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Chapter 1

Computable and Reverse Mathematics

This chapter is an introduction to computable (or effective) mathematics and to reverse math-
ematics, both of which will later be used to study theorems of ordered groups. Computable
mathematics involves applying ideas of computability theory to other areas of mathematics.
By computable, we will always mean Turing computable. A typical question we might con-
sider is whether the effective version of a particular theorem holds. That is, is the theorem
true if all the objects in it are assumed to be computable? Precise definitions and concrete
examples are given in Section 1.1.

Reverse mathematics is based more in proof theory, although as we shall see, it uses
techniques from all areas of logic and has consequences in computable mathematics. The
basic definitions and results are given in Section 1.2.

The last section of the chapter is a summary of the results contained later.

1.1 Computable Mathematics

We first give the general definition for a computable structure and then repeat it in the special
case of groups. The languages involved are always assumed to be computable.

Definition 1.1. A model A is computable if its domain A ⊆ ω is a computable set and its
relations and functions are uniformly computable.

Definition 1.2. A computable group is a computable set G ⊆ ω together with a com-
putable function ·G which satisfies the usual group axioms. We will let 1G (or sometimes 0G

in the abelian case) stand for the identity element.

We are interested in studying the conditions under which effective versions of theorems
hold. For example, consider the following theorem:

Theorem 1.3. If H is a normal subgroup of a group G, then G/H is a group.

The effective version of this theorem says:
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Theorem 1.4. If H is a computable normal subgroup of a computable group G, then G/H is
a computable group.

If we are careful defining what we mean by G/H, the effective version will be true. Define
G/H ⊆ ω by choosing the ω–least representative for each coset:

{ g ∈ G | ∀n < g(n 6∈ G ∨ n−1g 6∈ H) }.

This definition picks out the least representative because nH = gH if and only if n−1g ∈ H.
To define multiplication ·G/H , use the formula:

a ·G/H b = c ↔ a, b, c ∈ G/H ∧ c−1 ·G a ·G b ∈ H.

Thus the effective version of the theorem holds.
Contrast this situation with the following example.

Definition 1.5. A binary branching tree is a set T ⊆ {0, 1}<ω such that

∀σ, τ ∈ {0, 1}<ω
(
σ ⊆ τ ∧ τ ∈ T → σ ∈ T

)
.

A path through T is a function f : ω → {0, 1} such that f [n] ∈ T for all n, where f [n] is the
sequence 〈f(0), . . . f(n)〉.

Weak König’s Lemma. Every infinite binary branching tree has a path.

The effective version of Weak König’s Lemma says that every infinite computable binary
branching tree has a computable path. Unfortunately, this statement is false. Jockusch Jr.
and Soare (1972), however, modified the effective version to discover some computational
content in Weak König’s Lemma. Recall that a set A ⊆ ω is low if it has the lowest possible
Turing jump, A′ = 0′.

Low Basis Theorem (Jockusch Jr. and Soare (1972)). Every infinite computable binary
branching tree has a low path.

One of our goals will be to give a similar analysis for theorems about ordered groups.
Computably bounded Π0

1 classes will play an important role in this analysis.

Definition 1.6. C ∈ {0, 1}ω is a computably bounded (c.b.) Π0
1 class if there is a

computable binary branching tree T such that C is the set of paths through T .

Definition 1.7. Let A,B ∈ ω and A ∩ B = ∅. S is a separating set for A and B if either
A ⊆ S ∧ S ∩B = ∅ or B ⊆ S ∧ S ∩ A = ∅.

Definition 1.8. C ⊆ {0, 1}ω is a Π0
1 class of separating sets if there are computably

enumerable (c.e.) sets A and B such that C is the class of characteristic functions for the
separating sets of A and B.
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Notice that not all c.b. Π0
1 classes are Π0

1 classes of separating sets. In particular, a c.b. Π0
1

class may have cardinality ω, but any Π0
1 class of separating sets have either finite cardinality

or cardinality 2ω. The Low Basis Theorem was originally stated as every c.b. Π0
1 class has a

member of low degree. Jockusch Jr. and Soare (1972) proved a number of other results about
c.b. Π0

1 classes which we will have reason to refer to later.

Theorem 1.9 (Jockusch Jr. and Soare (1972)). There is an infinite c.b. Π0
1 class C

such that for all f, g ∈ C, if f 6= g, then f and g are Turing incomparable.

Theorem 1.10 (Jockusch Jr. and Soare (1972)). There are c.e. sets A and B such that
A ∩ B = ∅, A ∪ B is coinfinite and if D,E are separating sets for A and B, then either D
and E have the same Turing degree or they are Turing incomparable.

To fix some notation before moving on, we will use ≤T for Turing reducibility, ≡T for
Turing equivalence, deg(A) for the Turing degree of A, 0′ for the degree of the halting problem
and 0(n) for the nth jump of ∅. This notation and others we will use follows Soare (1980).

1.2 Reverse Mathematics

Reverse mathematics is a branch of logic started by Harvey Friedman in the 1970’s. It
seeks to answer the question: Which set existence axioms are required to prove the theorems
of ordinary mathematics? In addition to being interesting in their own right, answers to
this question often have consequences in both effective mathematics and the foundations of
mathematics. Before discussing these consequences, we need to be more specific about the
motivating question.

Ordinary mathematics refers to the areas of mathematics that remained unchanged by
the introduction of abstract set theory. These areas concern either countable or essentially
countable mathematics. Essentially countable mathematics is another vague term that is best
explained by an example. The study of complete separable metric spaces involves essentially
countable mathematics because, although the spaces may be uncountable, they can be under-
stood in terms of a countable basis. Simpson (1985) gives the following list of areas included
in ordinary mathematics: number theory, geometry, calculus, differential equations, real and
complex analysis, combinatorics, countable algebra, separable Banach spaces, computability
theory, and the topology of complete separable metric spaces. Ordinary mathematics usually
does not include abstract functional analysis, abstract set theory, universal algebra, or general
topology.

The rest of this chapter is an introduction to reverse mathematics and to some of the
definitions and notation used later. For more information and results, in particular for more
examples of equivalences between theorems and subsystems of second order arithmetic, see
Friedman et al. (1983), Hirst (1994), Simpson (1984), Simpson (1985) or Simpson (Unpub-
lished). We will mostly follow the notation found in Friedman et al. (1983) and Simpson
(Unpublished).
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The setting for reverse mathematics is second order arithmetic. Second order arithmetic
uses a two sorted first order language, L2. L2 has both number variables and set variables. The
number variables are denoted by lower case letters and are intended to range over elements
of ω. The set variables are denoted by capital letters and are intended to range over P(ω).
Because L2 has two types of variables it also has two types of quantifiers: ∃X,∀X and ∃x, ∀x.
The terms of L2 are built from the number variables and the constants 0, 1 using the function
symbols +, ·. Atomic formulas have the form t1 = t2, t1 < t2 or t1 ∈ X where t1, t2 are terms.
General formulas are built from the atomic formulas using the standard logical connectives
and the two types of quantifiers.

A model for L2 is a first order structure A where

A = 〈A, SA,+A, ·A, 0A, 1A, <A〉.

The number variables range over A, the set variables range over SA ⊆ P(A), and the functions,
constants, and relations are interpreted as indicated.

The axioms for second order arithmetic fall into three categories. The basic axioms specify
the properties of +, ·, 0, 1 and <.

n+ 1 6= 0 m+ 1 = n+ 1 → m = n
m+ 0 = m m+ (n+ 1) = (m+ n) + 1
m · 0 = 0 m · (n+ 1) = m · n+m
¬m < 0 m < n+ 1 ↔ (m < n ∨m = n)

There is an induction axiom for sets,(
0 ∈ X ∧ ∀n (n ∈ X → n+ 1 ∈ X)

)
→ ∀n (n ∈ X)

and a comprehension scheme for forming sets,

∃X ∀n (n ∈ X ↔ ϕ(n))

where ϕ is any formula of L2 in which X does not occur freely. ϕ may contain other free
variables as parameters. The following formula induction scheme is derivable from the com-
prehension scheme and the induction axiom:(

ϕ(0) ∧ ∀n (ϕ(n) → ϕ(n+ 1) )
)
→ ∀nϕ(n).

The formal system of second order arithmetic is denoted by Z2.
The intended model of Z2 is

〈ω,P(ω),+, ·, 0, 1, <〉.

Models of Z2 can be nonstandard in two different ways. The set over which the number
variables range could be nonstandard or the nonstandard model could be of the form

〈ω, S,+, ·, 0, 1, <〉
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where S ( P(ω). Models in which the number variables range over ω are called ω–models.
The question of which set existence axioms are needed to prove a particular theorem is

answered by examining which instances of the comprehension scheme are required. Hence,
we examine subsystems of Z2 which arise from restricting the formulas over which the com-
prehension scheme applies. One consequence of limiting comprehension is that the formula
induction scheme is also limited. We may add some extra formula induction, but we will
not add full formula induction because this scheme is a disguised set existence principle. For
a complete discussion of this issue, see Friedman et al. (1983) and Simpson (Unpublished).
A surprising observation is that the motivating question can be answered for a remarkable
number of theorems by examining only five subsystems of Z2. These subsystems are presented
below in increasing order of strength.

The weakest subsystem considered here is RCA0. RCA0 stands for recursive compre-
hension axiom and is obtained by restricting the comprehension scheme to apply only to ∆0

1

formulas. This restricted scheme is called ∆0
1 comprehension. We also allow Σ0

1 induction:(
ϕ(0) ∧ ∀n (ϕ(n) → ϕ(n+ 1)

)
→ ∀nϕ(n)

where ϕ is Σ0
1. Friedman et al. (1983) show that RCA0 proves the Π0

1 formula induction
scheme as well. Because RCA0 contains ∆0

1 comprehension and the comprehension scheme
allows parameters, it follows that every model of RCA0 is closed under Turing reduction. The
minimum ω–model is

〈ω,REC,+, ·, 0, 1, <〉

where REC ⊆ P(ω) is the set of computable sets.
Proving theorems in RCA0 has consequences in computable mathematics. If a theorem is

provable in RCA0 then its effective or computable version is true. We will see the following
example of this phenomenon in Chapter 6. Given suitable definitions, Friedman et al. (1983)
showed that RCA0 suffices to prove that every field has an algebraic closure. This result
implies that every computable field has a computable algebraic closure, a result first proved
earlier in Rabin (1960). Because of this connection to computable mathematics, we will be
content once we have a proof in RCA0 and will not seek a proof in a weaker subsystem. For
results regarding weaker subsystems, see Hatzikiriakou (1989)

RCA0 is strong enough to establish the basic facts about the number systems N,Z,Q and
R. This fact makes RCA0 strong enough to be a reasonable base theory over which to do
coding. The set of natural numbers, N, is defined by ∀n (n ∈ N) and the integers and rationals
are defined with the help of the standard pairing function:

〈x, y〉 =
1

2
(i+ j)(i+ j + 1) + i.

Associated with this pairing function are two projection functions:

π1(〈x, y〉) = x and π2(〈x, y〉) = y.
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Notice that we will use ω to denote the standard natural numbers and N to denote the
(possibly nonstandard) universe of a model of a subsystem of Z2.

The real numbers do not form a set in Z2; they must be represented by Cauchy sequences
of rationals. Simpson (Unpublished) gives the following definitions.

Definition 1.11. (RCA0) A sequence of rational numbers is a function f : N → Q.
Frequently we denote this sequence by 〈qk | k ∈ N〉.

Definition 1.12. (RCA0) A real number is a sequence of rational numbers 〈qk | k ∈ N〉
such that

∀k ∀i ( | qk − qk+i | < 2−k ).

We write x ∈ R to mean that x is a sequence of rationals satisfying this convergence rate.
0R, or when it is not ambiguous just 0, denotes the sequence 〈0 | k ∈ N〉 and 1R, or just 1,
denotes 〈1 | k ∈ N〉.

Definition 1.13. (RCA0) Let x = 〈qk | k ∈ N〉 and y = 〈q′k | k ∈ N〉 be two real numbers. We
say x = y if

∀k ( | qk − q′k | ≤ 2−k+1 ).

The sum x + y is the sequence
〈qk+1 + q′k+1 | k ∈ N〉.

The product x · y is the sequence

〈qn+k · q′n+k | k ∈ N〉

where n is the least natural number such that 2n ≥ | q0 |+ | q1 |+ 2.

With these definitions it can be shown in RCA0 that the real number system obeys all
the axioms of an Archimedean ordered field.

RCA0 is strong enough to define sets of unique codes for finite sets and finite sequences.
For the details of this coding, see Simpson (Unpublished). We will denote the set of finite
sequences of elements of X by FinX . RCA0 also suffices to define the length function lh :
FinX → N. For σ ∈ FinX , the ith element in σ is denoted σ(i), and σ is written

〈σ(0), . . . , σ(lh(σ)− 1)〉.

If σ, τ ∈ FinX , then σ ⊆ τ if lh(σ) ≤ lh(τ) and for all i < lh(σ), σ(i) = τ(i). The concatenation
of σ and τ is written σaτ . For any function f : N → N, f [n] is the sequence 〈f(0), . . . , f(n−
1)〉.

Definition 1.14. (RCA0) A tree is a set T ⊆ FinN such that T is closed under initial
segments:

∀σ, τ
(

(σ, τ ∈ FinN ∧ σ ⊆ τ ∧ τ ∈ T ) → σ ∈ T
)
.
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T is finitely branching if each element of T has only finitely many successors:

∀σ ∃n ∀m (σa〈m〉 ∈ T → m < n).

T is binary branching if every element of T has at most two successors. T is bounded if
there exists a function f : N → N such that for all τ ∈ T and all m < lh(τ), τ(m) < f(m). A
path through T is a function g : N → N such that g[n] ∈ T for all n.

König’s Lemma. Every infinite finitely branching tree has a path.

Weak König’s Lemma. Every infinite binary branching tree has a path.

Bounded König’s Lemma. Every infinite bounded tree has a path.

Each of these lemmas is really a set existence principle; they each assert the existence of
certain functions. König’s Lemma is strictly stronger than Weak König’s Lemma, and Weak
König’s Lemma and Bounded König’s Lemma are equivalent. As we saw in Section 1.1, the
effective version of Weak König’s Lemma fails.

The second subsystem of Z2 is called WKL0 or Weak König’s Lemma. It contains the
axioms of RCA0 plus Weak König’s Lemma. Because the effective version of Weak König’s
Lemma fails, WKL0 is strictly stronger than RCA0. The best intuition for WKL0 is that
Weak König’s Lemma adds a compactness principle to RCA0.

We can now give a more formal explanation of the goals and methods of reverse mathemat-
ics. Consider a theorem Thm of ordinary mathematics which is stated in L2. If RCA0 ` Thm
then from the viewpoint of reverse mathematics, we are satisfied. However, if WKL0 ` Thm
and we cannot find a proof of Thm in RCA0, then we want to show that WKL0 is in some
sense the weakest collection of set existence principles that proves Thm. To achieve this goal,
we attempt to show for each axiom ϕ of WKL0

RCA0 + Thm ` ϕ.

We abbreviate this situation by RCA0 + Thm ` WKL0 or RCA0 ` Thm ↔ WKL0. If we
prove RCA0 + Thm ` WKL0, then we have shown that Thm is equivalent to the subsystem
WKL0 and hence that no subsystem strictly weaker than WKL0 can prove Thm. In particu-
lar, we can stop looking for a proof of Thm in RCA0. The proof that RCA0 +Thm ` WKL0

is called the reversal of Thm and this process of proving axioms from theorems is the origin
of the name reverse mathematics.

When trying to prove reversals, it is often helpful to use the following theorem.

Theorem 1.15. (RCA0) The following are equivalent:

1. WKL0

2. For every pair of functions f, g such that for all m,n, f(m) 6= g(n), there exists a set
X such that for all m, f(m) ∈ X and g(m) 6∈ X.
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One consequence of proving a theorem equivalent to WKL0 is that the effective version
of the theorem must fail. Although I have presented results in computable mathematics as
consequences of results in reverse mathematics, usually the results in computable mathematics
come first. If the effective version of a theorem is known to hold, then the proof that it holds
can often be translated into RCA0. Similarly, if the computable version fails, then why it fails
often gives a hint as to how to use coding methods to prove a reversal. Provability in WKL0

also has consequences for the foundations of mathematics. Because WKL0 is Π0
2 conservative

over primitive recursive arithmetic, see Parsons (1970), it provides a modern rendering of
Hilbert’s Program. For a discussion of these consequences see Simpson (1988), Drake (1989)
and Feferman (1988).

The third subsystem is ACA0 or Arithmetic Comprehension Axiom. ACA0 has the axioms
of RCA0 plus Σ0

1 comprehension. It is strong enough to prove König’s Lemma and hence is
strictly stronger than WKL0. Because ACA0 contains Σ0

1 comprehension, it can define the
Turing jump of any set. Models of ACA0 are closed under the Turing jump and the minimum
ω–model is

〈ω,ARITH,+, ·, 0, 1, <〉

where ARITH is the set of arithmetic sets.
The following theorem is helpful when proving reversals involving ACA0.

Theorem 1.16. (RCA0) The following are equivalent:

1. ACA0

2. The range of every one–to–one function exists.

The fourth system is ATR0 or Arithmetic Transfinite Recursion. The description of ATR0

involves the notion of a well order.

Definition 1.17. (RCA0) A linear order is a pair (X,≤X) such that X is a set and ≤X is
a binary relation on X such that:

∀y ∈ X (y ≤X y)

∀y, z ∈ X (y ≤X z ∧ z ≤X y → y = z)

∀w, y, z ∈ X (w ≤X y ∧ y ≤X z → w ≤X z).

Definition 1.18. (RCA0) A well order is a pair (X,≤X) such that (X,≤X) is a linear order
and

¬∃x ∈ X ∃f : N → X
(
f(0) = x ∧ ∀i(f(i+ 1) <X f(i))

)
.

ATR0 includes the axioms of ACA0 plus axioms that allow arithmetic comprehension to
be iterated along any well order. While ACA0 is strong enough to prove that the nth Turing
jump 0(n) exists, ATR0 is required to construct the uniform upper bound 0(ω). For a formal
description of the axioms of ATR0 see Friedman et al. (1983).
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The last and most powerful subsystem is Π1
1 − CA0. Π1

1 − CA0 is ACA0 plus the scheme
of Π1

1 comprehension. This system is strong enough to define Kleene’s O and hence models
of Π1

1 − CA0 are closed under the hyperjump. Π1
1 − CA0 is strictly stronger than ATR0 and

is useful for proving that certain recursions terminate. An example of this phenomenon is
presented in Chapter 7. The following theorem is used to prove a reversal in that chapter.

Theorem 1.19. (RCA0) The following are equivalent:

1. Π1
1 − CA0

2. For any sequence of trees 〈Tk | k ∈ N〉, there exists a set X such that k ∈ X if and only
if Tk has a path.

1.3 Summary of Results

Now that we have the general definitions for reverse mathematics and computable mathemat-
ics, we can give a summary of the rusults to come.

In Chapter 2, we give the definitions and basic facts about partially and fully ordered
groups. A partially ordered (p.o. ) group is a group together with a partial order such that
the order is preserved under multiplication on the left and the right. If the order is linear,
the group is called fully ordered (f.o. ).

A subgroup H of a p.o. group G is convex if for any a, b ∈ H and g ∈ G,

a ≤ g ≤ b⇒ g ∈ H.

For a convex normal subgroup H of a p.o. group G, there is not only a natural group structure
on G/H, but also an induced partial order. If G is fully ordered, then this induced quotient
order is a linear and its existence is provable in RCA0. However, if G is only known to be
partially ordered, then the existence of the induced order is equivalent to ACA0.

Throughout this text, we will provide results in computable mathematics as corollaries to
theorems in reverse mathematics. Since RCA0 suffices to prove the existence of the induced
order on the quotient of an f.o. group by a convex normal subgroup, it follows that if G is a
computable fully ordered computable group and H is a computable convex normal subgroup,
then the induced order on G/H is computable. By contrast, if G is a computably partially
ordered computable group, then the induced order on G/H could be as complicated as 0′.

One of the fundamental questions in ordered group theory is how to tell if a particular
group admits a full order. In Chapter 3, we discuss three of the classical group conditions that
insure full orderability. The fact that every torsion free abelian group is fully orderable was
shown to be equivalent to WKL0 by Hatzikiriakou and Simpson (1990). We extend this result
to show the equivalence of WKL0 and the theorem that every tosion free nilpotent group is
fully orderable. RCA0 suffices to show that the finite direct product of fully orderable groups
is fully orderable, but WKL0 is required for the case of infinite direct products.
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Notice that we can again derive corollaries in computable mathematics. Downey and Kurtz
(1986) were the first to give an example of a computable torsion free abelian group with no
computable order. There is a uniform sequence of computably fully orderable computable
groups such that the direct product, which is computable, has no computable order.

The center of a group G, denoted C(G) or ζ1(G), is defined by

C(G) = { g ∈ G|∀x(gx = xg) }.

The existence of the center is equivalent to ACA0, from which it follows that the center of
a computable group (in fact a computable nilpotent group) can be as complicated as 0′. In
Chapter 8, this fact is used to explain why a particular method of construction for finitely
generated nilpotent groups cannot be extended to infinitely generated nilpotent groups.

The last topic in Chapter 3 is the connection between computable bounded Π0
1 classes and

spaces of full orders of orderable computable groups. Once a group G is known to be fully
orderable, it is natural to study the space of all full orders on G, denoted X(G). How many
orders are there? What do they look like? How complicated can they be? We show that for
any orderable computable group, there is a c.b. Π0

1 class C and a Turing degree preserving
bijection between C and X(G).

One alternative to looking for group conditions that imply full orderability is to look for
semigroup conditions. In Chapter 4, we examine three classical semigroup conditions that
imply full orderability and show that each is equivalent to WKL0. The main trick here is to
translate the conditions into the language of second order arithmetic is such a way that they
can be studied inside RCA0.

We next turn our attention to the analogue of the group theoretic result that every group
can be represented as the quotient of a free group by a normal subgroup. In ordered group
theory, every f.o. group is order isomorphic to the quotient of a f.o. free group by a convex
normal subgroup. It turns out that RCA0 is strong enough to prove this theorem, which
answers an open question from Downey and Kurtz (1986) by showing that the effective version
of the theorem holds. The proof is split between Chapter 5 and Appendix A. In Chapter 5,
we develope the main argument assuming various technical facts, mostly explicit formulas for
the embedding of free products into infinite matrix groups. These formulas, together with the
definitions and basic facts about free groups and free products, are relegated to Appendix A.

In Chapter 6, we examine divisible closures and Hölder’s Theorem. Hölder’s Theorem is
the main tool for classifying full orders of a particular fully orderable group. It states that
every Archimedean fully ordered group is order isomorphic to a subgroup of the additive
group of real numbers. Once we define what we mean by a subgroup of the reals in second
order arithmetic, it turns out that RCA0 suffices to prove Hölder’s Theorem.

