈ NGn

e
[p])(R(y, q)) → R(x, p)

]
.

We claim thatGe is a n-cop-win if and only ifGe is a computable reflexive connected
graph such that

(∀R ⊆ Ge ×Gn
e)

(
(ψ1(R) ∧ ψ2(R)) → (∀x, p)R(x, p)

)
Since this formula is Π1

1, verifying this claim will complete the proof.
Suppose the offset Π1

1 formula holds for Ge. Since ψ1 and ψ2 hold for the relation
⪯Ge

, it follows that x ⪯Ge
p for all x and p. Therefore, by Clarke and MacGillivray’s

theorem, Ge is k-cop-win.
Suppose Ge is k-cop-win and R is a relation such that ψ1(R) and ψ2(R) hold.

Since ψ1(R) holds, we have ≤0⊆ R. Since ψ2(R) holds, it follows that if ≤β⊆ R
for all β < α, then ≤α⊆ R. Consequently, ≤α⊆ R for all α, and hence ⪯Ge⊆ R.
The relation ⪯Ge is trivial by Clarke and MacGillivray’s theorem, and therefore,
R(x, p) holds for all x and p as required. □

References

[1] M. Aigner and M. Fromme, “A game of cops and robbers,” Discrete Applied Mathematics 8,

1984, 1-11.
[2] C.J. Ash and J.F. Knight, Computable Structures and the Hyperarithmetic Hierarchy, Else-

vier, 2000.

[3] W. Baird, A. Bonato, A. Beveridge, P. Codenotti, A. Maurer, J. McCauley and S. Valeva,
“On the minimum order of k-cop-win graphs,” Contributions to Discrete Mathematics, 2014,

70-84.

[4] A. Bonato, An Invitation to Pursuit-Evasion Games and Graph Theory, American Mathe-
matical Society, 2022.

[5] A. Bonato and R.J. Nowakowski, The Game of Cops and Robbers on Graphs, American

Mathematical Society, 2011.
[6] M. Chastand, F. Laviolette and N. Polat, “On constructible graphs, infinite bridged graphs

and weakly cop-win graphs,” Discrete Mathematics 224, 2000, 61-78.
[7] N.E. Clarke, Constrained Cops and Robbers, Ph.D. Thesis, Dalhousie University, 1999.

[8] N.E. Clarke and G. MacGillivray, “Characterizations of k-cop win graphs,” Discrete Math
312, 2012, 1421-1425.

[9] L. Evron, R. Solomon and R.D. Stahl, “Dominating ordersm vertex pursuit games and com-
putability theory,” submitted.

[10] S.A. Hosseini, “A note on k-cop-win graphs,” Discrete Math 341, 2018, 1136-1137.
[11] M-R. Ivan, I. Leader and M. Walters, “Constructible graphs and pursuit,” Theoretical Com-

puter Science 930, 2022, 196-208.

[12] F. Lehner, “Pursuit evasion on infinite graphs,” Theoretical Computer Science 655 (Part A),
2016, 30-40.

10 ALEXA MCLEOD AND REED SOLOMON

[13] R.J. Nowakowski and P. Winkler, “Vertex-to-vertex pursuit in a graph,” Discrete Mathemat-

ics 43, 1983, 235-239.

[14] A. Quilliot, “Jeux et pointes fixes sur les graphes,” Thèses de 3ème cycle, Université de Paris
VI, 1978, 131-145.

[15] R.I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, 1987.

[16] R.D. Stahl, “Computability and the game of cops and robbers on graphs,” Archive for Math-
ematical Logic 61, 2022, 373-397.

Department of Mathematics, University of Connecticut, Storrs, CT 06269

Email address: alexa.mcleod@uconn.edu
Email address: david.solomon@uconn.edu

	1. Introduction
	2. Computable strategies
	3. Index sets
	References