The motivation for studying divisible closures of abelian groups comes from similiar studies
of algebraic closures of fields and real closures of ordered fields in Friedman et al. (1983), Smith
(1981) and Metakides and Nerode (1979). The main questions about these notions of closure
are those of existence, uniqueness and strong existence. In this context, strong existence
means that the original algebraic object is isomorphic to a subspace of the closure. That is,
the range of the embedding into the closure exists.
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Friedman et al. (1983) answered the existence and uniqueness questions for the divisible
closure of abelian groups and Downey and Kurtz (1986) answered the same questions for
ordered abelian groups. In Chapter 6, we show that even for Archimedean f.o. groups, the
existence of a strong divisible closure is equivalent to ACA0.

Classifying the full orders on an orderable group can be an extremely difficult task. There
is, however, a nice result classifying all possible order types for countable f.o. groups. In
Chapter 7, we show this classification is equivalent to Π1

1 − CA0.
Chapter 8 is devoted to issues in computable mathematics. The first section returns to

the connection between c.b. Π0
1 classes and spaces of full orders on fully orderable computable

groups. If G is a fully orderable computable group and X(G) is the space of full orders on G,
then we have already mentioned that there is a Turing degree preserving bijection between
some c.b. Π0

1 class C and X(G). A question, asked in Downey and Kurtz (1986) and motivated
by results in Metakides and Nerode (1979), is whether all c.b. Π0

1 classes can be represented
by computable torsion free abelian groups. That is, for an arbitrary c.b. Π0

1 class C, is there
a orderable computable abelian group G and a Turing degree preserving bijection from C
to X(G). We show that the answer is no even if we weaken the notion of representation
and restrict the class of c.b. Π0

1 classes even further. We also extend the result to include
computable torsion free nilpotent groups.

In the second section, we examine computable presentations of orderable computable
abelian groups. Downey and Kurtz (1986) showed that there is an orderable computable
abelian group with no computable order. However, their example is isomorphic to a com-
putable group with a computable order. We show that this phenomena is true in general.
Every orderable computable abelian group is classically isomorphic to a computably orderable
computable group.
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Chapter 2

Orders on Quotient Groups

2.1 Basic Definitions

This section lays out the basic definitions for partially and fully ordered groups. Fundamental
notions such as convex subgroups, induced orders on quotient groups, and positive cones
of partially ordered groups are defined. The main result is that RCA0 suffices to prove
the existence of the induced order on the quotient of an fully ordered group, but ACA0 is
required if the group is not known to be fully ordered. The notation and definitions below
follow Kokorin and Kopytov (1974) and Fuchs (1963).

Definition 2.1. (RCA0) A group is a set G ⊆ N together with a constant, 1G (or sometimes
0G), and an operation, ·G, which obey the usual group axioms.

∀a, b, c ∈ G (a ·G (b ·G c) = (a ·G b) ·G c)
∀a ∈ G (1G ·G a = a ·G 1G = a)

∀a ∈ G ∃a−1 ∈ G (a ·G a−1 = a−1 ·G a = 1G).

Definition 2.2. (RCA0) A partial order is a set X together with a binary relation ≤X

which satisfies the following axioms.

∀x ∈ X (x ≤X x)

∀x, y ∈ X (x ≤X y ∧ y ≤X x→ x = y)

∀x, y, z ∈ X (x ≤X y ∧ y ≤X z → x ≤X z).

Definition 2.3. (RCA0) A partially ordered (p.o.) group is a pair (G,≤G) where G is a
group, ≤G is a partial order on the set G, and for any a, b, c ∈ G, if a ≤G b then a ·G c ≤G b ·G c
and c ·G a ≤G c ·G b. If the order is a linear order, the pair (G,≤G) is called a fully ordered
(f.o.) group. A group for which there exists some full order is called an O-group

It should be clear from Definition 1.1 what the definitions of the corresponding computable
objects are. For example, a computably partially ordered computable group G is a computable
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group G together with a computable binary relation≤G on G such that≤G satisfies the axioms
for a partial order and the order is preserved under multiplication on both the left and the
right. Except for cases when they are needed to avoid confusion, the subscripts on ·G and ≤G

are dropped.

Example 2.4. The additive groups (R,+), (Q,+), and (Z,+) with the standard orders are
all f.o. groups. Let Q+ and R+ be the strictly positive rational and real numbers. The
multiplicative groups (R+, ·) and (Q+, ·) are f.o. groups under the standard orders.

Example 2.5. The most important example for our purposes is the free abelian group on ω
generators. Let G be the free abelian group with generators a0, a1, . . .. Elements of G have
the form

∑
i∈I riai where I ⊆ ω is a finite set, ri ∈ Z and ri 6= 0. To compare the element

above with
∑

j∈J qjaj, let K = I ∪ J . For each k ∈ K, define rk = 0 if k ∈ J \ I and qk = 0
is k ∈ I \ J . Let k be the maximum element of K such that rk 6= qk. The order is given by:∑

i∈I riai ≤
∑

j∈J qjaj if and only if rk ≤ qk. This order makes G into an f.o. group.

As expected, RCA0 suffices to prove many basic facts about p.o. groups.

Lemma 2.6. (RCA0) If (G,≤) is a p.o. group and a < b, then for any c ∈ G, ac < bc and
ca < cb.

Lemma 2.7. (RCA0) Let (G,≤) be a p.o. group.

1. If a < b then c−1ac < c−1bc.

2. If a < b then b−1 < a−1.

3. If a < b and c < d then ac < bd.

Defining a partial order can sometimes be notationally complicated. It is frequently easier
to specify only the elements which are greater than the identity element. It turns out that
specifying these positive elements uniquely determines the order.

Definition 2.8. (RCA0) The positive cone, P (G,≤G) of a p.o. group is the set of elements
which are greater than or equal to the identity.

P (G,≤G) = { g ∈ G | 1G ≤G g }

Each element x ∈ P (G,≤G) is called positive.

When the intended order ≤G is clear, P (G) is used instead of P (G,≤G). Because P (G) has
a Σ0

0 definition, RCA0 is strong enough to prove the existence of P (G). Conversely, given the
positive cone, P (G), of some partial order on G, the relationship between any two elements
can be calculated. Because a ≤ b if and only if 1G ≤ a−1b, determining if a ≤ b requires only
knowing whether a−1b ∈ P (G). Thus, RCA0 can recapture the order ≤G from P (G). Notice
that if G is a computable group, these conditions mean that deg(P (G)) = deg(≤G) for any
partial order ≤G and its associated positive cone.
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Example 2.9. The complex numbers (C,+) with the order determined by

P (G) = {x+ yi |x > 0 ∨ (x = 0 ∧ y ≥ 0 ) }

is an f.o. group. The group (Q+, ·) with the order determined by P (G) = N+ is a p.o. group.
Unraveling the definition of the positive cone show that if a, b ∈ Q+ then a ≤ b if and only if
a divides b. This order is not a full order but does form a lattice.

There are algebraic conditions which determine if an arbitrary subset of a group is the
positive cone for some full or partial order on that group.

Definition 2.10. (RCA0) If G is a group and X ⊆ G, then

X−1 = { g−1 | g ∈ X }.

X is a full subset of G if X ∪X−1 = G and X is a pure subset of G if X ∩X−1 ⊆ {1G}.

Theorem 2.11. (RCA0) A subset P of a group G is the positive cone of some partial order
on G if and only if P is a normal pure semigroup with identity. Furthermore, P is the positive
cone of a full order if and only if in addition P is full.

Proof. Any of the standard proofs of this theorem carry through in RCA0. For the details,
see Kokorin and Kopytov (1974) or Fuchs (1963).

2.2 Quotient Groups

In the study of ordered groups, it is natural to ask which theorems of group theory hold for
ordered groups and which theorems either fail completely or require extra conditions. For
example, if H is a normal subgroup of G, then G/H inherits a group structure from G.
However, if G is partially ordered, the normality of H is not strong enough for G to induce
both a group structure and a partial order on G/H. H must also be convex for the partial
order on G to induce a natural partial order on G/H. To formulate this statement in second
order arithmetic, we first need a definition for the quotient group.

Let G be a group and H be a normal subgroup of G. As with computable groups in
Chapter 1, unique representatives of each coset gH can be chosen by picking the ≤N–least
element of gH. These choices can be made in RCA0 because mH = nH if and only if
m−1n ∈ H.

Definition 2.12. (RCA0) If G is a group and H is a normal subgroup of G, then the quotient
group G/H is defined by the set

{n | n ∈ G ∧ ∀m < n (m 6∈ G ∨m−1 · n 6∈ H) }

and the operation

a ·G/H b = c ↔ a, b, c ∈ G/H ∧ c−1 ·G a ·G b ∈ H.
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Definition 2.13. (RCA0) A subset X of a partial order Y is convex if

∀a, b, x ∈ Y
(

(a, b ∈ X ∧ a ≤ x ≤ b) → x ∈ X
)
.

A subgroup H of a p.o. group G is convex if it is convex as a subset of G.

Definition 2.14. Let (G,≤) be a p.o. group and H a convex normal subgroup. The induced
order, ≤G/H , on G/H is given by:

{ 〈a, b〉 | a, b ∈ G/H ∧ ∃h ∈ H(a ≤G bh) }.

That is, a ≤G/H b if and only if ∃h ∈ H(a ≤G bh)

There are two useful variants of this definition, both of which are seen to be equivalent
by unraveling the definitions. The first is to define a ≤G/H b if and only if ∃h ∈ H (a−1bh ∈
P (G)). The second is to define P (G/H) as the image of P (G) under the canonical map
G→ G/H. This definition amounts to setting:

P (G/H) = { g ∈ G/H | ∃h ∈ H (gh ∈ P (G)) }.

As above, the subscript G/H will be dropped as long as it is clear whether a and b are being
compared as elements of G or G/H. When confusion may arise, we will denote elements of
G/H by aH and bH.

From the viewpoint of reverse mathematics, there are two questions to ask concerning this
definition. Which set existence axioms are required to form the induced order on G/H, and
if orders on G/H and H are given, how hard is it to put them together to give an order on G
that makes H convex and gives G/H the appropriate induced order? The answer to the first
question points out an example in which having a full order on G gives extra computational
power. The condition in Definition 2.14 is Σ0

1, so Σ0
1 comprehension suffices to define the

induced order. In the next section, we will show that this is the best that can be done for
p.o. groups. However, if the order is known to be total, then we can do better.

Theorem 2.15. (RCA0) Let (G,≤) be an f.o. group and H a convex normal subgroup. The
induced order on G/H exists.

Proof. Let a, b ∈ G/H and a 6= b. Because a and b are representatives of different cosets,
ab−1 6∈ H.

Claim. ∃h ∈ H (a ≤ bh) if and only if a ≤ b.

If a ≤ b then, because 1G ∈ H, it follows that ∃h ∈ H (a ≤ bh). For the other direction,
suppose ∃h ∈ H(a ≤ bh) and b < a. Then b < a ≤ bh and so 1G < b−1a ≤ h. Since H is
convex, b−1a ∈ H which gives a contradiction. The induced order can now be given by a Σ0

0

condition: aH ≤ bH if and only if aH = bH or a < b.

Corollary 2.16. If (G,≤G) is a computably fully ordered computable group and H is a com-
putable convex normal subgroup, then the induced order on G/H is computable.
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It is also worth noting that for a f.o. group, if aH < bH then ∀h ∈ H(ah < b). Indeed,
if not, then ah ≥ b for some h ∈ H and hence bH ≤ aH. This fact is not true for general
p.o. groups since it is possible that for some h, the elements a and bh are not comparable.
The following example illustrates this point.

Example 2.17. Consider (Q+, ·) with P (Q+) = N+. Under this partial order, a ≤ b if
and only if a divides b. Let H be the subgroup generated by 2. Elements of H are of
the form 2n for some n ∈ Z. The group is abelian, so H is normal. H is convex since if
2n ≤ x ≤ 2m then x must be of the form 2p for some n ≤ p ≤ m. Let 3 represent the coset
{ . . . , 12, 6, 3, 3/2, 3/4, . . . } in Q+/H and 9 represent the coset { . . . , 36, 18, 9, 9/2, 9/4, . . . }.
Since 3 ≤ 9 in this group and 1 ∈ H, it is clear that ∃h ∈ H(3 ≤ 9h). However, 3 6≤ 9/2 and
so it is not the case that ∀h ∈ H(3 ≤ 9h).

To answer the question about putting orders on G/H and H together, one additional
condition is required. An order on H is not necessarily preserved under conjugation by
arbitrary elements of G. However, any order on G must have this property. Thus for an order
on H to extend to all of G, it must be that a ≤H b implies gag−1 ≤H gbg−1 for all g ∈ G.
This condition turns out to be sufficient.

Definition 2.18. (RCA0) Let H be a normal subgroup of G and ≤ a full order on H. (H,≤)
is fully G – ordered if for any a, b ∈ H and g ∈ G, a ≤ b implies gag−1 ≤ gbg−1.

Theorem 2.19. (RCA0) Let (H,≤H) be a fully G-ordered normal subgroup and (G/H,≤G/H)
an f.o. group. G admits a full order under which the induced orders on H and G/H correspond
to those given and H is convex.

Proof. Given a, b ∈ G, define a ≤G b if and only if either aH ≤G/H bH or aH = bH and
a−1b ∈ P (H). Verifying that this definition gives a full order on G is a straight forward matter
of checking the axioms for a variety of cases. Notice that if a, b ∈ H then aH = bH and so
they are compared in G using the order on H. Thus the restriction of ≤G to H is ≤H . To
show H is convex under this order, suppose that a, b ∈ H, c 6∈ H and a ≤G c ≤G b. Then
aH 6= cH, so a ≤G c implies aH <G/H cH. Similarly, cH <G/H bH and so aH <G/H bH
which is a contradiction. To show that the induced order on the quotient is ≤G/H , suppose
that a, b ∈ G and a ≤G bh for some h ∈ H. Either aH <G/H bhH or aH = bhH and
a−1bh ∈ P (G). In either case aH ≤G/H bH. Assuming aH ≤G/H bH, either aH <G/H bH,
and hence a < b, or aH = bH and ∃h ∈ H(a = bh). In either case, ∃h ∈ H(a ≤G b). Thus
the induced order on G/H is correct.

2.3 Induced Orders

The goal of this section is to show that ACA0 is equivalent to the existence of the induced
order on the quotient of a p.o. group. By Theorem 1.16, ACA0 is equivalent to the existent
of the range of one-to-one functions. Given a one-to-one function, the strategy is to code

17



the range into a group in such a way that it can be recovered from the order on the quotient
group. The torsion free abelian group A on generators ai, bi for i ∈ N is used to do the coding.
The first step is to present this group formally.

The elements of A are quadruples of finite sets (I, q, J, p) where I and J are finite subsets
of N and p and q represent the functions

q : I → Z \ {0}
p : J → Z \ {0}.

The element represented by (I, q, J, p) is denoted∑
i∈I

qiai +
∑
j∈J

pjbj.

The elements represented by (I, q, J, p) and (I ′, q′, J ′, p′) are equal if and only if I = I ′, J = J ′,
q = q′ and p = p′. The sum(∑

i∈I

qiai +
∑
j∈J

pjbj

)
+

(∑
k∈K

rkak +
∑
l∈L

slbl

)
is defined to be ∑

m∈M

tmam +
∑
n∈N

unbn

where

M = (I ∪K) \ {x ∈ I ∩K | qx + rx = 0}
N = (J ∪ L) \ {x ∈ J ∩ L | px + sx = 0}

and tm is defined to be qm if m ∈ I \K, rm if m ∈ K \ I and qm + rm if m ∈ I ∩K. un is
defined similarly. The identity element, 0A, is the element represented by (∅, ∅, ∅, ∅) and if g
is represented by (I, q, J, p), then g−1 is the sum∑

i∈I

−qiai +
∑
j∈J

−pjbj.

Theorem 2.20. (RCA0) The following are equivalent:

1. ACA0

2. For every p.o. group (G,≤G) and every convex normal subgroup H, the induced order
≤G/H on G/H exists.

Proof.
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Case. (1) ⇒ (2) :
For x, y ∈ G/H, use Σ0

1 comprehension in ACA0 to define the relation:

x ≤G/H y ↔ ∃h ∈ H (x ≤G yh).

Case. (2) ⇒ (1) :

Let f : N → N be a one-to-one function. By Theorem 1.16, it suffices to show that the
range of f exists. Use Σ0

0 comprehension to define the partial order ≤A by:

P (A) =

{∑
i∈I

qiai +
∑
j∈J

pjbj

∣∣∣∣ J = ∅ ∧ ∀i ∈ I(qi > 0)

}
.

The idea here is that P (A) is the semigroup generated by the elements ai for i ∈ N. The
definition is Σ0

0 because ∀i ∈ I is a bounded quantifier.

Claim. P (A) is the positive cone for a partial order on A.

It suffices to show that P (A) is a pure normal semigroup with identity. By definition,
0A ∈ P (A). P (A) is normal because it is a subset of an abelian group. P (A) is a semigroup
since it is closed under componentwise addition. Finally, since P−1(A) is defined by

P−1(A) =

{∑
i∈I

qiai +
∑
j∈J

pjbj

∣∣∣∣ J = ∅ ∧ ∀i ∈ I(qi < 0)

}
,

it is clear that P (A) is pure.
Let H be the subgroup generated by elements of the form −an + bm where f(n) = m.

Formally,
∑

i∈I qiai +
∑

j∈J pjbj is in H if and only if either I = J = ∅ or I 6= ∅ and

∀i ∈ I(f(i) ∈ J ∧ qi = −pf(i)) ∧ ∀j ∈ J ∃i ∈ I(f(i) = j ∧ qi = −pj).

This condition is Σ0
0 since all the quantification is bounded. H is normal because the group

is abelian.

Claim. H is convex.

To prove this claim, it suffices to show that there are no nontrivial intervals in H. That
is, for any c, d ∈ H, c ≤ d implies c = d. Notice that any c, d ∈ H can be expressed as

c =
∑
i∈I

−qiai +
∑
i∈I

qibf(i) d =
∑
j∈J

−pjaj +
∑
j∈J

pjbf(j).

If c ≤ d, then −c + d ∈ P (A). Since P (A) is generated by the ai’s, the bi part of the sums
must cancel out. Hence ∑

i∈I

−qibf(i) +
∑
j∈J

pjbf(j) = 0.
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Since 0 is represented by the quadruple (∅, ∅, ∅, ∅), we have I = J and q = p. Hence c = d as
required.

Now that A, P (A), and H are defined, all that remains to show is how the range of f can
be defined from the induced order ≤A/H on A/H. This definition follows from the final two
claims.

Claim. The existence of ≤A/H implies the existence of the set P (A) +H.

Given x ∈ A, we need to decide if x ∈ P (A)+H. Let n ∈ G/H be such that n+H = x+H.
Since x and n differ by a element of H, x ∈ P (A) +H if and only if n ∈ P (A) +H. However,

0A/H ≤A/H n ↔ ∃h ∈ H (n+ h ∈ P (A))

↔ n ∈ P (A) +H.

Thus, the set P (A) +H is definable from ≤A/H in RCA0.

Claim. bm ∈ P (A) +H ↔ m ∈ range(f)

First assume that bm = p+ h for some p ∈ P (A) and h ∈ H. Then bm can be written as:

bm =
∑
i∈I

qiai +

(∑
j∈J

−pjaj +
∑
j∈J

pjbf(j)

)
.

The parts of the equation with ai’s must cancel out, leaving I = J . Furthermore, because
only bm appears on the left of the equation, J = {n} where f(n) = m and pn = 1. Hence m
is in the range of f .

For the other direction, assume that m is in the range of f . For some n, f(n) = m, and
hence −an + bm ∈ H and an ∈ P (A). Adding these equations shows that bm ∈ P (A) +H.

Corollary 2.21. There is a computably partially ordered computable group (G,≤G) and a
computable convex normal subgroup H such that the degree of the induced order on G/H is
0′.

Proof. Let f be a computable one-to-one function that enumerates 0′. Since f is computable,
the p.o. group in the proof of Theorem 2.20 is a computably partially ordered computable
group. The range of f is computable from the induced order on G/H, so deg(≤G/H) = 0′.
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Chapter 3

Group Conditions

Now that we have the basic definitions for ordered groups, we would like to know which groups
can be ordered. Notice that any group can be partially ordered: take the trivial partial order
under which no two distinct elements are comparable. The question of when a group admits a
full order is more complicated. Being torsion free is a necessary condition, but unfortunately
not a sufficient one. Let G be the group presented by the letters a and b with the relation
aba−1 = b−1. G is torsion free but not orderable. Indeed, if b > 1G then aba−1 = b−1 forces
b−1 > 1G and if b < 1G then aba−1 = b−1 forces b−1 < 1G. In Sections 3.1 and 3.2, three
stronger conditions are presented that suffice to guarantee full orderability. In Section 3.3,
we show that the existence of the center of a group is equivalent to ACA0.

If G is an O-group, it is natural to study the space of all full orders on G. In Section 3.4,
we present one connection between spaces of orders and c.b. Π0

1 classes. We will return to
this theme in the last chapter once we have more tools from ordered group theory.

3.1 Torsion Free Abelian and Nilpotent Groups

Being torsion free and abelian is the simplest group condition that implies full orderability.
A proof of this fact can be found in Fuchs (1963) or Kokorin and Kopytov (1974).

Theorem 3.1. Every torsion free abelian group is an O-group.

The effective content of Theorem 3.1 was first explored in Downey and Kurtz (1986). They
constructed a computable group isomorphic to

⊕
ω Z which has no computable full order.

Theorem 3.2 (Downey and Kurtz (1986)). There is a computable torsion free abelian
group with no computable full order.

Hatzikiriakou and Simpson (1990) used a similar proof in the context of reverse mathe-
matics to show that Theorem 3.1 is equivalent to WKL0. By the Low Basis Theorem, this
fact implies that every computable torsion free abelian group must have a full order of low
degree.
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Theorem 3.3 (Hatzikiriakou and Simpson (1990)). (RCA0) The following are equiva-
lent:

1. WKL0

2. Every torsion free abelian group is an O-group.

Theorem 3.1 is generalized in Kokorin and Kopytov (1974) to torsion free nilpotent groups.

Theorem 3.4. Every torsion free nilpotent group is an O-group.

The goal of this section is to use arguments similar to those in Hatzikiriakou and Simpson
(1990), to show that Theorem 3.4 is equivalent to WKL0. Notice that as long as RCA0 suffices
to prove that every abelian group is nilpotent, Theorem 3.3 already shows that Theorem 3.4
implies WKL0. To state the result precisely, we need a formal definition of nilpotent groups
in second order arithmetic.

In keeping with standard mathematical notation, if H is a normal subgroup of G, we
will let π : G → G/H denote the projection function. That is, π picks out the <N-least
representative of gH. Frequently, we will write gH instead of π(g).

Definition 3.5. The center of G, C(G), is the set

{ g ∈ G | ∀x ∈ G (gx = xg) }.

In general, the existence of the center is equivalent to ACA0, as we shall see in Section
3.3. However if C(G) is given, several properties of it can be proved in RCA0.

Lemma 3.6. (RCA0) If C(G) exists then C(G) is a normal subgroup of G.

Lemma 3.7. (RCA0) If H is a normal subgroup of G, π : G → G/H and C(G/H) exists,
then

K = {g ∈ G | π(g) ∈ C(G/H)} = π−1(C(G/H))

is a normal subgroup of G.

Proof. It is straight forward to check that K is a subgroup. To show that K is normal, let
k ∈ K and g ∈ G. Because π(k) ∈ C(G/H), it follows that k commutes modulo H with all
elements of G. In particular, g−1kH = kg−1H or in the notation of π, π(g−1k) = π(kg−1).
From here it follows that π(k) = π(gkg−1). Thus π(gkg−1) ∈ C(G/H) and gkg−1 ∈ K.

Definition 3.8. Let G be a group. The upper central series of G is the series of subgroups

ζ0G ≤ ζ1G ≤ ζ2G ≤ · · ·

defined by

ζ0G = 〈1G〉
ζ1G = C(G)

ζi+1G = π−1
(
C(G/ζiG)

)
where π : G→ G/ζiG. G is nilpotent if ζnG = G for some n ∈ ω.
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Notice that ζi+1G/ζiG = C(G/ζiG). In order to use nilpotent groups in reverse mathe-
matics, we need to define a code for them that explicitly gives the information contained in
the upper central series.

Definition 3.9. The ith column of a set X is denote by Xi and is defined by:

Xi = {n | 〈n, i〉 ∈ X }.

Definition 3.10. (RCA0) The pair N ⊆ N and n ∈ N is a code for a nilpotent group G
if the first n+ 1 columns of N satisfy

1. N0 = 〈1G〉

2. N1 = C(G)

3. Nn = G

4. For 0 ≤ i ≤ n, Ni is a normal subgroup of G.

5. For 0 ≤ i < n, if π : G→ G/Ni, then Ni+1 = π−1(C(G/Ni)).

A group G is nilpotent is there is such a code (N, n) for G.

Lemma 3.11. (RCA0) Every abelian group is nilpotent.

Proof. If G is abelian then we can define a code for G as a nilpotent group by setting n = 1
and N ⊆ N with N0 = 〈1G〉 and N1 = G.

Lemma 3.12. (RCA0) If (N, n) is the code for a nilpotent group G then for all 0 ≤ i < n,
Ni+1/Ni is abelian.

Proof. By definition, Ni+1 = π−1(C(G/Ni)) with π : G → G/Ni. Therefore, Ni+1/Ni
∼=

C(G/Ni).

Theorem 3.13. (RCA0) The following are equivalent.

1. WKL0

2. Every torsion free nilpotent group is an O-group.

The goal of the rest of this section is to prove this theorem. The idea is that a nilpotent
group is formed from a finite number of abelian quotients Ni+1/Ni. If these quotients are
torsion free then each is fully orderable by Theorem 3.3 and so we only need to put these
orders together in a nice way. The first step is to show that that if G is a torsion free nilpotent
group then each Ni+1/Ni is also torsion free. Notice that if (N, n) is the code for a torsion
free nilpotent group G and n ≥ 1, then N1 must also be torsion free since it is a subgroup of
G.
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Definition 3.14. The commutator of x and y, denoted [x, y], is the element x−1y−1xy.

Lemma 3.15. (RCA0) Let (N, n) be a code for a nilpotent group G. If 0 ≤ i < n and
x ∈ Ni+1, then [x, g] ∈ Ni for all g.

Proof. Notice that for i = 0, the lemma follows trivially because N1 is the center of G. Assume
i ≥ 1. By definition, x ∈ Ni+1 means xgNi = gxNi for all g. For any particular g, there is a
c ∈ Ni such that xg = gxc and hence also cg−1x−1 = x−1g−1. Let h be any element of G.

[x, g] · h = x−1g−1xg · h
= x−1g−1gxch

= ch

Since c ∈ Ni, we know that ch = hcc̃ for some c̃ ∈ Ni−1. We now have:

ch = hcc̃

= hcg−1x−1xgc̃

= hx−1g−1xgc̃.

Thus, we have [x, g] · h = h · [x, g] · c̃ for some c̃ ∈ Ni−1. Another way to write this equality is

[x, g] · hNi−1 = h · [x, g]Ni−1.

This equality means that [x, g]Ni−1 is in the center of G/Ni−1 and hence that [x, g] ∈ Ni.

Lemma 3.16. (RCA0) Let (N, n) be a code for a nilpotent group G. If 1 ≤ i < n and
x ∈ Ni+1, then for all m > 0

[x, g]mNi−1 = [xm, g]Ni−1.

Proof. Because [x, g]mNi−1 = [xm, g]Ni−1 is a Σ0
0 statement, we can prove this lemma in RCA0

by induction on m. The case for m = 1 is trivial, so assume the equality holds for m and we
prove it for m+ 1. Since [x, g]m+1 = [x, g]m · [x, g], we can apply the induction hypothesis in
the form [x, g]m = [xm, g] · c for some c ∈ Ni−1. We now have:

[x, g]m+1 = [xm, g] · c · [x, g]

= x−mg−1xmgc · [x, g].

By Lemma 3.15, x ∈ Ni+1 implies [x, g] ∈ Ni and so [x, g] commutes with elements of G
modulo Ni−1. Therefore, for some c̃ ∈ Ni−1 we have

x−m · g−1xmgc · [x, g] = x−m · [x, g] · g−1xmgcc̃

= x−m−1g−1xgg−1xmgcc̃

= [xm+1, g] · cc̃.

Because cc̃ ∈ Ni−1, this calculation establishes the induction case.
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Lemma 3.17 (Mal’cev). (RCA0) Let (N, n) be a code for a torsion free nilpotent group G.
For every 0 ≤ i < n, Ni+1/Ni is torsion free.

Proof. We prove this theorem by bounded induction on i. Because N0 = 〈1G〉 we have
N1/N0 = N1, which establishes the theorem for i = 0. Assume i ≥ 1 and the theorem holds
for i − 1. The induction hypothesis tells us that Ni/Ni−1 is torsion free. Let x ∈ Ni+1 and
suppose that xm ∈ Ni for some m > 0. We need to show that x ∈ Ni. By Lemma 3.16,
[x, g]mNi−1 = [xm, g]Ni−1 for any g. By Lemma 3.15, xm ∈ Ni implies that [xm, g] ∈ Ni−1.
Therefore, [x, g]m ∈ Ni−1. Applying Lemma 3.15 to x ∈ Ni+1 tells us that [x, g] ∈ Ni. Putting
these facts together, we have:

[x, g]Ni−1 ∈ Ni/Ni−1

[x, g]mNi−1 = 1GNi−1.

Since Ni/Ni−1 is torsion free, it must be that [x, g] ∈ Ni−1. However, this fact implies that
xgNi−1 = gxNi−1 for all g and so x ∈ Ni as required.

Lemma 3.18. (WKL0) Let (N, n) be a code for a torsion free nilpotent group. For every
0 ≤ i < n, Ni+1/Ni is a fully G/Ni-orderable group.

Proof. We need to show that there is a full order on Ni+1/Ni such that for all a, b ∈ Ni+1/Ni

and g ∈ G/Ni, if aNi < bNi then gag−1Ni < gbg−1Ni. By Lemmas 3.12 and 3.17, Ni+1/Ni is a
torsion free abelian group and hence by Theorem 3.3, WKL0 proves that it is fully orderable.

Let ≤ be any full order on Ni+1/Ni, let a < b be elements of Ni+1/Ni and let g ∈ G/Ni.
Since Ni+1/Ni

∼= C(G/Ni), we have gag−1Ni = aNi and gbg−1Ni = bNi. Hence, aNi < bNi

implies gag−1Ni < gbg−1Ni.

We are now ready to prove Theorem 3.13

Proof.

Case. (2) ⇒ (1)
Assume every torsion free nilpotent group is an O-group. By Lemma 3.11, this assumption

implies that every torsion free abelian group is an O-group. From here, Theorem 3.3 implies
(1).

Case. (1) ⇒ (2)

For each 1 ≤ i ≤ n, let P̄i be the strict positive cone of a full G/Ni−1-order on Ni/Ni−1.
Define Pi and P by:

Pi = {x ∈ Ni | xNi−1 ∈ P̄i}
P = (∪n

i=1Pi) ∪ {1G}.

We prove that P is the positive cone for a full order on G in the following series of claims.

Claim. P is a semigroup with identity.
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It suffices to show P is closed under multiplication. Let x, y ∈ P with x, y 6= 1G. There
are i, j such that x ∈ Pi and y ∈ Pj. If i = j then xNi−1, yNi−1 ∈ P̄i and so xyNi−1 ∈ P̄i and
xy ∈ Pi. If i 6= j then, without loss of generality, assume that i < j. Since x ∈ Pi, it follows
that x ∈ Ni and hence x ∈ Nj−1. But then, xyNj−1 = yNj−1 and so xy ∈ Pj.

Claim. P is normal.

Let x ∈ P , x 6= 1G and g ∈ G. There is an i such that x ∈ Pi. Since P̄i is the strict positive
cone of a full G/Ni−1–order on Ni/Ni−1, we have that xNi−1 ∈ P̄i implies that gxg−1Ni−1 ∈ P̄i.
Hence gxg−1 ∈ Pi.

Claim. P is pure.

Let x ∈ P and x 6= 1G. We need to show that x−1 6∈ P . There is an i such that x ∈ Pi.
Because P̄i is the strict positive cone on Ni/Ni−1, we know that x ∈ Ni, x 6∈ Ni−1. Hence
x−1 ∈ Ni and x−1 6∈ Ni−1. However, because xNi−1 ∈ P̄i, it follows that x−1Ni−1 6∈ P̄i and so
x−1 6∈ Pi. To show x−1 6∈ Pj for j > i, notice that since x−1 ∈ Ni, we also have x−1 ∈ Nj−1.
Therefore x−1Nj−1 = 1GNj−1 and hence x−1 6∈ Pj. Finally, assume for a contradiction that
j < i and x−1 ∈ Pj. It follows that x−1 ∈ Ni−1. However, above we showed that x−1 6∈ Ni−1.
Thus, x−1 6∈ Pj for any j.

Claim. P is full.

Let x ∈ P and x 6= 1G. We need to show that either x ∈ P or x−1 ∈ P . There is an
i such that x ∈ Ni and x 6∈ Ni−1. Since P̄i is a full order on Ni/Ni−1, either xNi−1 ∈ P̄i or
x−1Ni−1 ∈ P̄i. Thus, either x ∈ Pi or x−1 ∈ Pi.

3.2 Direct Products

Groups are frequently constructed by means of a direct product. These constructions preserve
full orderability. A proof of the following theorem can be found in either Fuchs (1963) or
Kokorin and Kopytov (1974).

Theorem 3.19. Any direct product of O-groups is an O-group.

To examine this theorem in reverse mathematics, we need to distinguish between finite and
restricted countable direct products. The finite direct product A0 ×A1 × . . .×An−1 consists
of sequences of length n such that the ith element of each sequence is in Ai. Multiplication
is componentwise. The elements of the restricted direct product of Ai for i ∈ N are finite
sequences σ such that for all i < lh(σ), σ(i) ∈ Ai. The idea is that the element represented
by σ has 1Aj

as its jth component for all j ≥ lh(σ). In order to make each sequence represent
a distinct element, we add the requirement that the last element in the sequence not be an
identity element. The formal definitions are given below.
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Definition 3.20. (RCA0) If n ∈ N and for all i < n, Ai is a group, then the finite direct
product G =

∏n−1
i=0 Ai is defined by:

G = {σ ∈ FinN | lh(σ) = n ∧ ∀i < n (σ(i) ∈ Ai)}
1G = 〈1A0 , 1A1 , . . . , 1An−1〉

σ ·G τ = 〈σ(0) ·A0 τ(0), . . . , σ(n− 1) ·An−1 τ(n− 1)〉.

Theorem 3.21. (RCA0) If n ∈ N and for all i < n, Ai is an O–group, then G =
∏n−1

i=0 Ai is
an O–group.

Proof. Let P+(Ai) be the strict positive cone of a full order on Ai. Order G lexicographically:

P+(G) = {σ ∈ G | ∃i < n (σ(i) ∈ P+(Ai) ∧ ∀j < i(σ(j) = 1Aj
))}

P (G) = P+(G) ∪ { 〈1A0 , . . . , 1An−1〉 }.

From this definition, P (G) is clearly full, pure, and contains the identity. It remains to check
that it is a normal semigroup. Since P (G) is closed under multiplication, it is a semigroup.
To see that it is normal, let σ ∈ P (G) have its first non-identity element at σ(i). If τ =
〈g0, . . . , gn−1〉 ∈ G then τστ−1 is

〈g0, . . . , gn−1〉 ·G 〈1A0 , . . . , 1Ai−1
, ai, . . . , an−1〉 ·G 〈g−1

0 , . . . , g−1
n−1〉.

The first non-identity element in this product is giaig
−1
i . Because ai ∈ P+(Ai), we have

giaig
−1
i ∈ P+(Ai) and hence τστ−1 ∈ P+(G).

Definition 3.22. (RCA0) Let A be a set such that for each i, the ith column Ai is a group.
The restricted direct product G =

∏
n∈NAn is defined by:

G = {σ ∈ FinN | ∀i < lh(σ) (σ(i) ∈ Ai) ∧ σ(lh(σ)− 1) 6= 1Alh(σ)−1
}

1G = 〈〉

where 〈〉 is the empty sequence. Multiplication is componentwise, removing any trailing
identity elements.

Theorem 3.23. (RCA0) The following are equivalent:

1. WKL0

2. If ∀i (Ai is an O-group) then G =
∏

i∈NAi is an O-group.

Proof.
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Case. (1) ⇒ (2):
We know ∀i∃Y (Y is a positive cone on Ai). From the Theorem 3.21, if n ∈ N then

RCA0 ` ∃Y (Y is positive cone on
n−1∏
i=0

Ai).

A uniform (strict) order on the A′
is is a set P such that Pi is the (strict) positive cone

of a full order on Ai. To prove that G is an O-group, it suffices to prove the existence of a
uniform order on the Ai. From a uniform order, we can define the lexicographic order on G
as in Theorem 3.21. To show the existence of a uniform order, we build a tree T such that
any path on the tree codes such an order. T is built in stages such that at the end of stage
s, all nodes of length s are defined. Each node on T keeps a guess at an approximation to
a uniform strict order. Suppose σ is a node on T at level s, s + 1 = 〈e, i〉, e 6= 1Ai

, and Pσ

is σ’s approximation. At stage s + 1 we check if 1Aj
∈ Pσ for any j. Since Pσ is a finite set,

this can be done computably. If 1Aj
∈ Pσ, then Pσ cannot be a subset of a uniform strict

order, so we terminate this branch. Otherwise, we define two extensions of Pσ: one by adding
e ∈ Ai to Pσ and the other by adding e−1 ∈ Ai to Pσ. These sets are each closed under one
step multiplication and conjugation by elements less than s. One extension becomes Pσa0

and the other becomes Pσa1. This construction is presented formally below. Ts will be the
set of nodes of T of length s.
Construction
Stage 0: Set T = {〈〉} and P〈〉 = ∅.
Stage s + 1 : Assume s = 〈e, i〉. For each σ ∈ Ts do the following:

1. Check if 1Aj
appears in Pσ for any j. If so, σ has no extensions on T , so move on to the

next node in Ts. If not, add σa0 and σa1 to Ts+1 and move on to step 2.

2. If e = 1Ai
or e does not represent an element of Ai, then set Pσa0 = Pσa1 = Pσ and

move on to the next node in Ts.

3. If e ∈ Ai and e 6= 1Ai
define

P̃σa0 = Pσ ∪ {〈e−1, i〉}
P̃σa1 = Pσ ∪ {〈e, i〉}

Extend these by:

〈k, j〉 ∈ Pσa0 ↔ 〈k, j〉 ∈ P̃σa0 ∨
∃〈m, j〉, 〈n, j〉 ∈ P̃σa0 (m ·Aj

n = k) ∨
∃n ≤ s ∃〈m, j〉 ∈ P̃σa0 (n ∈ Aj ∧ n ·Aj

m ·Aj
n−1 = k)

〈k, j〉 ∈ Pσa1 ↔ 〈k, j〉 ∈ P̃σa1 ∨
∃〈m, j〉, 〈n, j〉 ∈ P̃σa1 (m ·Aj

n = k) ∨
∃n ≤ s ∃〈m, j〉 ∈ P̃σa1 (n ∈ Aj ∧ n ·Aj

m ·Aj
n−1 = k).
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End of Construction

Claim. T is infinite.

For a contradiction, suppose that T is not infinite and hence there is some level n at which
T has no nodes. Notice that our coding for pairs satisfies the inequality 〈x, y〉 ≥ y. Therefore,
if 〈x, y〉 occurs in the construction before stage n, we know that y ≤ n. That is, at stage n,
T has only considered elements from A0 through An. By Theorem 3.21,

RCA0 `
n∏

i=0

Ai is an O-group.

Let X be the strict positive cone for a full order on this finite product and P+(Ai) be defined
by

x ∈ P+(Ai) ↔ 〈1A0 , . . . , 1Ai−1
, x, 1Ai+1

, . . . , 1An〉 ∈ X.
For each k ≤ n, k = 〈x, i〉 for some i ≤ n. Define σ ∈ FinN with lh(σ) = n by

σ(k) =

{
1 if k = 〈x, i〉 ∧ x ∈ P+(Ai)
0 otherwise

From the definition it is clear that

σ(k) = 0 ↔ x = 1Ai
∨ x−1 ∈ P+(Ai) ∨ x 6∈ Ai. (3.1)

To prove the claim, it suffices to show that σ ∈ T . We show by induction that for all k ≤ n,
σ|k ∈ T and Pσ|k ⊆ X. Clearly, σ|0 = 〈〉 ∈ T and Pσ|0 = ∅ ⊆ X. Assume that σ|k ∈ T and
Pσ|k ⊆ X. Because 1Aj

6∈ Pσ|k we know that σ|k+1 ∈ T . From the definition of σ and Equation

3.1, it is clear that P̃σ|k+1
⊆ X. Because Pσ|k+1

is obtained by multiplying and conjugating

elements of P̃σ|k+1
, it follows that Pσ|k+1

⊆ X. Thus, σ|n = σ ∈ T .
Since T is infinite, WKL0 provides a path S through T . Define:

Z̃ =
⋃
σ∈S

Pσ

Z = Z̃ ∪ {〈1Ai
, i〉 | i ∈ N}.

Z̃ has a Σ0
1 definition, but for x 6= 1Ai

〈x, i〉 ∈ Z̃ ↔ 〈x−1, i〉 6∈ Z̃.

Thus, Z̃ has a ∆0
1 definition and so both Z̃ and Z exist. It remains to show that Zi is the

positive cone for a full order on Ai.
To show Zi is full, consider any x ∈ Ai, x 6= 1Ai

. Let σ ∈ S with lh(σ) = 〈x, i〉. Since S is
a path, either σa0 ∈ S or σa1 ∈ S.

σa0 ∈ S ⇒ 〈x, i〉 ∈ Pσa0 ⇒ x ∈ Zi

σa1 ∈ S ⇒ 〈x−1, i〉 ∈ Pσa1 ⇒ x−1 ∈ Zi
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To show Zi is pure, suppose x 6= 1Ai
and x, x−1 ∈ Zi. For some σ ∈ S, 〈x, i〉, 〈x−1, i〉 ∈ Pσ.

From the construction, 1Ai
appears in both Pσa0 and Pσa1 so neither σa0 nor σa1 has an

extension. This condition means σ cannot be on a path which contradicts σ ∈ S.
Zi is a semigroup since if x, y ∈ Zi then there is a σ ∈ S such that 〈x, i〉, 〈y, i〉 ∈ Pσ.

S is a path so Pσ has an extension τ in the tree. By the one step multiplicative closure,
〈x ·Ai

y, i〉 ∈ Pτ and hence x ·Ai
y ∈ Zi. Showing Zi is normal is similar but uses the one step

closure under conjugates. Thus Zi is a full order on Ai and we have constructed the desired
uniform order.

Case. (2) ⇒ (1):

Assume the restricted direct product of O-groups is an O-group. To prove WKL0, it
suffices by Theorem 1.15 to prove that a separating set exists for any two functions with
disjoint ranges. Let f, g be functions such that for all n,m, f(n) 6= g(m). We need to form a
set S such that

range(f) ⊆ S ∧ range(g) ⊆ N \ S.

Recall from the first half of this proof, that an order on the direct product is equivalent
over RCA0 to a uniform order on the components Ai. The idea of this proof is to give abelian
groups An each of which has two generators, an and bn. If n is in the range of f , we force an

and bn to have the same sign in any order on An. That is, either both are positive or both
are negative. If n is in the range of g, we force an and bn to have different signs in any order.
If neither of these holds, then we let An be a torsion free abelian group on two generators.
Since the groups are abelian, we use additive notation. The groups look like:

Af(n) = 〈af(n), bf(n) | af(n) = pnbf(n)〉
Ag(n) = 〈ag(n), bg(n) | ag(n) = −pnbg(n)〉

where pn is the nth prime starting with 3. If n is not in the range of f or g then

An = 〈an, bn | −〉.

Formally, An is given by the elements can + dbn where c, d ∈ Z and

¬∃i(pi < 2|d| ∧ f(i) = n)

¬∃i(pi < 2|d| ∧ g(i) = n).

To add can + dbn and c′an + d′bn we check whether (c + c′) an + (d + d′) bn violates either of
these conditions. If there is an i such that pi < 2|d+d′| and f(i) = n, then we use the relation
an = pibn to rewrite (d + d′) bn as c′′an + d′′bn where |d′′| < pi/2. If the second condition is
violated, we do the same thing except we use the relation an = −pibn. We start the numbering
of the primes with 3 because if we started with 2 and f(2) = n then the elements an + bn and
2an − bn would be the same. Using only odd pi makes the coding more convenient.

Because the definition of An is uniform in n, the sequence An exists. It remains to show
that each An is orderable and that the separating set is given by a uniform order of the An.
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Claim. Each An is an O-group.

The proof of this claim splits into three cases. In RCA0, we cannot tell which case holds,
but we know that one of them must hold.

1. If f(i) = n then

P (An) = {can + dbn | c > 0 ∨ (c = 0 ∧ d ≥ 0)}.

2. If g(i) = n then

P (An) = {can + dbn | c > 0 ∨ (c = 0 ∧ d ≤ 0)}.

3. If n 6∈ range(g) ∪ range(f) then

P (An) = {can + dbn | c > 0 ∨ (c = 0 ∧ d ≥ 0)}.

In each case it is easy to verify that the set given is the positive cone of a full order. This
shows

RCA0 ` ∀n(An is an O-group).

By assumption, there is a uniform order on the An. Let P be the uniform positive cone. That
is, Pn is the positive cone of a full order on An. Define S by

S = {n | an ∈ Pn ↔ bn ∈ Pn}.

S is the desired separating set since if n is in the range of f then an ∈ Pn ↔ bn ∈ Pn while if
n is in the range of g then an ∈ Pn ↔ −bn ∈ Pn.

From the perspective of computable mathematics, uniformity is also the key issue in
ordering direct products. If we are given computable f.o. groups uniformly, then the direct
product can be computably fully ordered using the lexicographic order. However, if we have
a sequence of computably fully orderable computable groups, it is not necessarily possible to
compute a uniform sequence of computable full orders. We have the following corollaries to
Theorems 3.21 and 3.23.

Corollary 3.24. The direct product of a finite number of computably fully orderable com-
putable groups is computably fully orderable.

Corollary 3.25. There is a uniform sequence of computably fully orderable computable groups
Gi, i ∈ ω, such that Πi∈ωGi is a computable group with no computable full order. Πi∈ωGi does
have a full order of low degree.
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3.3 The Center

The results in this section concern how complicated the center of a group can be. In terms
of reverse mathematics, the existence of the center is equivalent to ACA0. As a consequence,
there is a computable group whose center is as complicated as 0′. However, this result can
be refined to show that even for 2 step nilpotent groups, which are intuitively the simplest
nonabelian groups, the center can still be as complicated as 0′. In order to prove these results,
we need an introduction to 2 step nilpotent groups.

Definition 3.26. G is n step nilpotent, for n > 1, if ζnG = G. G is properly n step
nilpotent if G is n step nilpotent and ζn−1G 6= G.

According to the definition, G is properly 2 step nilpotent if C(G) 6= G and G/C(G) is
abelian. These groups can also be defined in terms of the lower central series. The following
lemma states the essential property of this alternate definition.

Lemma 3.27. G is 2 step nilpotent if and only if each commutator [x, y] commutes with all
the elements of the group.

Lemma 3.27 can be used to establish the following identity for 2 step nilpotent groups.

[x−1, y] = xy−1x−1y

= xy−1x−1yxx−1

= x · [y, x] · x−1

= [y, x]

Similarly, we have:

[x, y−1] = [y, x]

[x−1, y−1] = [x, y]

[x, y]−1 = [y, x].

Let G be a free group on the generators ai, i ∈ ω, subject to the relations [[g, h], k] = 1G

for all g, h, k ∈ G. This group is called the free 2 step nilpotent group on ai. We have the
following identity:

aiaj = ajaia
−1
i a−1

j aiaj = ajai · [ai, aj].

Using the identities above and performing similar calculations, we get

a−1
i aj = aja

−1
i · [aj, ai]

aia
−1
j = a−1

j ai · [aj, ai]

a−1
i a−1

j = a−1
j a−1

i · [ai, aj].
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Because these identities allow us to commute any pair of generators modulo a commutator
of generators, we can write any element of G as

ak0
j0
ak1

j1
· · · akl

jl
· c

where j0 < j1 < · · · < jl, ki ∈ Z \ {0} and c is a product of commutators. Furthermore, we
can write c as a product of powers of commutators of the form [ai, aj] or [ai, aj]

−1 with i < j.
To get a unique normal form for each element, we arrange these commutators so that a power
of [ai, aj] occurs to the left of a power of [ak, al] if and only if i < k or i = k and j < l.

These normal forms give us a computable presentation of the free 2 step nilpotent group.
Furthermore, since we can write down a description of the normal form using only bounded
quantifiers, we can define the free 2 step nilpotent group on generators ai, i ∈ ω, in RCA0.
Because an element is in the center if and only if it is a product of commutators, RCA0

suffices to prove that there is a nilpotent code for this group.

Theorem 3.28. (RCA0) The following are equivalent:

1. ACA0

2. For every group G the center of G, C(G), exists.

Proof.

Case. (1) ⇒ (2)
The center of G is defined by a Π0

1 formula, so ACA0 suffices to prove its existence.

Case. (2) ⇒ (1)

By Theorem 1.16, it suffices to prove the existence of the range of an arbitrary one-one
function f . Let G be the free 2 step nilpotent group on generators ai and bi for i ∈ N with
the following extra relations:

aiaj = ajai for all i, j ∈ ω
bibj = bjbi for all i, j ∈ ω

aibj = bjai ⇔ ∀k ≤ i (f(k) 6= j).

Elements of G have unique normal forms:

an1
i1
· · · ank

ik
bm1
j1
· · · bml

jl
· c

where i1 < · · · < ik, j1 < · · · < jl, np 6= 0 and mq 6= 0 for 1 ≤ p ≤ k and 1 ≤ q ≤ l, and c
is a product of commutators with those which match the added relations removed. By the
comments above, G exists as a group in RCA0. However, as we are about to see, RCA0 is
not strong enough to prove that there is a code for G as a nilpotent group.
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Let C(G) be the center of G. To define the range of f we use the following equivalences:

bj ∈ C(G) ⇔ ∀i (aibj = bjai)

⇔ ∀i∀k ≤ i (f(k) 6= j)

⇔ ∀k (f(k) 6= j).

Therefore, bj ∈ C(G) if and only if j is not in the range of f . This equivalence allows us to
give a Σ0

0 definition of the range of f .

range(f) = { j | bj 6∈ C(G) }

Corollary 3.29. There is a computable 2 step nilpotent group G such that C(G) ≡T 0′.

Proof. Consider the group G constructed in the theorem when f is a computable one-one
function enumerating the halting problem. G satisfies the conditions of the corollary. Since
we can define the range of f from C(G), we have 0′ ≤T C(G). However, because C(G) has a
Π0

1 definition from G and G is computable, we know that C(G) ≤T 0′.

In addition, the group G in Corollary 3.29 is computably fully orderable. Let H be the
subgroup generated by the commutators. H is normal because G is 2 step nilpotent and H is
computable because we can tell if an element is the product of commutators by looking at the
normal form. H is generated by commutators of the form [ai, bj] for which ∃k ≤ i (f(k) = j).
There are no relations between these generators, so H is a torsion free abelian group which can
be computably fully ordered using the generators. Since G is 2 step nilpotent, the elements
of H commute with all elements of G. Therefore, any full order on H is a full G-order. G/H
is the abelianization of G, which is the torsion free abelian group generated by ai and bj for
i, j ∈ ω. Again, there are no extra relations between these elements in G/H, so G/H can be
computably fully ordered using these generators. Using Theorem 2.19, the orders on H and
G/H can be combined into a computable full order on G.

Finitely generated nilpotent groups have been extensively studied from the viewpoint of
computational algebra. These groups have very nice computational properties. For example,
the word problem, the conjugacy problem and the isomorphism problem are all solvable. The
key algebraic facts to establish these results are that finitely generated nilpotent groups are
also finitely presented, that finitely generated nilpotent groups are residually finite and that
every subgroup is finitely generated.

Theorem 3.30 (Baumslag et al. (1991)). The center of a finitely generated nilpotent
group is computable.

Corollary 3.31 (Baumslag et al. (1991)). All the terms in the upper central series for a
finitely generated nilpotent group are computable.
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3.4 Spaces of Full Orders

Once a group G is known to be fully orderable, there are many natural questions to ask about
the space of all full orders on G. For example, algebraists have tried to say explicitly what
the full orders look like. This project turns out to be extremely difficult. An easier question
is how computationally complicated can the orders be. Downey and Kurtz (1986) phrased
this question in terms of the connection between c.b. Π0

1 classes and full orders on torsion free
abelian groups. In Chapter 8, we will formulate their question explicitly and answer it.

A first step towards answering this question comes from looking at the proof of Theorem
3.23. In the proof of this theorem, we used nodes on a tree to guess at full orders and
terminate branches when they violate certain algebraic conditions. We used the property
that finite direct products are orderable to show, in WKL0, that the tree is infinite and
therefore has a path. This path codes a full order on the countable direct product.

In this section, we give a similar argument, only not in the context of reverse mathematics.
Starting with a fully orderable computable group G, we build a computable binary branching
tree, the paths of which code all the full orders on G. Since we are not restricted to a weak
axiom system, the property that G is fully orderable is enough to guarantee that the tree is
infinite. The paths of the tree correspond, up to Turing degree, exactly to the full orders of
G. In this way, we show that up to Turing degree, the space of full orders on a computable
group is a c.b. Π0

1 class.

Definition 3.32. Let G be a fully orderable computable group. The space of orders of G,
denoted X(G), is

{P ⊆ G |P is the positive cone of a full order on G }.

Metakides and Nerode performed a similar analysis for orderable computable fields. Their
work on the connection between spaces of orders for such fields and c.b. Π0

1 classes was the
motivation for Downey and Kurtz (1986) to ask about these connections for ordered groups.

Theorem 3.33 (Metakides and Nerode (1979)). Let F be an orderable computable field.
There is a c.b. Π0

1 class C and a Turing degree preserving bijection ϕ : X(F ) → C.

Theorem 3.34. Let G be a fully orderable computable group. There is a c.b. Π0
1 class C and

a Turing degree preserving bijection ϕ : X(G) → C.

Proof. Let G be a fully orderable computable group enumerated by g0, g1, . . . with g0 = 1G.
We build a computable binary branching tree T in stages. Tn denotes the part of T built at
the end of stage n and includes all the nodes of T of length ≤ n. To each node σ ∈ T there
is an associated finite set Sσ, which contains σ’s guess at a subset of a strict positive cone.
Construction
Stage 0: 〈〉 ∈ T0 and S〈〉 = ∅.
Stage 1: 〈1〉 ∈ T1 and S〈1〉 = ∅. The purpose of this stage is to put a code for 1G into every
path but not to include 1G in the strict positive cone.
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Stage n+1: Assume Tn is given and define Tn+1 to include Tn. For each σ ∈ Tn with
lh(σ) = n do the following:

1. If 1G ∈ Sσ, then σ has no extensions in Tn+1.

2. Otherwise, both σa0 and σa1 are put into Tn+1.

We define the associated sets by:

Sσa0 = Sσ ∪ {g−1
n+1} ∪ {gh|g, h ∈ Sσ} ∪ {g−1

i hgi|i ≤ n+ 1 ∧ h ∈ Sσ}
Sσa1 = Sσ ∪ {gn+1} ∪ {gh|g, h ∈ Sσ} ∪ {g−1

i hgi|i ≤ n+ 1 ∧ h ∈ Sσ}.

End of Construction
Let C be the c.b. Π0

1 class of paths through T . For each P ∈ X(G), let fP : ω → {0, 1}
be the map that sends n to 0 if gn 6∈ P and sends n to 1 if gn ∈ P . For each f ∈ C, let Pf be
the set

Pf = { g ∈ G | f(g) = 1 } ∪ { g−1 | f(g) = 0 }.
We can now define the map ϕ : X → C as the map that takes P to fP . We need to verify
that ϕ is a degree preserving bijection.

Claim. For each f ∈ C, Pf ∈ X(G).

To prove this claim, we check the required algebraic properties of Pf . To see that Pf is
full, notice that f(0) = 1, so 1G ∈ Pf . For n > 0, either f(n) = 1, in which case n ∈ Pf , or
f(n) = 0, in which case n−1 ∈ Pf . Therefore, Pf ∪ P−1

f = G.
To show that Pf is a semigroup, we only need to show it is closed under multiplication.

Assume g, h ∈ Pf and gh 6∈ Pf . Since Pf is full, we know that h−1g−1 ∈ Pf . Let n be the
maximum of the indices for g, h and h−1g−1. By the construction we have the following:

g, h, h−1g−1 ∈ Sf |n

g, g−1 ∈ Sf |n+1

1G ∈ Sf |n+2 .

Therefore, f |n+2 has no extensions in T which contradicts the fact that f is a path through
T . The proofs for normality and purity are similar.

Claim. For each P ∈ X(G), fP ∈ C.

We prove by induction that fP |n is on T for all n. The case for n = 0 follows from stage
1 of the construction because 1G ∈ P , g0 = 1G and 〈1〉 ∈ T . Also, notice that

S〈1〉 = ∅ ⊆ P+ = P \ {1G}.

For the inductive step, assume that fP |n ∈ T and SfP |n ⊆ P+. Thus 1G 6∈ SfP |n and so

both fP |na0 and fP |na1 are in T . Without loss of generality, assume that fP (n+ 1) = 1 and
so fP |n+1 = fP |na1. Since gn+1 6= 1G and fP (n+1) = 1, we know that gn+1 ∈ P+. Also, since
SfP |n ⊆ P+ and P+ is closed under one multiplication and conjugation, we have SfP |n+1 ⊆ P+

as required.
To finish the proof, we make the following trivial observations:
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1. If g ∈ C, then g = fPg .

2. If Q ∈ X(G), then Q = PfQ
.

3. If P 6= Q in X(G), then fP 6= fQ.

4. If f 6= g in C, then Pf 6= Pg.

These observations show that ϕ is a bijection and that ϕ−1 takes f ∈ C to Pf ∈ X(G). Finally,
from the definitions it is clear that fP ≤T P for any P ∈ X(G) and Pf ≤T f for any f ∈ C.
Therefore, deg(P ) = deg(fP ), so ϕ preserves Turing degrees.
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Chapter 4

Semigroup Conditions

4.1 Definition of the Conditions

In Chapter 3, we examined group conditions that imply full orderability. Semigroup conditions
can also be analyzed to determine if a group is orderable. In this chapter, we study three
theorems giving semigroup conditions. The versions stated in Kokorin and Kopytov (1974)
are given below. In these theorems, S(a1, . . . , an) denotes the normal semigroup generated by
a1, . . . , an.

Theorem 4.1 (Fuchs (1958)). A partial order on G with positive cone P can be extended
to a full order if and only if for any finite sequence of non-identity elements, a1, . . . , an ∈ G,
there is a sequence ε1, . . . , εn with εi = ±1 such that

P ∩ S(aε1
1 , . . . a

εn
n ) = ∅.

Theorem 4.2 ( Los (1954), Ohnishi (1952)). G is an O-group if and only if for any finite
sequence of non-identity elements a1, . . . , an there exists a sequence ε1, . . . , εn such that

1G 6∈ S(aε1
1 , . . . a

εn
n ).

Theorem 4.3 (Lorenzen (1949)). G is an O-group if and only if for any finite sequence
of non-identity elements a1, . . . , an ⋂

S(aε1
1 , . . . a

εn
n ) = ∅

where the intersection extends over all sequences ε1, . . . , εn with εi = ±1.

The first step in studying these theorems in reverse mathematics is to translate the semi-
group conditions into the language of second order arithmetic. To do this, we need a definition
for the normal semigroup generated by a finite number of elements. If A is the code of a finite
sequence of elements of G, let S(A) be the normal semigroup generated by A. S(A) is built
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in stages with S(A) =
⋃

n Sn(A). The idea is to start with S0(A) = A and at step n+ 1, add
the elements that can be formed by conjugating a member of Sn(A) or by multiplying two
members of Sn(A).

S0(A) = A

...

Sn+1(A) = Sn(A) ∪ {gag−1 | a ∈ Sn(A), g ∈ G} ∪ {ab | a, b ∈ Sn(A)}
...

It is clear that S(A) =
⋃

n Sn(A) is the desired semigroup. Formally, we define a function s
such that:

x ∈ Sn(A) ↔ ∃m (s(A, n,m, x) = 1)

and for all n,m, x either s(A, n,m, x) = 0 or s(A, n,m, x) = 1. Define s by recursion on n
with A and m as parameters.

s(A, 0,m, x) =

{
1 if x ∈ A
0 otherwise

s(A, n+ 1,m, x) =


1 if s(A, n,m, x) = 1 or
∃a, g ≤ m (s(A, n,m, a) = 1 ∧ x = gag−1) or
∃a, b ≤ m (s(A, n,m, a) = s(A, n,m, b) = 1 ∧

∧ x = ab)
0 otherwise

Before proceeding with the main results of this chapter, we need to establish two prelimi-
nary facts.

Definition 4.4. (RCA0) If A is a code for a finite sequence of elements of G, let A−1 be the
code for the finite sequence defined by A−1(k) = A(k)−1 for 0 ≤ k ≤ lh(A).

Lemma 4.5. (RCA0) If A is a code for a finite sequence of elements of G and s(A, n,m, x) =
1, then ∃p (s(A−1, n, p, x−1) = 1).

Proof. The proof is by Σ0
1 induction on n.

Base case: Assume s(A, 0,m, x) = 1 and so x ∈ A. By definition, x−1 ∈ A−1 and
s(A−1, 0,m, x−1) = 1.
Induction case: Assume s(A, n+ 1,m, x) = 1 and split into three subcases.

1. If s(A, n,m, x) = 1 then the induction hypothesis implies there is a p such that
s(A−1, n, p, x−1) = 1 and hence s(A−1, n+ 1, p, x−1) = 1.

2. There are g, a ≤ m with s(A, n,m, a) = 1 and x = gag−1. By the induction hypothesis
there is a p with s(A−1, n, p, a−1) = 1. Since x−1 = ga−1g−1, taking p̃ = max{p, g} gives
s(A−1, n+ 1, p̃, x−1) = 1.
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3. There are a, b ≤ m with s(A, n,m, a) = s(A, n,m, b) = 1 and x = ab. By the induction
hypothesis there are p1, p2 such that s(A−1, n, p1, a

−1) = 1 and s(A−1, n, p2, b
−1) = 1.

Let p = max{p1, p2}. Since x−1 = b−1a−1, if follows that s(A−1, n+ 1, p, x−1) = 1.

Lemma 4.6. (RCA0) Let P be the positive cone of a full order on G and A be a code for a
finite sequence of nonidentity elements of P . If s(A, n,m, x) = 1 then x > 1G.

Proof. The proof is by Σ0
1 induction on n.

For the base case, assume s(A, 0,m, x) = 1. Since A ⊂ P and 1G 6∈ P , x > 1G. For the
induction case, use the same three subcases as in Lemma 4.5.

The next step is to write the semigroup conditions using s(A, n,m, x). Let Fin±1 be the
set of codes for finite sequences of ±1. If A ∈ FinG, σ ∈ Fin±1, and lh(A) = lh(σ), then let
Aσ be the sequence of elements of G defined by:

lh(Aσ) = lh(A)

∀k < lh(Aσ) (Aσ(k) = A(k)σ(k)).

For example, if A = 〈1G, a〉 and σ = 〈+1,−1〉 then Aσ = 〈1G, a
−1〉.

In the remaining equations in this section, it is assumed that A ranges over FinG\1G
and

σ ranges over Fin±1. The semigroup condition in Theorem 4.1 can be translated into the
notation of s(A, n,m, x) by the following steps:

∀A∃σ
(
lh(A) = lh(σ) ∧ P ∩ S(Aσ) = ∅

)
∀A∃σ ∀x

(
lh(A) = lh(σ) ∧ (x ∈ S(Aσ) → x 6∈ P )

)
∀A∃σ ∀x

(
lh(A) = lh(σ) ∧ (∃n,m s(Aσ, n,m, x) = 1 → x 6∈ P )

)
∀A∃σ ∀x

(
lh(A) = lh(σ) ∧ (∀n,m s(Aσ, n,m, x) = 0 ∨ x 6∈ P )

)
.

Since ∃σ ∈ Fin±1(lh(σ) = lh(A)) is really a bounded quantifier, this condition is Π0
1.

The semigroup condition in Theorem 4.2 can be translated as follows:

∀A∃σ
(
lh(A) = lh(σ) ∧ 1G 6∈ S(Aσ)

)
∀A∃σ

(
lh(A) = lh(σ) ∧ ∀n,m s(Aσ, n,m, 1G) = 0

)
.

Again, because ∃σ ∈ Fin±1(lh(σ) = lh(A)) is a bounded quantifier, this condition is Π0
1.

The semigroup condition in Theorem 4.3 can be written as follows:

∀A∀x ∃σ
(
lh(A) = lh(σ) ∧ x 6∈ S(Aσ)

)
∀A∀x ∃σ

(
lh(A) = lh(σ) ∧ ∀m,n s(Aσ, n,m, x) = 0

)
.

This sentence is also Π0
1.

Theorems 4.1, 4.2 and 4.3 can now be stated in the language of second order arithmetic.
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Theorem 4.7. (WKL0) A partial order on G with positive cone P can be extended to a full
order if and only if

∀A∃σ ∀x, n,m
(
lh(A) = lh(σ) ∧ (s(Aσ, n,m, x) = 0 ∨ x 6∈ P )

)
. (4.1)

Theorem 4.8. (WKL0) G is an O-group if and only if

∀A∃σ ∀n,m
(
lh(A) = lh(σ) ∧ s(Aσ, n,m, 1G) = 0

)
. (4.2)

Theorem 4.9. (WKL0) G is an O-group if and only if

∀A∀x ∃σ ∀m,n
(
lh(A) = lh(σ) ∧ s(Aσ, n,m, x) = 0

)
. (4.3)

There are several connections between these theorems. G is an O-group if and only if the
trivial order with positive cone P = {1G} can be extended to a full order. By Theorem 4.7,
this condition is equivalent to:

∀A∃σ∀x, n,m
(
lh(A) = lh(σ) ∧ (s(Aσ, n,m, x) = 0 ∨ x 6= 1G)

)
which in turn is equivalent to Equation (4.2). Hence, RCA0 proves that Theorem 4.8 is a
special case of Theorem 4.7. Setting x = 1G shows that (4.3) implies (4.2).

Showing that Equation (4.2) implies Equation (4.3) requires more work. For σ ∈ Fin±1,
let σ−1 have the same length as σ with σ−1(k) = −σ(k). Notice that Aσ−1 = A−1

σ and
(Aσ−1)−1 = Aσ. For a contradiction, suppose that (4.2) holds and (4.3) does not. Because
(4.3) fails, there are A and x such that

∀σ ∈ Fin±1∃m,n
(
lh(σ) = lh(A) → s(Aσ, n,m, x) = 1

)
. (4.4)

Fix A and x. Because (4.2) holds, there is a σ such that

∀n,m
(
s(Aσ, n,m, 1G) = 0

)
. (4.5)

Fix σ. Applying (4.4) with σ−1, we have s(Aσ−1 , n,m, x) = 1 for some m,n and hence by
Lemma 4.5, s(Aσ, n, p, x

−1) = 1. Applying (4.4) with σ we have s(Aσ, ñ, m̃, x) = 1 for some
m̃, ñ. Without loss of generality, assume n ≥ ñ. By definition, s(Aσ, n, m̃, x) = 1 and so if
k > n, m̃ then s(Aσ, n, k, 1G) = 1. This fact contradicts (4.5).

4.2 Equivalence with WKL0

The goal for the rest of this chapter is to prove the following theorem.

Theorem 4.10. (RCA0) The following are equivalent:

1. WKL0
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2. Theorem 4.7

3. Theorem 4.8

4. Theorem 4.9

By the comments at the end of the last section, we know that (2) implies (3) and that (3)
and (4) are equivalent. In this section, we will show that (1) implies (2) and that (3) implies
(1).

Proposition 4.11. (RCA0) If a partial order on G with positive cone P can be extended to
a full order, then Equation (4.1) holds for P .

Proof. Assume Q is the positive cone of a full order extending P . Given any A ∈ FinG\1G
,

let σ ∈ Fin±1 be such that lh(σ) = lh(A) and for every k < lh(σ), A(k)−σ(k) ∈ Q. For a
contradiction, assume for some x, n,m we have

s(Aσ, n,m, x) = 1 ∧ x ∈ P.

Because P ⊆ Q, we have that x ∈ Q. Applying Lemma 4.5 to s(Aσ, n,m, x) = 1, we have
s(Aσ−1 , n, p, x−1) = 1 for some p. However by our choice of σ, Aσ−1 must be contained in
Q \ 1G and hence x−1 > 1G by Lemma 4.6. Thus x, x−1 ∈ Q and so x = 1G. This conclusion
contradicts x−1 > 1G.

Proposition 4.12. (WKL0) If P ⊂ G and Equation (4.1) holds for P then P can be extended
to the positive cone of a full order on G.

Proof. This proof is similar to the proof of Theorem 3.23. Suppose G is enumerated as
g0, g1, . . .. We build a binary branching tree T which codes the positive cone of a full order
along every path. Equation (4.1) will imply that T is infinite and so WKL0 guarantees that
it has a path. To simplify the notation we construct T ⊆ Fin±1 instead of T ⊆ Fin{0,1}. For
each σ ∈ T with lh(σ) = k, let Qσ ∈ FinG\1G

be

Qσ = 〈gσ(1)
1 , . . . , g

σ(k−1)
k−1 〉.

For example, if σ = 〈+1,−1,−1〉 then Qσ = 〈g−1
1 , g−1

2 〉. The reason for not including g0 in
Qσ is so that 1G 6∈ Qσ. Qσ represents σ’s guess as a subset of a strict positive cone extending
P .

As in the earlier constructions, T is built in stages and after stage k, no new nodes of
length k enter T . Tk denotes the nodes of T after stage k.
Construction
Stage 0: Set T0 = {〈〉} and Q〈〉 = 〈〉.
Stage 1: Set T1 = {〈〉, 〈−1〉} and Q〈−1〉 = 〈〉. The purpose of this stage is to code 1G into
every path.
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Stage s = k+1: For each σ ∈ Tk check if Equation (4.1) has been violated by a number
below k:

∃x, n,m ≤ k
(
s(Qσ, n,m, x) = 1 ∧ x ∈ P

)
There are two possible answers to this question.

1. If YES: Equation (4.1) has been violated, so neither σa〈−1〉 nor σa〈+1〉 enters Tk+1.

2. If NO: Extend σ by putting both σa〈−1〉 and σa〈+1〉 in Tk+1.

End of Construction
We need to verify various properties of the construction. Let [k] = 〈g1, . . . , gk−1〉 and

[k]σ = 〈gσ(1)
1 , . . . , g

σ(k−1)
k−1 〉.

Lemma 4.13. (RCA0) T is infinite.

Proof. It suffices to show that for each k there is an element of T of length k. Fix k > 0.
Since P satisfies Equation (4.1), there is a σ ∈ Fin±1 with lh(σ) = k and

∀x, n,m
(
s([k]σ, n,m, x) = 0 ∨ x 6∈ P

)
.

In particular, this condition holds if we bound the quantifiers by k. From the definition of T ,
it follows that for all i ≤ k, σ|i ∈ T and hence σ ∈ T .

By Weak König’s Lemma there is a path h through T . Let

h[n] = 〈h(0), . . . , h(n− 1)〉 ∈ Fin±1

h̃[n] = [n]h[n] = 〈gh(1)
1 , . . . , g

h(n−1)
n−1 〉.

Lemma 4.14. (RCA0) For any x ∈ G \ 1G, h(x) = 1 ↔ h(x−1) = −1.

Proof. If h(x) = h(x−1) = 1 and k is the maximum of the indices for x and x−1 and the values
of x and x−1 as natural numbers, then x, x−1 ∈ h̃[k + 1]. Since s(h̃[k + 1], 0, 0, x) = 1 and
s(h̃[k + 1], 0, 0, x−1) = 1, it follows that s(h̃[k + 1], 1, k, 1G) = 1. But, 1G ∈ P and so by the
construction of T , h[k + 1] has no extensions. This statement contradicts the choice of h as
a path. The case for h(x) = h(x−1) = −1 is similar.

We are now in a position to define Q and verify that it is a full order extending P .

x ∈ Q↔ h(x) = −1

Q exists by ∆0
1 comprehension. It contains 1G since the only node of length 1 in T is 〈−1〉

and it is both full and pure by Lemma 4.14.

Claim. P ⊂ Q

Suppose gi ∈ P \1G and h(gi) = 1. By definition, gi ∈ h̃[i+1] and so s(h̃[i+1], 0, 0, gi) = 1.
As in Lemma 4.14, s(h̃[i+ 1], 0, 0, gi) = 1 and gi ∈ P contradicts the fact that h is a path.
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Claim. Q is closed under multiplication.

Suppose that a, b ∈ Q and ab 6∈ Q. From Lemma 4.14 and the definition of Q, it follows
that h(a−1) = 1, h(b−1) = 1 and h(ab) = 1. For a large enough k, we have a−1, b−1, ab ∈ h̃[k]
and hence if m is the maximum of the values of a−1, b−1, ab, b−1 and a−1 as natural numbers
and their indices as elements of G, then s(h̃[k], 2,m, 1G) = 1. Since 1G ∈ P , this statement
contradicts the fact that h is a path.

Claim. Q is normal.

Suppose q ∈ Q, g ∈ G and gqg−1 6∈ Q. As above, h(q−1) = 1, h(gqg−1) = 1 and there is
a k with q−1, gqg−1 ∈ h̃[k]. There is an m such that s(h̃[k], 2,m, 1G) since the definition of s
yields the normal semigroup. As above, h[k] cannot be on a path. This claim completes the
proof that Q is a full order extending P .

Together Propositions 4.11 and 4.12 show (1) implies (2) in Theorem 4.10. The next step
is to show that (3) implies (1) in the theorem.

Proposition 4.15. (RCA0) For an abelian group G the following are equivalent:

1. Equation (4.2) holds.

2. G is torsion free.

Proof.

Case. (1) ⇒ (2) :
For a contradiction assume that Equation (4.2) holds and a 6= 1G is a torsion element of

G.

Claim. For all k ≥ 1, ∃p[s(〈a〉, k − 1, p, ak) = 1].

The claim is proved by Σ0
1 induction on k. If k = 1, then a ∈ 〈a〉 implies s(〈a〉, 0, 0, a) = 1.

For k+ 1, the induction hypothesis states that there are p, p′ such that s(〈a〉, k− 1, p, ak) = 1
and s(〈a〉, k − 1, p′, a) = 1. If p′′ = max{p, p′} then s(〈a〉, k, p′′, ak+1) = 1, which proves the
claim.

If a is a torsion element then for some k, ak = (a−1)k = 1G. Equation (4.2) for the
sequence 〈a〉 says that either

∀n,m
(
s(〈a〉, n,m, 1G) = 0

)
or ∀n,m

(
s(〈a−1〉, n,m, 1G) = 0

)
.

But the claim implies that

∃p
(
s(〈a〉, k − 1, p, 1G) = s(〈a〉, k − 1, p, ak) = 1

)
∃p
(
s(〈a−1〉, k − 1, p, 1G) = s(〈a−1〉, k − 1, p, (a−1)k) = 1

)
.

Case. (2) ⇒ (1)
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The first step of this direction is to show that for an abelian group G the normal semigroup
generated by A ∈ FinG is the same as the semigroup generated by A. That is, if A =
〈a1, . . . an〉 then any element of S(A) can be written as ak1

1 · · · akn
n for some choice of k1, . . . kn ∈

N with at least one ki > 0. Informally this statement is clear because any subset of an abelian
group is normal. However, we need the formal fact that every element can be written in this
form. We define a function prod(A, σ) that takes A = 〈a1, . . . , an〉 and σ = 〈σ1, . . . , σn〉 to
aσ1

1 · · · aσn
n . For A ∈ FinA and σ ∈ FinN with lh(A) = lh(σ), define prod(A, σ) by recursion on

lh(A): prod(A, σ) = 0 if lh(A) = 0, prod(A, σ) = A(0)σ(0) if lh(A) = 1 and if lh(A) > 1 then

prod(A, σ) =

{
prod(A′, σ′) · prod(A′′, σ′′) if lh(σ) = lh(A)
0 if lh(σ) 6= lh(A)

where

lh(A′) = lh(σ′) = lh(A)− 1

lh(A′′) = lh(σ′′) = 1

∀k < lh(A′)[A′(k) = A(k) ∧ σ′(k) = σ(k)]

[A′′(0) = A(lh(A)− 1)] ∧ [σ′′(0) = σ(lh(σ)− 1)].

There are two lemmas to prove about this formal notation.

Lemma 4.16. (RCA0) If A ∈ FinG, σ, τ ∈ FinN and lh(A) = lh(σ) = lh(τ) then

prod(A, σ) · prod(A, τ) = prod(A, σ + τ)

where σ + τ ∈ FinN is defined by (σ + τ)(k) = σ(k) + τ(k).

Proof. This lemma is proved by induction on lh(A). If lh(A) = 1:

prod(A, σ) · prod(A, τ) = A(0)σ(0)A(0)τ(0)

= A(0)σ(0)+τ(0)

= prod(A, σ + τ).

If lh(A) > 1 then we rewrite prod(A, σ) · prod(A, τ) as:

prod(A′, σ′) · prod(A′′, σ′′) · prod(A′, τ ′) · prod(A′′, τ ′′)

= prod(A′, σ′) · prod(A′, τ ′) · prod(A′′, σ′′) · prod(A′′, τ ′′)

= prod(A′, σ′ + τ ′) · prod(A′′, σ′′ + τ ′′)

= prod(A, σ + τ).

The second line uses the fact that G is abelian and the third line uses the induction hypothesis.

Lemma 4.17. If A ∈ FinG, n ∈ N, x ∈ G and ∃m [s(A, n,m, x) = 1] then there is a σ ∈ FinN
with lh(σ) = lh(A) and at least one k < lh(σ) with σ(k) > 0 such that x = prod(A, σ).
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Proof. This claim is proved by induction on n. For the base case, assume s(A, 0,m, x) = 1.
Then x = A(j) for some j. Define σ by σ(j) = 1 and σ(i) = 0 for i 6= j. For the induction
case, assume s(A, n+ 1,m, x) = 1 and split into three subcases.

1. If s(A, n,m, x) = 1, then we are done by the induction hypothesis.

2. If x = ab with s(A, n,m, a) = s(A, n,m, b) = 1, then by the induction hypothesis,
a = prod(A, σ) and b = prod(A, τ). By Lemma 4.16, x = prod(A, σ + τ).

3. If x = gag−1 with s(A, n,m, a) = 1 and g ≤ m, then since G is abelian, x = a. Hence
s(A, n,m, x) = 1 and the induction hypothesis applies.

We can now prove that if G is torsion free abelian then Equation (4.2) holds by Π0
1

induction on lh(A).
Base case: We need to show that for each a ∈ G \ 1G either

∀n,m
(
s(〈a〉, n,m, 1G) = 0

)
or ∀n,m

(
s(〈a−1〉, n,m, 1G) = 0

)
.

Suppose that neither equation holds and that s(〈a〉, n,m, 1G) = 1. By Lemma 4.17, 1G =
prod(〈a〉, σ) for some σ and 1G = aσ(0) by the definition of prod. Therefore a is a torsion
element which contradicts the fact that G is torsion free.
Induction step: This case will be presented less formally to avoid an undue amount of no-
tational baggage. Assume Equation (4.2) holds for 〈a1, . . . , an〉 and fails for 〈a1, . . . , an, b〉.
Let 〈ε1, . . . , εn〉 be the exponents in Equation (4.2) for 〈a1, . . . , an〉. By assumption, there are
n1,m1, n2,m2 such that

s(〈aε1
1 , . . . , a

εn
n , b〉, n1,m1, 1G) = 1

s(〈aε1
1 , . . . , a

εn
n , b

−1〉, n2,m2, 1G) = 1.

By Lemma 4.17, there are k1, . . . , kn+1 and l1, . . . , ln+1 such that

aε1k1
1 · · · aεnkn

n bkn+1 = 1G

aε1l1
1 · · · aεnln

n b−ln+1 = 1G

which gives
a

ε1(k1ln+1+kn+1l1)
1 · · · aεn(knln+1+kn+1ln)

n = 1G.

This equation contradicts Equation (4.2) for 〈a1, . . . , an〉.

Proposition 4.15 shows that statement (3) in Theorem 4.10 implies that every torsion free
abelian group is an O–group. By Theorem 3.3, this statement implies WKL0. We have now
completed the proof of Theorem 4.10.
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Chapter 5

Free Groups

There is a well known result in group theory that every group can be written as a quotient
of a free group. A similar result holds for ordered groups. For every f.o. group G, there is
an f.o. free group F and a convex normal subgroup N ⊆ F such that G ∼= F/N by an order
preserving isomorphism. It is assumed that F/N has the induced quotient order. Surprisingly,
this theorem is provable in RCA0 and that proof is the main result of this chapter. This result
answers an open question from Downey and Kurtz (1986) by showing that the effective version
of the theorem holds. There is one technical lemma required to prove the main theorem. We
need to know that RCA0 suffices to show that the free group on two generators is an O-group.
In the first section, we assume this fact and show that RCA0 proves the main theorem. The
last two sections are devoted to proving the technical lemma. In Section 2, we introduce
ordered rings and a special class of matrices. In Section 3, we use this class of matrices to
order the free product of O-groups. As a corollary, we prove that the free group on two
generators is an O-group.

5.1 Main Result

The formal definitions and properties of free groups and free products are given in Appendix
A. There we show that RCA0 is strong enough to prove the existence of the set of reduced
words and define a group structure on them. In this chapter, we will use the standard
mathematical notation for free groups. In general, if X = {x0, x1, . . .} is the set of generators
of a free group, then WordX denotes the set of words in X and the elements of the group are
written as xn1

i1
· · ·xnk

ik
with ni ∈ Z \ 0. Here, if ni > 0, then xni

i refers to x1
i repeated ni times.

If ni < 0, then xni
i refers to x−1

i repeated |ni| times. Using this notation, we prove that every
group is isomorphic to the quotient of a free group by a normal subgroup.

Theorem 5.1. (RCA0) Every group is the epimorphic image of a free group.

Proof. Let F be the free group on the generators X = {x0, x1, . . .} and suppose G is enu-
merated as g0, g1, . . .. Define a map ψ : X → G by xn 7→ gn and extend ψ to a map from
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WordX → G by sending xn1
i1
· · ·xnk

ik
7→ gn1

i1
· · · gnk

ik
. This map respects the equivalence of words

and hence restricts to an epimorphism ψ̃ : F → G. This argument can be made formal by
using notions similar to the Prod notation from Chapter 4.

If N is the kernel of ψ̃ then G ∼= F/N . The main technical facts needed to prove the
version of this theorem for f.o. groups are stated as Theorem 5.2 and Corollary 5.3. The
proofs of these results will be given in Section 3 of this chapter. Using these tools, we can
prove that the free group on a countable number of generators is an O-group. N+ denotes
the set of strictly positive natural numbers.

Theorem 5.2. (RCA0) The free product of two O-groups is an O-group.

Corollary 5.3. (RCA0) The free group on two generators is an O-group.

Lemma 5.4. (RCA0) Let F be the free group on the two generators x, y. For each i ∈ N+

let αi = xiyi.

1. The word αn1
i1
· · ·αnk

ik
with ij+1 6= ij, nj ∈ Z \ {0}, and k > 0 freely reduces to a word

ending in xεyik if nk > 0 and yεx−ik if nk < 0.

2. No product αn1
i1
· · ·αnk

ik
with the above restrictions is the identity element.

Proof. Assuming the first property holds, there is either an x or a y with a nonzero exponent
in the reduced form of αn1

i1
· · ·αnk

ik
. Therefore, the second property follows immediately from

the first.
The first property is proved by induction on k. If k = 1 then

αn1
i1

= (xi1yi1)n1

which satisfies the first property. If k > 1, then split into four cases depending on the signs
of nk and nk−1.

Case. nk > 0 and nk−1 > 0

By the induction hypothesis, αn1
i1
· · ·αnk−1

ik−1
reduces to a word ending in xεyik−1 . Thus

αn1
i1
· · ·αnk

ik
reduces to a word ending in xεyik−1(xikyik)nk . Since nk > 0, this word ends in

xikyik .

Case. nk > 0 and nk−1 < 0

By the induction hypothesis, αn1
i1
· · ·αnk−1

ik−1
reduces to a word ending in yεx−ik−1 . Hence

αn1
i1
· · ·αnk

ik
reduces to a word ending in yεx−ik−1(xikyik)nk . If nk = 1 then we have a word

ending in yεxik−ik−1yik . By assumption, ik − ik−1 6= 0 so we have satisfied the first property.
If nk > 1, then this word ends in xikyik .

Case. nk < 0 and nk−1 < 0

This case is similar to the first case.

Case. nk < 0 and nk−1 > 0
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This case is similar to the second case.

Proposition 5.5. (RCA0) The free group on a countable number of generators is an O-group.

Proof. Let F and αi be as in Lemma 5.4 and let P (F ) be the positive cone for some full order
on F . Let G be the free group on the generators x0, x1, . . .. Define the homomorphism:

ψ : G→ F

xn1
i1
· · ·xnk

ik
7→ αn1

i1
· · ·αnk

ik
.

If xn1
i1
· · ·xnk

ik
is fully reduced and xn1

i1
· · ·xnk

ik
6= 1G, then αn1

i1
· · ·αnk

ik
satisfies the hypotheses of

the previous lemma. Hence αn1
i1
· · ·αnk

ik
6= 1F and so ψ is a monomorphism. The order on G

is defined from P (F ).

P (G) = { xn1
i1
· · ·xnk

ik
| αn1

i1
· · ·αnk

ik
∈ P (F ) }

It is straightforward to verify that P (G) is the positive cone for a full order on G.

Definition 5.6. (RCA0) If G1 and G2 are p.o. groups, then a map ψ : G1 → G2 is called an
o-homomorphism if ψ is an order preserving homomorphism. If ψ is onto, then ψ is called
an o-epimorphism.

We can now prove the main result of the chapter. Standard proofs of this result can be
found in Fuchs (1963) or Kokorin and Kopytov (1974). These proofs cannot be done in RCA0.
The proof used here comes from Revesz (1986).

Theorem 5.7. (RCA0) Any fully ordered group is the o-epimorphic image of a fully ordered
free group.

Proof. Let G be an f.o. group, P (G) be the positive cone of a full order on G, and g0, g1, . . .
be an enumeration of G. Let F be the free group on the generators x0, x1, . . . and P (F ) be
the positive cone of some full order on F . As in Theorem 5.1, define the epimorphism:

ϕ : F → G

xn1
i1
· · ·xnk

ik
7→ gn1

i1
· · · gnk

ik
.

We need to produce a new order P̃ (F ) on F under which ϕ is order preserving. Define the
embedding:

ψ : F → G× F

a 7→ 〈ϕ(a), a〉.

Order G× F lexicographically:

〈a, b〉 ∈ P (G× F ) ↔ (a ∈ P (G) ∧ a 6= 1G) ∨ (a = 1G ∧ b ∈ P (F )).
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As in the proofs on direct products from Chapter 3, this set gives a full order on G×F . Since
the map ψ : F → G× F is a monomorphism, we can use it to define a new order on F :

P̃ (F ) = {a | ψ(a) ∈ P (G× F )}.

All that is left to show is that ϕ is order preserving under P̃ (F ). Rewriting the definition of
P̃ (F ) we have that:

a ∈ P̃ (F ) ↔ (ϕ(a) ∈ P (G) ∧ ϕ(a) 6= 1G) ∨ (ϕ(a) = 1G ∧ a ∈ P (F )).

Let≤F be the order corresponding to P̃ (F ). Suppose that a ≤F b. It follows that a−1b ∈ P̃ (F )
and hence ϕ(a−1b) = ϕ(a)−1ϕ(b) ∈ P (G). This calculation shows that ϕ(a) ≤G ϕ(b). Now,
suppose that c, d ∈ G and c <G d. Since ϕ is onto, there are a, b ∈ F with ϕ(a) = c and
ϕ(b) = d. Since c <G d, we have that c−1d ∈ P (G) and c−1d 6= 1G. Because ϕ(a−1b) = c−1d
and c−1d 6= 1G, we know that a 6= b. By the definition of P̃ (F ), we have that a−1b ∈ P̃ (F )
and so a <F b. Therefore, ϕ is an o-epimorphism from F with the order P̃ (F ) onto G.

5.2 Fully Ordered Rings and Triangular Matrices

Definition 5.8. (RCA0) A ring is a set R together with two functions +R, ·R and two
constants 0R, 1R which satisfy the usual axioms for a commutative ring with identity.

As with groups, the subscripts will be dropped when the context is clear. Notice that we
are using the term ring to mean a commutative ring with identity.

Definition 5.9. (RCA0) A partially ordered ring (p.o. ring) is a ring R together with a
binary relation ≤R such that:

1. (R,≤R) is a partial order.

2. a ≤R b implies a+ c ≤R b+ c for all a, b, c ∈ R.

3. a ≤R b and c >R 0 implies ca ≤R cb and ac ≤R bc.

If ≤R is linear, then (R,≤R) is a fully ordered ring (f.o. ring).

As with a p.o. group, we define the positive and negative cones of a p.o. ring:

P = {r ∈ R | r ≥ 0}
−P = {−r | r ∈ P}.

We can verify properties of P similar to those of the positive cone of a p.o. group. For example,
P ∩ −P = {0} and if P is the positive cone for a full order, then P ∪ −P = R. These are
two of the four required properties for a set P to be the positive cone of some full order on
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R. The other two defining properties are that P + P ⊆ P and PP ⊆ P . RCA0 is not strong
enough to prove that the sets P +P and PP exist. However, RCA0 is strong enough to show

∀x, y ∈ R (x ∈ P ∧ y ∈ P → x+ y ∈ P )

∀x, y ∈ R (x ∈ P ∧ y ∈ P → xy ∈ P ).

In the context of RCA0, we take P + P ⊆ P to stand for the top formula and PP ⊆ P to
stand for the bottom formula. With this convention, we can state the next theorem in its
standard notation.

Theorem 5.10. (RCA0) A subset P of a ring R is the positive cone of some partial order
on R if and only if the following conditions are satisfied:

1. P ∩ −P = {0}

2. P + P ⊆ P

3. PP ⊆ P

Furthermore, P is the positive cone of some full order on R if and only if in addition P
satisfies P ∪ −P = R.

Proof. We have already mentioned that any positive cone satisfies these requirements. Con-
versely, if P is a set with these properties, then the order can be defined by:

a ≤ b↔ b− a ∈ P.

RCA0 suffices to verify that this gives an order on R.

To prove that the free product of two O-groups is an O-group, we will embed the free
product into a group of infinite matrices over an f.o. ring. Hence, we need to develop the
definitions and the tools to handle such matrices. Given a f.o. ring K, we are interested
in upper triangular matrices whose rows and columns are indexed by the elements of N+.
Furthermore, we want the elements along the main diagonal to be positive and invertible.
Such a matrix resembles: 

k11 k12 k13 k14 . . .
0 k22 k23 k24 . . .
0 0 k33 k34 . . .
...

...
...

. . . . . .


where each kii is in the positive cone of K and has a multiplicative inverse. Obviously there
are an uncountable number of such matrices and hence in second order arithmetic, the best
we can do is to represent them as a class of functions.

Definition 5.11. (RCA0) Let (K,≤) be a fully ordered ring with positive cone P . The
function f : N+ × N+ → K is in the class TriK if and only if it satisfies the following
conditions:
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1. For all i > j, f(i, j) = 0K .

2. For all i, f(i, i) ∈ P and ∃x ∈ K(f(i, i) · x = 1K).

The first of these conditions says that the matrices are upper triangular and the second
says that the entries along the main diagonal are positive and invertible. We will use f ∈ TriK
as shorthand to mean that f is a function that satisfies these two conditions.

Since our goal is to use this matrix group to order free products, we need to define both
an order and a group structure on TriK . First we define the order. Given f, g ∈ TriK , we
say that f < g if and only if for some pair 〈i, j〉 ∈ N+ × N+ with i ≤ j the following two
conditions hold:

1. f(i, j) <K g(i, j).

2. f(k, k + s) = g(k, k + s) for all k, s such that i+ s < j or i+ s = j and k < i.

A pair 〈i, j〉 for which these conditions hold is called a witness for f < g. These conditions
are much easier to understand if f and g are viewed as matrices as opposed to as functions.
They mean that we compare f and g down the diagonals, starting with the main diagonal,
then the diagonal to its right, and so on, until we find the first place that f and g differ. The
entries of f and g are compared in the order indicated in this picture:

1 ω ω + ω ω + ω + ω . . .

· 2 ω + 1 ω + ω + 1
. . .

· · 3 ω + 2
. . .

· · · 4
. . .

...
...

...
...

. . .


From this picture, it is clear that we are comparing f and g by comparing two ordered
sequences of elements of K each with order type ωω. If f 6= g, then the relationship between
f and g is determined by the relationship between the elements of K at the first place where
these ordered sequences differ. Unfortunately, RCA0 is not strong enough to prove that ωω

is well ordered, and so it cannot prove that there is a least place where they differ. In the
next section, we will define a countable subgroup of TriK for which the order is much easier to
determine. For now, our goal is to define the group structure and to prove that the elements
of TriK satisfy the axioms for a partially ordered group with this order.

Given f, g ∈ TriK , we define the product f · g to be the function:

f · g : N+ × N+ → K

f · g(i, j) =
∞∑

n=0

f(i, n)g(n, j).

52



This definition exactly matches the definition for multiplication of infinite matrices. The
first thing to check is that this sum converges. By definition, f(i, n) = 0 for n < i and
g(n, j) = 0 for n > j. Hence, if n is not between i and j, then f(i, n)g(n, j) = 0. This has
two consequences. First, if i > j, then the sum is 0. Second, if i ≤ j, then the infinite sum
reduces to the finite sum:

j∑
n=i

f(i, n)g(n, j).

Thus, RCA0 proves that f · g is a well defined function. Furthermore, f · g(i, i) = f(i, i)g(i, i)
and so f · g(i, i) is both positive and invertible. Hence, f · g is in TriK . The matrix I ∈ TriK
defined by I(i, i) = 1K and I(i, j) = 0K for i 6= j plays the role of the identity element in
TriK .

The next two lemmas show that RCA0 proves the associativity of the multiplication and
the existence of inverses. We prove Lemma 5.12 to give an example of how to work in this
formalism, but the proof of Lemma 5.13 is presented in Appendix A.

Lemma 5.12. (RCA0) (f · g) · h = f · (g · h)

Proof. For j < i, both of these products have the value 0. For i ≤ j, we perform two
computations.

(
(f · g) · h

)
(i, j) =

j∑
m=i

(f · g)(i,m)h(m, j)

=

j∑
m=i

m∑
n=i

f(i, n)g(n,m)h(m, j)

=
∑

i≤n≤m≤j

f(i, n)g(n,m)h(m, j)

(
f · (g · h)

)
(i, j) =

j∑
n=i

f(i, n) (g · h)(n, j)

=

j∑
n=i

j∑
m=n

f(i, n)g(n,m)h(m, j)

=
∑

i≤n≤m≤j

f(i, n)g(n,m)h(m, j)
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Lemma 5.13. (RCA0) If f ∈ TriK, then f has an inverse g ∈ TriK, in the sense that
f · g = g · f = I, given by:

g(i, j) =



0 j < i

f(i, j)−1 i = j

− f(i,j)
f(i,i)f(j,j)

+
∑

i<k1<j
f(i,k1)f(k1,j)

f(i,i)f(k1,k1),f(j,j)
−

−
∑

i<k1<k2<j
f(i,k1)f(k1,k2)f(k2,j)

f(i,i)f(k1,k1)f(k2,k2)f(j,j)
+ · · · i < j

· · ·+ (−1)j−i f(i,i+1)···f(j−1,j)
f(i,i)f(i+1,i+1)···f(j,j)

Since f(n, n) is invertible, we write it in the denominator of a fraction as shorthand for
f(n, n)−1.

Now that we have both a group structure and an order on TriK , we need to check that
they interact as in an ordered group. Instead of verifying directly that the functions in TriK
satisfy properties similar to the axioms for a partially ordered group, we give a condition
for elements of TriK to be in the positive cone and verify that these functions satisfy the
appropriate properties. If f ∈ TriK , we say f ∈ P (TriK) if and only if f = I or I < f in the
order given above. If f 6= I this is equivalent to either

∃i [f(i, i) > 1 ∧ ∀j < i(f(j, j) = 1)]

or

∀i (f(i, i) = 1) ∧ ∃i, j
(
i < j ∧ f(i, j) > 0 ∧

∧ ∀k ∀s > 0
(
(i+ s < j ∨ (i+ s = j ∧ k < i)) → f(k, k + s) = 0

) )
.

Lemma 5.14. (RCA0)

1. If f, g ∈ P (TriK) then f · g ∈ P (TriK)

2. If f ∈ P (TriK) and f 6= I then f−1 6∈ P (TriK)

3. If f ∈ P (TriK) and g ∈ TriK then gfg−1 ∈ P (TriK)

One requirement for a fully ordered group is missing: for each f ∈ TriK , either f ∈ P (TriK)
or f−1 ∈ P (TriK). This requirement in fact holds, but it is not provable in RCA0. All that
we will need for the next section, however, is that the conditions in the lemma are satisfied.
There is a proof of Lemma 5.14 in Appendix A.
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5.3 Free Products of O-Groups

In this section we prove Theorem 5.2. The proof has several steps, so we outline them here.
Given two fully ordered groups A,B, we form a larger group, C, of which A and B are direct
summands. We take the group ring Q[C] and use the orders on A and B to fully order Q[C].
Using the definitions introduced in the previous section, we form the ordered matrix group
TriQ[C]. The free product A ∗ B can be embedded in TriQ[C] and we examine this embedding
in detail. The order on A ∗B is defined using the properties of TriQ[C] proved in the previous
section.

Let A and B be fully ordered groups. We first define a larger ordered group C. For each
pair 〈i, j〉 ∈ N+ × N+, let xij and yij generate copies of Z ordered such that xn

ij and yn
ij are

positive if and only if n ≥ 0. For each i ∈ N+, let ui and vi generate copies of Z ordered in
the same way. The notation 〈xij〉 is used for the group generated by xij, and similarly for
〈yij〉, 〈ui〉, and 〈vi〉.

The group C is defined as the restricted direct product:

C = A×B ×
∞∏

i,j=1

〈xij〉 ×
∞∏

i,j=1

〈yij〉 ×
∞∏
i=1

〈ui〉 ×
∞∏
i=1

〈vi〉.

Since there is a uniform order on the factors of C, C can be lexicographically ordered in
RCA0. It is important to realize that C is written multiplicatively instead of additively, even
though many of the summands are normally written additively. As a notational convenience,
we use xij to denote the element of C which is the identity in all components of C except the
〈xij〉 component and has value xij in the 〈xij〉 component. We abuse notation similarly for
a ∈ A, b ∈ B and the generators ui, vi, yij.

Let Q[C] be the group ring of C over Q. Formally, the elements of Q[C] are the finite
sums

∑
αici with αi ∈ Q \ {0}, ci ∈ C and all the ci distinct. Addition is defined by:∑

i∈I

αici +
∑
j∈J

βjcj =∑
i∈I\J

αici +
∑

j∈J\I

βjcj +
∑

i∈I∩J

(αi + βi)ci

with the stipulation that any terms in the third sum with αi + βi = 0 are removed. Multipli-
cation is defined by: (∑

i∈I

αici

)(∑
j∈J

βjcj

)
=
∑
i∈I

∑
j∈J

(αiβj)cicj

where the terms with the same value from C in this finite sum are collected and any term
with coefficient 0 is dropped. The additive identity here is the empty sum I = ∅, and the
multiplicative identity is the sum with one element 1Q1C . RCA0 proves that Q[C] exists.
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The next goal is to order Q[C]. The positive cone P (Q[C]) is defined from the order ≤C

on C. The sum
∑

i∈I αici is in P (Q[C]) if and only if I = ∅ or αj >Q 0 where j is such that
cj is the ≤C-least element among the ci with i ∈ I. Since I is finite there is such a ≤C-least
element. RCA0 suffices to prove that this gives a full order on Q[C].

Now that we have a fully ordered ring, we can use the machinery of the previous section
to work with TriQ[C]. The goal is to embed A∗B into TriQ[C] and then use our formal ordering
of TriQ[C] to order A∗B. The embedding is given by uniformly associating to each element of
A ∗B a function in TriQ[C]. To do this we specify four matrices in TriQ[C] and denote them by
X, Y, U and V . In the definitions, 0 and 1 refer to the additive and multiplicative identities
respectively in Q[C].

X(i, j) =


1 i = j
0 i > j
xij i < j

Y (i, j) =


1 i = j
0 i > j
yij i < j

U(i, j) =

{
ui i = j
0 i 6= j

V (i, j) =

{
vi i = j
0 i 6= j

It is useful to see what these functions look like as matrices.

X =


1 x12 x13 . . .
0 1 x23 . . .
0 0 1 . . .
...

...
...

. . .



U =


u1 0 0 . . .
0 u2 0 . . .
0 0 u3 . . .
...

...
...

. . .


In these definitions, ui denotes the element of Q[C] that is represented by the sum with the

single element 1Qui. U is upper triangular and has positive elements on the diagonal since ui is
positive in our order on 〈ui〉. Also, since 1Qui · 1Qu

−1
i = 1Q[C], U has invertible elements along

the diagonal. This point is where it is important to realize that we are using multiplicative
instead of additive notation for the groups. Thus, U ∈ TriQ[C]. Similarly, X, Y, V ∈ TriQ[C].
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These matrices are used to define the embedding in several steps. For each a ∈ A, define
α(a) : N+ × N+ → Q[C] by:

α(a)(i, j) =


1 i = j and i is odd
a i = j and i is even
0 i 6= j

As a matrix, this looks like:

α(a) =


1 0 0 . . .
0 a 0 . . .
0 0 1 . . .
...

...
...

. . .


As above, 1 stands for 1Q[C] and a denotes the sum with one element 1Qa. Regardless of
whether a is positive or negative in A, 1Qa is positive in Q[C] since 1Q > 0Q. Also, a is
invertible because

(1Qa)(1Qa
−1) = 1Q1C = 1Q[C].

Hence, α(a) ∈ TriQ[C].
For each b ∈ B define β(b) ∈ TriQ[C] similarly:

β(b)(i, j) =


1 i = j and i is odd
b i = j and i is even
0 i 6= j

As a matrix, β(b) looks just like α(a), except it has b’s instead of a’s. We define two more
maps on each of A and B. For each a ∈ A define:

α′(a) = X−1 · α(a) ·X
α′′(a) = U−1 · α′(a) · U.

For each b ∈ B define:

β′(b) = Y −1 · β(b) · Y
β′′(b) = V −1 · β′(b) · V.

Later, we will use results from the previous section to produce explicit formulas for the entries
in these matrices.

Because RCA0 proves that TriQ[C] is closed under inverses and products, α′′(a) and β′′(b)
are both in TriQ[C]. Also, since we have explicit formulas for inverses and products in TriQ[C],
α′′(a) and β′′(b) can be given uniformly from A and B. The embedding of A ∗B into TriQ[C]

is given by associating to each word a1b1 · · · anbn the product α′′(a1)β
′′(b1) · · ·α′′(an)β′′(bn) in

TriQ[C]. Notice that the term embedding is being used very loosely here. TriQ[C] is not a set,
so the correspondence is really a uniform construction of a function in TriQ[C] for each word
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over A,B. That said, we will continue to use the term embedding and will use γ(w) to denote
the element of TriQ[C] which corresponds to the word w.

We need to describe and check the properties of this embedding. If a ∈ A, then from the
formula for α(a), it is clear that α(a)−1 = α(a−1). Examining γ(a) reveals

γ(a)−1 = (U−1X−1α(a)XU)−1

= U−1X−1α(a)−1XU

= U−1X−1α(a−1)XU

= γ(a−1).

The same property, γ(b)−1 = γ(b−1) holds for b ∈ B. In fact, if a1b1 · · · anbn is any, not
necessarily reduced, words over A,B, then

γ
(
(a1b1 · · · anbn)−1

)
= γ(a1b1 · · · anbn)−1.

This equation shows that for every reduced word w ∈ A ∗B, γ(w)−1 = γ(w−1). It also shows
that γ respects the reduction of words and hence is a group homomorphism. If w1, w2 are
reduced words in A ∗B, then

γ(w1w2) = γ(w1)γ(w2).

It is much more important and non trivial to check that γ is one-to-one.

Proposition 5.15. (RCA0) If w1 6= w2 in A ∗B, then γ(w1) 6= γ(w2) in TriQ[C].

In order to prove this proposition, we need several lemmas. The proofs of these lemmas
are presented in Appendix A. Throughout these lemmas a is an arbitrary element of A, b is
an arbitrary element of B and w1, w2 are arbitrary words in A∗B. Our first goal is to explore
α′(a), and by analogy β′(b). Let f = α(a) · X and g = X−1. We are interested in deriving
formulas for α′(a) = g · f ∈ TriQ[C]. More explicitly, g can be given by: g(i, i) = 1, g(i, j) = 0
for i > j and for i < j:

g(i, j) = −xij +
∑

i<k1<j

xik1xk1j −

−
∑

i<k1<k2<j

xik1xk1k2xk2j + · · · + (−1)j−i(xi(i+1) · · ·x(j−1)j).

As a matrix, this looks like:

g =


1 −x12 −x13 + x12x23 . . .
0 1 −x23 . . .
0 0 1 . . .
...

...
...

. . .


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f can be given explicitly by:

f(i, j) =


1 i = j ∧ i is odd
a i = j ∧ i is even
xij i < j ∧ i is odd
axij i < j ∧ i is even
0 i > j

f =


1 x12 x13 . . .
0 a ax23 . . .
0 0 1 . . .
...

...
...

. . .


Lemma 5.16. (RCA0)

α′(a)(i, i) =

{
1 i is odd
a i is even

Lemma 5.17. (RCA0) If i < j and i, j are both even, then

α′(a)(i, j) = (1− a)

j−1∑
n=i+1
n odd

(
−xinxnj +

∑
i<k1<n

(xik1xk1nxnj) −

−
∑

i<k1<k2<n

(xik1xk1k2xk2nxnj) + · · ·+ (−1)n−ixi(i+1) · · ·x(n−1)nxnj

)

Lemma 5.18. (RCA0) If i < j, i is even, and j is odd then

α′(a)(i, j) = (1− a)(−xij) + (1− a)

j−1∑
n=i+1
n even

(
xinxnj −

∑
i<k1<n

(xik1xk1nxnj) +

+
∑

i<k1<k2<n

xik1xk1k2xknnxnj − · · ·+ (−1)n−ixii+1 · · ·xn−1nxnj

)

Lemma 5.19. (RCA0) If i < j and both i, j are odd then

α′(a)(i, j) = (1− a)

j−1∑
n=i+1
n even

(
xinxnj −

∑
i<k1<n

(xik1xk1nxnj) +

+
∑

i<k1<k2<n

(xik1xk1k2xk2nxnj) + · · ·+ (−1)n−ixi(i+1) · · ·x(n−1)nxnj

)
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Lemma 5.20. (RCA0) If i < j, i is odd, and j is even then

α′(a)(i, j) = (1− a)(xij) + (1− a)

j−1∑
n=i+1
n odd

(
−xinxnj +

∑
i<k1<n

(xik1xk1nxnj) −

−
∑

i<k1<k2<n

xik1xk1k2xknnxnj + · · ·+ (−1)n−ixi(i+1) · · ·x(n−1)nxnj

)
The same results hold for β′(b) with b substituted into the formulas for a. From these

formulas, it is clear that if a = 1A then α′(a) = I in TriQ[C], and similarly for b. Also, if
a 6= 1A, then in particular, the diagonal elements of α′(a) are not all 1, so α′(a) 6= I. A closer
look at these formulas reveals the following lemma.

Lemma 5.21. (RCA0) If a 6= 1A and b 6= 1B then for any i, j with i ≤ j, α′(a) 6= 0 and
β′(b) 6= 0.

We are now ready to go back and prove Proposition 5.15.

Proof. To show that w1 6= w2 in A∗B implies that γ(w1) 6= γ(w2) in TriQ[C], it suffices to show
that γ(w) 6= I for an arbitrary nonidentity element w. Let w = a1b1 · · · atbt be an arbitrary
nonidentity word in A∗B that is reduced, except that possibly a1 = 1A or bt = 1B. It suffices
to show for i < j that γ(w)(i, j) 6= 0.

The multiplication formula in TriQ[C] extends to the following formula for the product of
m functions f1, . . . , fm in TriQ[C]: for i > j, f1 · · · fm = 0 and for i ≤ j

f1 · · · fm(i, j) =
∑

i≤k1≤···≤km−1≤j

f1(i, k1)f2(k1, k2) · · · fm(km−1, j).

We consider the case in which a1 6= 1A and bt 6= 1B. By the extended multiplication formula,
if

c = α′′(a1)β
′′(b1) · · ·α′′(at)β

′′(bt)

then

c(i, j) =
∑

i≤ki≤···≤k2t−1≤j

(
α′′(a1)(i, k1)β

′′(b1)(k1, k2) · · ·

· · ·α′′(at)(k2t−2, k2t−1)β
′′(bt)(k2t−1, j)

)
.

Applying the formulas for multiplication and inverses, we can show that:

α′′(a)(i, j) =
1

ui

α′(a)(i, j)uj

β′′(b)(i, j) =
1

vi

β′(b)(i, j)vj.
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As before, the notation 1
ui

stands for u−1
i Putting these formulas together gives us:

c(i, j) =
∑

i≤ki≤···≤k2t−1≤j

(
uk1

ui

vk2

vk1

uk3

uk2

· · · vj

vk2t−1

α′(a1)(i, k1) ·

· β′(b1)(k1, k2) · · ·α′(at)(k2t−2, k2t−1)β
′(k2t−1, j)

)
.

Viewing c(i, j) as a polynomial in ui, vi, 1/ui and 1/vi, it is clear that none of the terms in
the polynomial cancel. Also, since α′(am)(i, j) 6= 0, β′(bm)(i, j) 6= 0, and any group ring has
no zero divisors, none of the terms drop out because they are zero. The remaining cases,
a1 = 1A, bt 6= 1B etc., are similar. Thus c 6= I.

Recall that comparing elements of TriQ[C] involved comparing sequences with order type
ωω. One of the keys to proving Theorem 5.2 is to show that if w1 6= w2 ∈ A∗B then comparing
γ(w1) and γ(w2) requires only comparing sequences of elements of Q[C] with order type ω.

Definition 5.22. (RCA0) If r ∈ Q[C] then define r+n to be the element of Q[C] that
looks just like r except the subscripts on xij, yij, ui and vi are all adjusted by +n. That is,
xij 7→ x(i+n)(j+n), ui 7→ ui+n, etc.

Proposition 5.23. (RCA0) If f ∈ TriQ[C] is in the image of γ then

f(1, j)+2n = f(1 + 2n, j + 2n)

f(2, j)+2n = f(2 + 2n, j + 2n).

Definition 5.24. (RCA0) If the conditions in the conclusion of Proposition 5.23 hold for f ,
then we say f possesses the shift property.

The proof of Proposition 5.23 is broken into several lemmas.

Lemma 5.25. (RCA0) If f, g ∈ TriQ[C] possess the shift property, then so does f · g.

Proof. Consider (f · g)(1, j). If j = 1, then we have:

f · g(1 + 2n, 1 + 2n) = f(1 + 2n, 1 + 2n)g(1 + 2n, 1 + 2n)

= f(1, 1)+2ng(1, 1)+2n

=
(
f · g(1, 1)

)+2n
.
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If j > 1 then we have:

f · g(1 + 2n, j + 2n) =

j+2n∑
m=1+2n

f(1 + 2n,m)g(m, j + 2n)

=

j∑
m=1

f(1 + 2n,m+ 2n)g(m+ 2n, j + 2n)

=

j∑
m=1

f(1,m)+2ng(m, j)+2n

=

j∑
m=1

(
f(1,m)g(m, j)

)+2n
=
(
f · g(1, j)

)+2n
.

The cases for f · g(2, j) are similar.

Lemma 5.26. (RCA0) If a ∈ A then α′(a) and α′(a−1) have the shift property.

Proof. This proof utilizes the formulas which we derived for α′(a). Along the principle diag-
onal, we have:

α′(a) =

{
1 i is odd
a i is even

This satisfies the shift property for the cases α′(a)(1, 1) and α′(a)(2, 2). If j > 1 and odd,
then using our formulas:

α′(a)(1, j) = (1− a)

j−1∑
m=2

m even

(
x1mxmj −

∑
1<k1<m

(x1k1xk1mxmj) +

+
∑

1<k1<k2<m

(x1k1xk1k2xk2mxmj) + · · ·+ (−1)m−1x12 · · ·xm−1mxmj

)
.

When we write the formula for α′(a)(1 + 2n, j + 2n) instead of letting m range from 2 + 2n
to j − 1 + 2n, we let it range from 2 to j − 1 and adjust the subscripts inside the sum.

α′(a)(1 + 2n, j + 2n) = (1− a)

j−1∑
m=2

m even

(
x(1+2n)(m+2n)x(m+2n)(j+2n) −

−
∑

1<k1<m

(x(1+2n)(k1+2n)x(k1+2n)(m+2n)x(m+2n)(j+2n)) + · · ·

+ · · · (−1)m+2n−(1+2n)(x(1+2n)(1+2n+1) · · ·x(m+2n)(j+2n))

)
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Once you observe that m + 2n − (1 + 2n) = m − 1, it is clear that these two sums can be
obtained from one another by a shift in the indices of +2n. The other cases follow similarly
using the formulas for α′(a) and α′(a−1).

Lemma 5.27. (RCA0) If a ∈ A then α′′(a) and α′′(a−1) have the shift property.

Proof. This follows from the fact that

α′′(a)(i, j) =
uj

ui

α′(a)(i, j)

We have

α′′(a)(i+ 2n, j + 2n) =
uj+2n

ui+2n

α′(a)(i+ 2n, j + 2n) (5.1)

=
uj+2n

ui+2n

α′(a)(i, j)+2n (5.2)

= α′′(a)(i, j)+2n. (5.3)

The case for α′′(a−1) is similar.

Lemma 5.28. (RCA0) If b ∈ B then β′(b), β′(b−1), β′′(b) and β′′(b−1) have the shift property.

Proof. The proof is the same as for α′(a) and α′′(a).

We can now prove Proposition 5.23.

Proof. By assumption γ(w) = f for some w ∈ A ∗ B. From the facts that w is a word over
A and B, that γ(a), γ(a−1), γ(b) and γ(b−1) have the shift property for all a ∈ A and b ∈ B,
and that the shift property is preserved under multiplication, it follows that f has the shift
property.

It remains to show how to pull the order on TriQ[C] back to A∗B. Suppose that f ∈ TriQ[C],
f 6= I, and f has the shift property. Since f 6= I, there is some pair 〈i, j〉 such that
f(i, j) 6= I(i, j). In order to tell if f ∈ P (TriQ[C]) we need to look down the diagonals until
we find the first such pair. However, because f has the shift property, if f and I agree on the
first two entries in any diagonal, they will agree on all entries in that diagonal. Comparing
f and I is now easy. Thinking of them as matrices, we compare the entries in the following
order: 

1 3 5 7 . . .
· 2 4 6 . . .
−− irrelevent−−
...

...
...

...
...


We only need to search through a sequence of elements with order type ω. If we know

that f 6= I then we can find the first place they differ in this sequence. We finally show how
to define P (A ∗B) from P (TriQ[C]).

P (A ∗B) = {〈〉} ∪ {x ∈ A ∗B | x 6= 1A∗B ∧ γ(x) ∈ P (TriQ[C])}
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RCA0 proves the existence of this set because for any x 6= 1A∗B, we know that γ(x) 6= I
and γ(x) has the shift property. Therefore, RCA0 proves there is a computable procedure to
determine if γ(x) ∈ P (TriQ[C]). It remains to show that this set is in fact the positive cone of
a full order on A ∗B.

Claim. P (A ∗B) is closed under multiplication.

Assume x, y ∈ P (A ∗B). Since P (TriQ[C]) is closed under multiplication and γ(x), γ(y) ∈
P (TriQ[C]), we have γ(x)γ(y) = γ(xy) ∈ P (TriQ[C]). Also, assuming that at least one of x, y is
not 1A∗B, then x and y cannot be inverses because P (TriQ[C]) is pure. Thus, γ(xy) ∈ P (TriQ[C])
implies that xy ∈ P (A ∗B) and so P (A ∗B) is closed under multiplication.

Claim. P (A ∗B) is pure.

Assume x ∈ P (A ∗B) and x 6= 1A∗B. Since P (TriQ[C]) is pure, we have γ(x)−1 = γ(x−1) 6∈
P (TriQ[C]). Therefore, x−1 6∈ P (A ∗B), and so P (A ∗B) is pure.

Claim. P (A ∗B) is normal.

Assume x ∈ P (A ∗B) and y ∈ A ∗B. Since γ(x) ∈ P (TriQ[C]) and P (TriQ[C]) is normal,

γ(y)γ(x)γ(y)−1 = γ(yxy−1) ∈ P (TriQ[C]).

Thus, yxy−1 is in P (A ∗B) and P (A ∗B) is normal.

Claim. P (A ∗B) is full.

Assume γ(x) 6∈ P (TriQ[C]). We need to show that γ(x)−1 = γ(x−1) ∈ P (TriQ[C]). Notice
that γ(x) 6= I. We split this proof into two cases.

Case. Either γ(x)(1, 1) 6= 1 or γ(x)(1, 1) = 1 and γ(x)(2, 2) 6= 1.

Assume that γ(x)(1, 1) 6= 1. The other case is similar. Since γ(x) 6∈ P (TriQ[C]) it must be
that γ(x)(1, 1) < 1. From the definition of γ(x)−1:

γ(x)−1(1, 1) = γ(x)(1, 1)−1 > 1.

Thus, γ(x−1) ∈ P (TriQ[C]).

Case. γ(x)(1, 1) = γ(x)(2, 2) = 1

Because γ(x) has the shift property, there is a least j > 1 such that either γ(x)(1, j) 6= 0
or γ(2, j) 6= 0 and γ(x)(1, j) = 0. Assume that γ(x)(1, j) 6= 0. The other case is similar.
Since γ(x) 6∈ P (TriQ[C]) it must be that γ(x)(1, j) < 0. Using the fact that γ(x)(n, n) = 1 for
all n, the formula for γ(x)−1(1, j) gives:

γ(x)−1(i, j) = −γ(x)(1, j) +
∑

1<k1<j

γ(x)(1, k1)γ(x)(k1, j) − · · ·

· · ·+ (−1)j−1(γ(x)(1, 2) · · · γ(x)(j − 1, j)).

All the terms drop out except for the first one because γ(x)(1, k) = 0 for any 1 < k < j.
Thus, γ(x)−1(1, j) = −γ(1, j) > 0. The check that γ(x)−1(k, k + s) = 0 for the appropriate
k, s is similar.

We have completed the proof of Theorem 5.2.
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Chapter 6

Divisible Closures and Hölder’s
Theorem

Three naturally occurring notions of closure in algebra are the algebraic closure of a field, the
real closure of an ordered field and the divisible closure of an abelian group. In this chapter,
a survey of results on these closure operations is presented along with a proof in RCA0 of
Hölder’s Theorem.

6.1 Introduction

Friedman et al. (1983) give definitions for algebraic, real and divisible closures in RCA0.

Definition 6.1. (RCA0) A field is a set K ⊆ N together with two binary operations, +K , ·K ,
a unary operation, −K , and two constants, 0K , 1K which obey the standard field axioms (see
Hungerford (1974)).

If K is a field, then the polynomial ring K[x] is given by

{σ ∈ FinK |σ(lh(σ)− 1) 6= 0G }.

Intuitively, 〈k0, . . . , kn〉 represents the polynomial

k0 + k1x+ . . .+ knx
n.

The restriction that the last element of σ not be 0G insures that each polynomial has a unique
sequence representative. Addition and multiplication of sequences are defined to mimic the
corresponding operation on polynomials. If f ∈ K[x] and a ∈ K, then f(a) ∈ K is the
element

k0 + k1a+ k2a
2 + . . .+ kna

n.

f ∈ K[x] is nonconstant if lh(f) > 1 and a is a root of f if f(a) = 0K . If f = k0+k1x . . .+knx
n

and h : K → K̃ is a field homomorphism, then h(f) ∈ K̃[x] is

h(k0) + h(k1)x+ . . .+ h(kn)xn.
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Definition 6.2. (RCA0) A field K is algebraically closed if every nonconstant polynomial
f(x) ∈ K[x] has a root in K. An algebraic closure of a field F consists of a monomorphism
h : F → K where K is an algebraically closed field and for each a ∈ K there is a nonzero
polynomial f(x) ∈ F [x] such that h(f)(a) = 0.

Classically, every field has an algebraic closure which is unique up to isomorphism. There
are several question to ask about the computability of the algebraic closure. Is it effective?
That is, does every computable field have a computable algebraic closure? Is the uniqueness
effective? That is, if a computable field has two computable algebraic closures, is there a
computable isomorphism between them? Because the range of the function h is the definition
of algebraic closure need not be computable, does every computable field have a computable
algebraic closure such that the original field is isomorphic to a computable subfield of the
closure?

Rabin (1960) proved that every computable field has a computable algebraic closure.
Friedman et al. (1983) used Rabin’s idea to show that the existence of an algebraic closure is
provable in RCA0. They also gave precise definitions to address the other two questions.

Definition 6.3. (RCA0) A field F has a unique algebraic closure if whenever hi : F → Ki,
i = 1, 2, are two algebraic closures of F , there exists an isomorphism k : K1 → K2 such that
k(h1(a)) = h2(a) for all a ∈ F .

Definition 6.4. (RCA0) Let F be a field. A strong algebraic closure of F is an algebraic
closure h : F → K such that h is an isomorphism between F and a subfield of K.

Theorem 6.5 (Friedman et al. (1983)). (RCA0)

1. Every field has an algebraic closure.

2. WKL0 is equivalent to the statement that every field has a unique algebraic closure.

3. ACA0 is equivalent to the statement that every field has a strong algebraic closure.

Computationally, this theorem says that computable fields do not necessarily have either
a computably unique algebraic closure or a computable strong algebraic closure.

The second type of closure is the real closure of an ordered field. Classically, every formally
real field is orderable and every ordered field has a unique real closure. Carrying these notions
over into reverse mathematics gives the following definitions and theorems.

Definition 6.6. A field K is formally real if K does not contain a finite sequence of nonzero
elements c0, . . . , cn such that c20 + · · ·+ c2n = 0.

Definition 6.7. (RCA0) An ordered field is a field K together with a linear order ≤K

which satisfies the axioms for an ordered field.

Theorem 6.8 (Friedman et al. (1983)). (RCA0) The following are equivalent:
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1. WKL0

2. Every formally real field is orderable.

Definition 6.9. An ordered field K is real closed if for all g(x) ∈ K[x] and a < b ∈ K
such that g(a) < 0 < g(b), there exists c ∈ K such that g(c) = 0 and a < c < b. A real
closure of an ordered field F consists of a real closed ordered field K and a monomorphism
h : F → K such that for each b ∈ K, there exists a nonconstant polynomial f(x) ∈ K[x] for
which h(f)(b) = 0.

The definitions for a strong real closure and a unique real closure are analogous to the
same definitions for algebraic closures.

Theorem 6.10 (Friedman et al. (1983)). (RCA0)

1. Every ordered field has a real closure.

2. Every ordered field has a unique real closure.

3. ACA0 is equivalent to the statement that every ordered field has a strong real closure.

On the computational side, these results show that every computably ordered computable
field F has a computably unique computable real closure, but F need not have a computable
strong real closure.

The third notion of closure is the divisible closure of an abelian group. Friedman et al.
(1983) give the following definitions.

Definition 6.11. (RCA0) Let D be an abelian group. D is divisible if for all d ∈ D and
all n ≥ 1 there exists a c ∈ D such that nc = d. Here, we are using the additive notation of
abelian groups, so nc refers to c added to itself n times.

Definition 6.12. (RCA0) Let A be an abelian group. A divisible closure of A is a divisible
abelian group D together with a monomorphism h : A→ D such that for all d ∈ D, d 6= 1D,
there exists n ∈ N such that nd = h(a) for some a ∈ A, a 6= 1A.

Smith (1981) proved that every computable abelian group has a computable divisible
closure and that this divisible closure is unique if and only if there is a uniform algorithm
which for each prime p decides if an arbitrary element of the original group is divisible by p.
Using the ideas in these proofs, Friedman et al. (1983) proved the following theorem.

Theorem 6.13 (Friedman et al. (1983)). (RCA0)

1. Every abelian group has a divisible closure.

2. ACA0 is equivalent to the statement that every abelian group has a unique divisible
closure.
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We will extend these results to strong divisible closures in Section 6.3. Downey and
Kurtz (1986) considered another possible extension. They proved that every computably fully
ordered computable abelian group has a computably unique divisible closure. An examination
of their proof shows that RCA0 suffices to prove the uniqueness of the divisible closure for
fully ordered abelian groups.

Theorem 6.14 (Downey and Kurtz (1986)). (RCA0) Every f.o. abelian group G has
a f.o. divisible closure h : G → D such that h is order preserving. This divisible closure is
unique up to order preserving isomorphism.

In Section 6.3, we will consider the strong divisible closure not only for fully ordered
groups, but also for the much smaller class of Archimedean fully ordered groups.

Definition 6.15. (RCA0) If G is an f.o. group, then the absolute value of x ∈ G is given
by:

|x | = max {x, x−1}

Definition 6.16. (RCA0) If G is an f.o. group, then a ∈ G is Archimedean less that
b ∈ G, denoted a� b, if | an | < | b | for all n ∈ N. If there are n,m ∈ N such that | an | ≥ | b |
and | bm | ≥ | a |, then a and b are Archimedean equivalent, denoted a ≈ b. The notation
a / b means a ≈ b ∨ a � b. G is an Archimedean fully ordered group if G is fully
ordered and for all a, b 6= 1G, a ≈ b.

It is not hard to check that ≈ is an equivalence relation and that � is transitive, antire-
flexive, and antisymmetric. The next lemma lists several other straightforward properties of
≈ and �. For proofs, see Fuchs (1963).

Lemma 6.17. (RCA0) If G is a f.o. group, then the following conditions hold for all a, b, c ∈
G.

1. Exactly one of the following holds: a� b, b� a, or a ≈ b.

2. a� b implies that xax−1 � xbx−1 for all x ∈ G.

3. a� b and a ≈ c imply that c� b.

4. a� b and b ≈ c imply that a� c.

An early conjecture about ordered groups was that the number of full orders of a given
O-group was always a power of 2. This conjecture also stated that a group could not have a
countable number of orders. Buttsworth (1971) showed part of this conjecture was false by
constructing a group with a countably infinite number of orders and Kargapolov et al. (1965)
showed it was false for groups with a finite number of orders. Classifying all possible full
orders for a given class of O-groups is a harder problem than just counting them. One of the
few classes for which this problem has been solved is the class of free abelian groups of finite
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rank. These results can be found in several places, including Teh (1960). The key ingredient
in these results about counting or classifying full orders is Hölder’s Theorem. For a more in
depth discussion, see either Kokorin and Kopytov (1974) or Mura and Rhemtulla (1977).

Hölder’s Theorem states that every f.o. Archimedean group can be embedded in the natu-
rally ordered additive group of the reals. Before examining strong divisible closures, we show
that Hölder’s Theorem is provable in RCA0.

6.2 Hölder’s Theorem

Because real numbers are given by functions from N to Q, the first step towards proving
Hölder’s theorem is to decide what is meant by a subgroup of the real numbers in second
order arithmetic.

Definition 6.18. (RCA0) A nontrivial subgroup of the additive real numbers (R,+R)
is a sequence of reals A = 〈 rn | n ∈ N 〉 together with a function +A : N × N → N and a
distinguished number i ∈ N such that

1. ri = 0R

2. n+A m = p if and only if rn +R rm = rp

3. (N,+A) satisfies the group axioms with i as the identity element.

Recall that a real number r is a sequence of rationals, r = 〈qn|n ∈ N〉, such that

∀k ∀i ( | qk − qk+i | ≤ 2−k ).

Thus A is a double indexed sequence of rationals

A = 〈 qn,m | n,m ∈ N 〉

where
rn = 〈 qn,m | m ∈ N 〉.

Let (G,≤) be an Archimedean fully ordered group. Because G must be abelian, see Lemma
6.19, we use additive notation for G. The idea of the proof of Hölder’s theorem is to pick an
element a ∈ P (G), a 6= 1A, and define the subgroup of (R,+) by using a to approximate the
other elements of G. For now, assume that 2n divides a in G for all n. That is, assume that
for all n there exists c ∈ G such that 2nc = a. To construct the real to which an element
g 6= 1G is sent, we first find p0 ∈ Z such that

p0 a ≤ g < (p0 + 1) a.

Such a p0 exists by the assumption that G is Archimedean. Next we find p1 such that

p1
a

2
≤ g < (p1 + 1)

a

2
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and continue to find pi such that

pi
a

2i
≤ g < (ni + 1)

a

2i
.

The real corresponding to g will be 〈pi/2
i|i ∈ N〉. Because the elements a/2i may not exist,

we achieve the same effect by choosing pi such that

pi a ≤ 2i g < (pi + 1) a.

Lemma 6.19. (RCA0) Every Archimedean fully ordered group is abelian.

Proof. The standard proof goes through in RCA0. For the details, see Kokorin and Kopytov
(1974).

Hölder’s Theorem. (RCA0) Every nontrivial Archimedean f.o. group is order isomorphic
to a nontrivial subgroup of the naturally ordered additive group (R,+).

Proof. Let (G,≤) be an Archimedean f.o. group and g0, g1, . . . be an enumeration of G with
no repetitions such that g0 = 1G and g1 ∈ P (G). We construct a subgroup A of (R,+) by
constructing rn = 〈 qn,m | m ∈ N 〉 uniformly in n from gn and g1. For simplicity of notation,
let a = g1. The first two elements of A are

r0 = 〈 0 | m ∈ N 〉
r1 = 〈 1 | m ∈ N 〉.

To construct rn for n > 1, define pn,m ∈ N and qn,m ∈ Q by

pn,m a ≤ 2mgn < (pn,m + 1) a

qn,m =
pn,m

2m
.

Because G is Archimedean, such pn,m exist and are uniquely determined by the inequality.
The real rn is

rn = 〈 qn,m | m ∈ N 〉.

It remains to show that A = 〈 rn | n ∈ N 〉 is a subgroup of (R,+) and that the map from G
to A that sends gn to rn is an order preserving isomorphism.

Claim. Each rn is a real number.

To prove this claim we must show

∀m ∀k ( | qn,m − qn,m+k | ≤ 2−m ).

Notice that since
pn,m a ≤ 2mgn < (pn,m + 1) a
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it follows that
2pn,m a ≤ 2m+1gn < (2pm,n + 2) a.

Hence, for all m, either pn,m+1 = 2pn,m, and hence qn,m+1 = qn,m, or pn,m+1 = 2pn,m + 1, and
hence qn,m+1 = qn,m + 1/2m+1. Thus,

| qn,m − qn,m+k | ≤
i=k∑
i=1

1

2m+i
<

1

2m
.

Claim. If gn + gm = gk then rn + rm = rk.

As above, this claim reduces to checking convergence rates. By definition,

rn + rm = 〈 qn,i+1 + qm,i+1 | i ∈ N 〉.

To prove rn + rm = rk we need to show that for every i ∈ N

| qn,i+1 + qm,i+1 − qk,i | < 2−i+1.

The definitions of pn,i+1 and pm,i+1 are

pn,i+1 a ≤ 2i+1gn < (pn,i+1 + 1) a

pm,i+1 a ≤ 2i+1gm < (pn,i+1 + 1) a.

Adding these two equations together yields

(pn,i+1 + pm,i+1) a ≤ 2i+1gk < (pn,i+1 + pm,i+1 + 2) a.

Thus pk,i+1 is either pn,i+1 +pm,i+1 or pn,i+1 +pm,i+1 +1. In either case, qk,i+1−qn,i+1−qm,i+1 ≤
2−i−1 and we have

| qn,i+1 + qm,i+1 − qk,i | ≤ | qn,i+1 + qm,i+1 − qk,i+1 |+ | qk,i+1 − qk,i |
≤ 2−i−1 + 2−i

< 2−i+1.

The map that sends gn to rn is onto by definition. The following claim implies that it is
one-to-one.

Claim. If n 6= m, then rn 6= rm.

To establish rn 6= rm, we need to find an i such that

| qn,i − qm,i | > 2−i+1.

Equivalently, we can find an i such that

| pn,i − pm,i | > 2.

Because n 6= m implies gn 6= gm assume without loss of generality that gn < gm. Split into
four cases.
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Case. gn < 1G ≤ gm

By the Archimedean property of G there is an i such that

2i gn < −3a < 1G ≤ 2i gm.

It follows that pn,i < −3 and pm,i ≥ 0. Hence | pn,i − pm,i | ≥ 3.

Case. gn = 1G < gm

There is an i such that
1G < 3a < 2i gm.

It follows that pn,i = 0 while pm,i ≥ 3.

Case. 1G < gn < gm

Since 1G < gm − gn, there is an i which yields the following equations:

1G < a < 2i(gm − gn) = 2i gm − 2i gn

2i gn < a+ 2i gn < 2i gm

2i+2 gn < 4a+ 2i+2 gn < 2i+2 gm.

There is an m such that
ma ≤ 2i+2 gn < (m+ 1)a.

Combining these equations

ma ≤ 2i+1 gn < (m+ 4)a ≤ 4a+ 2i+2 gn < 2i+2 gm.

It follows that pn,i+2 = m and pm,i+2 ≥ m+ 4.

Case. gn < gm < 1G

In this case, 1G < gm − gn and so the same argument works as in the previous case. This
case completes the proof of the claim and shows that the map is one-to-one.

The claims show that A is a subgroup of (R,+) and that A is isomorphic to G by the map
that sends gn 7→ rn. Finally, to show that gn < gm implies that rn < rm, notice that from
the construction, if gn < gm then qn,i ≤ qm,i for every i. Thus, rn ≤ rm. But, since gn 6= gm

implies rn 6= rm, we have rn < rm.

6.3 Strong Divisible Closures

Definition 6.20. (RCA0) Let A be an abelian group. A strong divisible closure of A is
a divisible closure h : A → D such that h is an isomorphism of A onto a subgroup of D. If
A is a f.o. group, D is fully ordered and h is order preserving, then we call h : A → D an
f.o. strong divisible closure.
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Recall from Theorem 6.14 that RCA0 suffices to prove the uniqueness of the divisible
closure for f.o. abelian groups, but that ACA0 is required to prove the uniqueness for abelian
groups in general. Given these results, it is reasonable to hope that proving the existence of
a strong divisible closure would be easier for f.o. abelian group than for abelian groups. The
next theorem shows this is not the case.

Theorem 6.21. (RCA0) The following are equivalent:

1. ACA0

2. Every abelian group has a strong divisible closure.

3. Every fully ordered Archimedean group has an f.o. strong divisible closure.

The idea of proving (3) implies (1) is fairly simple. Let pk be an enumeration of the primes
in increasing order. Given a one-to-one function f , let G be the subgroup of Q generated by
1 and p−k for each k in the range of f . This group has an Archimedean full order. If D is a
strong divisible closure of G, then the image h(G) exists and the range of f can be recovered
by

range(f) = { k | h(1)

pk

∈ h(G) }.

Lemma 6.22. (RCA0) Let pk enumerate the primes in increasing order. If k ∈ Z, j ∈ N
and ∀i ≤ j (0 ≤ mi < pi) then

∑
i≤j mi/pi = k implies that k = 0 and mi = 0 for all i ≤ j.

Proof. For a contradiction, suppose that some mi 6= 0. Notice that k > 0 since all mi ≥ 0.
Let p̂ be the product of p0, . . . , pj and p̂i be p̂/pi. If we multiply the sum by p̂ we obtain∑

i≤j

mip̂i = kp̂.

This equation must hold modulo pi for all i ≤ j.(∑
i≤j

mip̂i = kp̂

)
mod pi

However, if u 6= i, then (mup̂u = 0) mod pi because pi divides p̂u. Therefore, we have(∑
i≤j

mip̂i = mip̂i

)
mod pi.

Also, (kp̂ = 0) mod pi and so we have

(mip̂i = 0) mod pi.

It follows that pi divides mi. Because 0 ≤ mi < pi, mi must be 0. This argument holds for
all i ≤ j.
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Using Lemma 6.22, we can give a proof of Theorem 6.21.

Proof. (1) implies (2) because ACA0 is strong enough to show both that the divisible closure
exists and that the image of h exists. (2) implies (3) because a full order on D can be defined
which makes h order preserving.

P (D) = { d ∈ D | ∃n > 0∃g ∈ P (G)(nd = h(g)) }
= { d ∈ D | ∀n > 0∀g ∈ P (G)(nd 6= h(g)) }

Because P (D) has a ∆0
1 definition, RCA0 suffices to prove it exists and to verify that it is a

full order on D.
To show (3) implies (1), let f be a one-to-one function and let pk be an enumeration of the

primes in increasing order. It suffices to show that the range of f exists. Let G be the group
given by the generators a, xi for i ∈ N and the relations pf(i)xi = a. The intuition is that
G is isomorphic to a subgroup of Q with a 7→ 1 and xi 7→ p−1

f(i). In RCA0 we can represent
elements of G by finite sums:

ka +
∑
i≤j

mi xi.

where k ∈ Z, 0 ≤ mi < pf(i) and mj 6= 0. Using the relation equations, any element of G
can be reduced to one of these finite sums. We need to show that no two of these finite sums
represent the same element of G.

Claim. If ka +
∑

i≤j mi xi = k̃a +
∑

i≤j̃ m̃ixi then k = k̃, j = j̃ and ∀i ≤ j (mi = m̃i).

First notice that 1G has a unique representation as the finite sum 0a. Indeed, if

ka +
∑
i≤j

mi xi = 1G = 0a

then using the relations, we obtain ∑
i≤j

mi
a

pf(i)

= −ka.

Because G is torsion free, this equation implies∑
i≤j

mi

pf(i)

= −k.

By Lemma 6.22 k = 0 and mi = 0. To show that j must equal j̃ as in the claim, suppose
that j < j̃ and

ka +
∑
i≤j

mi xi = k̃a +
∑
i≤j̃

m̃ixi.
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Reducing (k − k̃) a+
∑

i≤j(mi − m̃i)xi to k′a+
∑

i≤j′ m
′
ixi, we obtain

k′a+
∑
i≤j′

m′
ixi +

∑
j<i<j̃

m̃ixi = 1G.

Thus, m̃j̃ = 0 which gives the desired contradiction. Hence j = j̃.
A similar argument shows that mi = m̃i for all i ≤ j. Suppose there is an i ≤ j such

that mi 6= m̃i. Since we can always subtract off equal terms, we can assume without loss of
generality that mj 6= m̃j. If

(k̃ − k)a +
∑

i≤j−1

(m̃i −mi)xi

reduces to the normal form
k′a +

∑
i≤j′

m′
ixi

then
(k̃ − k)a +

∑
i≤j

(m̃i −mi)xi

reduces to the normal form

k′a +
∑
i≤j′

m′
ixi + (m̃j −mj)xj = 0G.

By the uniqueness of the normal form for 0G, we have that m̃j −mj = 0, which is a contra-
diction. Therefore, m̃i = mi for all i ≤ j. Our equation reduces to ka = k̃a which implies
that k = k̃.

Claim. G is fully orderable.

Define the positive cone P (G) by

ka +
∑
i≤j

mi xi ∈ P (G) ↔ k +
∑
i≤j

mi

pf(i)

≥ 0.

P (G) is normal because G is abelian. To verify the other properties, notice that if there are
two finite sums, not necessarily in normal form, that are equivalent under the group relations:

ka +
∑
i≤j

mi xi and k̃a +
∑
i≤j̃

m̃ixi

then:

k +
∑
i≤j

mi

pf(i)

= k̃ +
∑
i≤j̃

m̃i

pf(i)

.
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This property is proved by induction on the number of applications of relation equations it
takes to transform one sum into the other. This property immediately yields that P (G) is a
pure, full semigroup with identity. Furthermore, it shows that G is Archimedean under this
order because Q is Archimedean.

Applying condition (3) from the theorem, we have a divisible closure h : G→ D and the
image h(G) exists.

X = {k | h(a)

pk

∈ h(G) }

h(a)

pk

∈ h(G) ↔ pk divides a in G

↔ ∃i (pkxi = a)

↔ ∃i (f(i) = k)

Thus X is the range of f .

The last issue to discuss before leaving divisible closures is the relationship between the
complexity of the full orders on a torsion free abelian group and on its divisible closure. We
have already mentioned the following theorem.

Theorem 6.23 (Smith (1981)). Every computable abelian group has a computable divisible
closure.

Lemma 6.24. If D is a divisible closure of G, then D is fully orderable if and only if G is
fully orderable. Furthermore, each order on G extends uniquely to a full order on D.

Proof. To prove the first statement, notice that D has torsion elements if and only if G has
torsion elements.

Suppose h : G → D is as in the definition of a divisible closure and P is the positive
cone of a full order on G. The second statement claims that h(P ) extends uniquely to a full
order on D. Consider d ∈ D \ 1D. There exists n > 0 and g ∈ G \ 1G such that nd = h(g).
Therefore, if g ∈ P , then nd ∈ h(P ) and so d must be positive. If g 6∈ P , then g−1 ∈ P and so
nd−1 ∈ h(P ) and d must be negative. Therefore, the unique extension of h(P ) to the positive
cone of a full order on D is

{d ∈ D|d = 1D ∨
(
d 6= 1D ∧ ∃n > 0∃g ∈ P \ 1G(nd = h(g))

)
}.

Proposition 6.25. Let G be a computable torsion free abelian group and D a computable
divisible closure of G. There is a Turing degree preserving bijection ψ from the space of full
orders on G to the space of full orders on D.

ψ : X(G) → X(D)

Proof. By Lemma 6.24, X(G) can be mapped bijectively to X(D) by sending P to its unique
extension on D. An examination of the definition of this extension shows that the two orders
have the same degree.
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Chapter 7

Order Types

One of the fundamental problems in the theory of ordered groups is to classify all possible
orders for various classes of O-groups. In general, this problem is extremely difficult to solve.
An easier problem is to classify the possible order types for countable fully ordered groups.
Mal’tsev (1949) proved that the order type of a countable f.o. group is ZαQε where Z denotes
the order type of the integers, Q denotes the order type of the rationals, α is a countable
ordinal, and ε is either 0 or 1. The goal of this chapter is to prove that this theorem is
equivalent over RCA0 to Π1

1 − CA0.

7.1 Order Type of a Group

The definitions for a linear order and a well order were given in Chapter 1. The definition of
a well order X says there are no infinite descending chains in X. In keeping with the notation
of set theory, we will use the letters α, β, γ to stand for well orders. If X is a linear order, it
is useful to talk about the largest initial segment which is well ordered.

Definition 7.1. (RCA0) The well ordered initial segment of X is defined by

W (X) =
{
x ∈ X | ¬∃f : N → X

(
f(0) = x ∧ ∀i(f(i+ 1) < f(i))

)}
.

Notice that W (X) need not exist in systems like RCA0. From the definition it may require
Π1

1−CA0, but the only place we will use it is inside Π1
1−CA0. It is clear from the definition

that if (W (X),≤) does exist, then it is a well order and that if y ∈ W (X) and z ≤ y then
z ∈ W (X).

Definition 7.2. (RCA0) Let (X,≤X) and (Y,≤Y ) be linear orders. The product X ·Y is the
linear order (Z,≤Z) where

Z = { 〈x, y〉 | x ∈ X ∧ y ∈ Y }
〈x1, y1〉 ≤Z 〈x2, y2〉 ↔ y1 <Y y2 ∨ (y1 = y2 ∧ x1 ≤X x2).

X · Y is frequently written XY .
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We also need a definition of ZX for a well order X. In set theoretic terms, ZX is given
by the set of functions f : X → Z with finite support. If f 6= g, then f < g if and only if
f(x) <Z g(x) where x is the maximum value of X on which f and g disagree. To represent ZX

in second order arithmetic, we use finite sequences of pairs 〈x, z〉 with x ∈ X and z ∈ Z \ 0.
To give a normal form for the sequences, we require that the X-components in each sequence
be in decreasing order. By convention, Z∅ is the single element linear order. Recall that π1

and π2 are the projection functions for pairs.

Definition 7.3. (RCA0) Let X be a non-empty linear order and Y = X × (Z \ {0}). ZX is
given by

{x |x ∈ FinY ∧ ∀i < (lh(x)− 1)
(
π1(x(i)) >X π1(x(i+ 1))

)
}.

Two elements x, y are equal if and only if they are identical as sequences. If x 6= y and
lh(x) ≤N lh(y), then there are two cases to consider.

1. If x ⊂ y then x < y ↔ π2

(
y(lh(x))

)
> 0

2. If x 6⊂ y, let i be the least number such that x(i) 6= y(i) and suppose x(i) = 〈xi, ui〉 and
y(i) = 〈yi, vi〉.

(a) If xi <X yi then x < y ↔ vi > 0

(b) If xi >X yi then x < y ↔ ui < 0

(c) If xi = yi then x < y ↔ ui < vi

To see why this definition captures the set theoretic notion, think of each sequence x ∈ ZX

as representing the function that sends π1(x(i)) to π2(x(i)) for all i < lh(x) and sends all other
values in X to 0. In case 1 of the definition, π1(y(lh(x))) represents the largest value of X
on which the functions associated to x and y differ. The function for x sends this element to
0, so x < y if and only if y maps this element to something greater than 0. The other cases
have similar explanations.

Definition 7.4. (RCA0) If G is an f.o. group and X is a linear order, then X is the order
type of G if there is an order preserving bijection f : G→ X.

If f : G→ X and g : G→ Y are two order types of G, then the map g ◦ f−1 : X → Y is
an order preserving bijection between X and Y . So, in RCA0 the order type is unique up to
order preserving bijection.

To clear up a possibly confusing point of terminology, an order preserving bijection is a
bijection between linearly ordered structures that preserves the order, but ignores any other
structure they might have. On the other hand, an order isomorphism, or o-isomorphism, is a
group isomorphism that preserves order. We can now state the main theorem of this chapter.

Theorem 7.5. (RCA0) The following are equivalent:

1. Π1
1 − CA0

78



2. Let G be a countable f.o. group. There is a well order α and ε = 0 or 1 such that ZαQε

is the order type of G.

3. Let G be an abelian countable f.o. group. There is a well order α and ε = 0 or 1 such
that ZαQε is the order type of G.

In this section, we prove that (1) implies (2). The idea of the proof is that if G is an
f.o. group, then either G has a least strictly positive element or it does not. If G does not
have such an element, then it has order type Q. If G does have a least strictly positive element
a, then the order type of G is the product of Z and G/〈a〉, where 〈a〉 is the convex normal
subgroup generated by a. This process is repeated with G/〈a〉 and continues to be repeated
until we have either used up all of G or found a quotient of G which has order type Q. The
recursion can be done in ATR0, but Π1

1−CA0 is required to prove that the process eventually
terminates.

The implication from (2) to (3) is trivial. In the next section, we show that ACA0 proves
that (3) implies (1). First, we prove that RCA0 plus statement (3) suffices to prove that
the well ordered initial segment of every linear order exists. This fact is used together with
properties of the Kleene-Brouwer order on trees (which require ACA0) to prove Π1

1 −CA0 in
the form given in Theorem 1.19.

In the last section, we prove that the reversal can be done over RCA0 instead of ACA0.
We show that any model of RCA0 and statement (3) is closed under the Turing jump and
hence is a model of ACA0. By Gödel’s Completeness Theorem, RCA0 and statement (3)
prove the axioms of ACA0, which in turn prove Π1

1 − CA0.

Lemma 7.6. (RCA0) Let G be an f.o. group and H a convex normal subgroup. If X is the
order type of H and Y is the order type of the induced order on G/H, then XY is the order
type of G.

Proof. Since G/H is a set of representatives for the cosets, each element of G can be uniquely
written as ah where a ∈ G/H and h ∈ H. If g1 6= g2, g1 = a1h1 and g2 = a2h2, then by the
definition of the induced order g1 <G g2 if and only if a1 <G/H a2 or a1 = a2 and h1 <G h2.
Suppose fH : H → X and fG/H : G/H → Y are the order preserving bijections. Define

f : G→ XY

g 7→ 〈fH(h), fG/H(a)〉

where g = ah is the decomposition of g given above. This map is the desired order preserving
bijection.

Definition 7.7. (RCA0) Let G be an f.o. group. The set Arch(G) is a set of unique repre-
sentatives of the Archimedean classes of G.

Arch(G) =
{
g ∈ G | ∀h ∈ G

(
h <N g → ¬(h ≈ g)

)}
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In general, RCA0 is not strong enough to prove the existence of Arch(G). Arch(G) is
ordered by taking x < y if and only if x� y. If Arch(G) exists, then we can define a function
a : G→ Arch(G) which assigns to each g the element in Arch(G) to which it is Archimedean
equivalent.

a(g) = d ⇔ d ∈ Arch(G) ∧ d ≈ g

⇔ d ∈ Arch(G) ∧ ∃n∃m (|gm| > |d| ∧ |dn| > |g|)
⇔ d ∈ Arch(G) ∧ ∀y <N g∀n∀m

(
y 6= d→ (|ym| < |g| ∨ |gn| < |y|)

)
Since a(g) has a ∆0

1 definition with Arch(G) as a parameter, it is definable in RCA0 if Arch(G)
exists.

Lemma 7.8. (RCA0) Let G be an f.o. group. Suppose Arch(G), Y = W (Arch(G)) and
H = { g ∈ G | ∃y ∈ Y (g � y ∨ g ≈ y) } exist and Y 6= Arch(G). Then H is a convex normal
subgroup of G and G/H has order type Q.

Proof. H is clearly a convex subgroup. To show H is normal, suppose h ∈ H, g ∈ G and
ghg−1 6∈ H. Let a ∈ Arch(G) be such that a ≈ ghg−1. Because ghg−1 6∈ H, it follows that
a 6∈ Y and there is an infinite descending chain f : N → Arch(G) below a. By Lemma 6.17,
f(n+ 1) � f(n) implies g−1f(n+ 1)g � g−1f(n)g. Define f̃ : N → Arch(G) by setting f̃(n)
to be the element of Arch(G) which is Archimedean equivalent to g−1f(n)g. f̃ is an infinite
descending chain below f̃(0), and so f̃(0) is not in Y . However, f̃(0) = h which contradicts
the fact that h ∈ H.

Because G is fully ordered, RCA0 suffices to form G/H with the induced order. To finish
the proof, it suffices to show that this order is dense with no endpoints. The key fact is
that for any b ∈ Arch(G) \ Y there is a c ∈ Arch(G) \ Y such that c � b. For example, if
1GH < g1H < g2H, then there are b, c ∈ Arch(G) \ Y such that g1 ≈ b and c � g1. Since
h� c for all h ∈ H and g1 + |c| � g2, it follows that (g1 + |c|)H is strictly between g1H and
g2H. The other cases showing that G/H is dense and has no endpoints are similar.

Lemma 7.9. (ACA0) Let G be an f.o. group. If G has a least strictly positive element x then
∀g ∈ G(gx = xg) and the subgroup generated by x is convex.

Proof. Let P+ be the set of strictly positive elements of G. Suppose there is a g with gx 6= xg.
Without loss of generality assume gx < xg. It follows that gxg−1 < x. But, x ∈ P+ implies
gxg−1 ∈ P+ which contradicts the fact that x is the least strictly positive element. The
subgroup generated by x has a Σ0

1 definition, so its existence can be proved in ACA0. The
elements of this subgroups have the form xn for n ∈ Z. Suppose there is an n ∈ Z and a c ∈ G
such that xn < c < xn+1. It follows that 1G < cx−n < x which contradicts the hypothesis.

Lemma 7.10. (RCA0) Let G be an f.o. group. If G contains elements a1, a2 such that a1 < a2

and ∀g
(
a1 ≤ g ≤ a2 → (a1 = g ∨ a2 = g)

)
, then G has a least strictly positive element.

Proof. Let x = a2a
−1
1 . 1G < x and if 1G < b < x, then a1 < ba1 < a2 which contradicts the

hypothesis.
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Lemma 7.11. (Π1
1 − CA0) For any linear order X, the well ordered initial segment W (X)

exists.

Proof. For each a ∈ X, let

Ta = {σ ∈ FinX |σ(0) = a ∧ ∀i < (lh(σ)− 1) (σ(i+ 1) < σ(i)) }.

Ta has a path if and only if there is an infinite descending chain below a. Hence

W (X) = { a |Ta has no path }.

By Theorem 1.19, Π1
1 − CA0 proves that this set exists.

We are ready to prove that (1) implies (2) in Theorem 7.5.

Proof. Let G be an f.o. group. By Lemma 7.11, Π1
1−CA0 suffices to prove that W (Arch(G))

exists. Let X = W (Arch(G)) if W (Arch(G) has a greatest element and otherwise let X be the
well ordered obtain by adding a greatest element onto W (Arch(G)). We use ordinal notation
for elements of X: 0 denotes the least element of X, β + 1 denotes the successor of β, and γ
is a limit if γ has no immediate predecessor. For any β ∈ X, let

β̂ = { y ∈ X | y < β }.

The strategy is to use ATR0 to construct a chain of convex normal subgroups, Aβ ⊆ G for

β ∈ X. At each step, we prove the order type of Aβ is Zβ̂ and that unless β is the maximal
element of X, Aβ is strictly contained in G. If we reach a step where Aβ cannot be extended
to Aβ+1, the construction terminates early.
Construction: Define A0 = {1G}.
Successor Step: Assume Aβ is a convex normal subgroup, Aβ 6= G and the order type of

Aβ is Zβ̂. G/Aβ is an f.o. group with the induced order. There are two cases to consider:

1. If G/Aβ has no least strictly positive element, then terminate the construction early at
β. In this case, G/Aβ has order type Q.

2. If G/Aβ has a least strictly positive element, let aβ+1 ∈ G represent this least positive
coset. Define Aβ+1 to be the subgroup generated by Aβ and aβ+1.

Limit Step: If λ is a limit ordinal in X, Aλ =
⋃

β<λAβ.
End of Construction

We need to verify that at each step of the construction, Aβ is a convex normal subgroup

with order type Zβ̂. Consider the successor step β + 1. Since aβ+1Aβ is the least positive
element of G/Aβ, Lemma 7.9 says that aβ+1Aβ is in the center of G/Aβ and the subgroup
it generates is convex. This fact means that aβ+1 commutes with elements of G modulo Aβ.
That is, for every g there is an a ∈ Aβ such that gaβ+1 = aβ+1ga. Thus any element of Aβ+1

can be written in the form an
β+1b for some n ∈ Z and b ∈ Aβ. Also, since Aβ is convex and

aβ+1 6∈ Aβ, aβ+1 is Archimedean greater than all the elements of Aβ. We can now verify the
following facts:
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1. Aβ+1 is normal: Let x = an
β+1b. Because aβ+1 commutes with elements of G modulo

Aβ, there is a b̃ ∈ Aβ such that

gxg−1 = gan
β+1bg

−1 = an
β+1gb̃bg

−1.

The fact that Aβ is normal implies that gb̃bg−1 ∈ Aβ and therefore that gxg−1 ∈ Aβ+1.

2. Aβ+1 is convex: If an
β+1b < z < am

β+1b̃ then an
β+1Aβ ≤ zAβ ≤ am

β+1Aβ. Since the
subgroup of G/Aβ generated by aβ+1Aβ is convex, zAβ = ap

β+1Aβ for some p. It follows
that z = ap

β+1c for some c ∈ Aβ, so z ∈ Aβ+1.

3. The order type of Aβ+1/Aβ is Z: Elements of Aβ+1/Aβ are of the form an
β+1Aβ. Since

b� aβ+1 for all b ∈ Aβ, it follows that an
β+1 6= am

β+1 modulo Aβ if n 6= m.

4. For all b ∈ Aβ+1, either b � aβ+1 or b ≈ aβ+1: If aβ+1 � b, then a � b for all a ∈ Aβ

and so b is not in the subgroup generated by aβ+1 and Aβ.

(4) shows that unless β + 1 is the maximum element of X, Aβ+1 6= G. By Lemma 7.6 and

the induction hypothesis, (3) shows that the order type of Aβ+1 is Z ˆβ+1.
To check the properties at a limit step, assume λ is a limit in X. From the construction

it is clear that Aλ is a convex normal subgroup and that unless λ is the maximum element of
X, there are elements of Arch(G) above Aλ, and so Aλ 6= G. For β < γ assume fβ : Aβ → Zβ̂

is an order preserving bijection. Define

fλ : Aλ → Zλ̂

a 7→ fβ(a)

where β is the least element of X such that a ∈ Aβ. Notice that Zβ̂ ⊂ Zλ̂, so we can view

fβ(a) as an element of Zλ̂. This map is an order preserving bijection, so Aλ has the desired
order type.

Since the construction may have terminated early and W (Arch(G)) may or may not be
Arch(G), there are four cases to consider to finish the proof.

1. If W (Arch(G)) = Arch(G)

(a) If the construction terminates early at β, then Aβ has order type Zβ̂ and G/Aβ

has order type Q, so G has order type Zβ̂Q.

(b) If the construction completes and β is the maximum element of X, then G = Aβ

and so G has order type Zβ̂.

2. If Arch(G) is not well ordered:

(a) If the construction terminates early at β, then as in the first case, G has order type

Zβ̂Q
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(b) If the construction is completed and β is the maximum element of X, then G/Aβ

has order type Q by Lemma 7.8 and G has order type Zβ̂Q.

7.2 The Reversal

The goal of this section is to show that ACA0 suffices to prove that (3) implies (1) in Theorem
7.5. The proof takes place in two steps. First, we show that RCA0 plus statement (3) in
Theorem 7.5 suffices to prove the well ordered initial segments of every linear order exists.
Second, we use this fact plus some properties of the Kleene-Brouwer order on trees to prove
in ACA0 that (3) implies (1).

Definition 7.12. (RCA0) For a linear order X, U ⊆ X is dense if U has at least two
elements and for every u, v ∈ U , if u <X v then there is a w ∈ U such that u <X w <X v.

Lemma 7.13. (RCA0) Let X be a well order and U be a dense subset of ZX . There are
sequences of elements of U , u0, u1, . . . and v0, v1, . . . such that for each n ∈ N

1. un < un+1 < vn+1 < vn

2. lh(un) > n and lh(vn) > n

3. un(0) = vn(0), un(1) = vn(1), . . . , un(n) = vn(n)

Proof. If X = ∅, then ZX has only one element and hence has no dense subsets. Assume that
X 6= ∅ and U ⊆ ZX is dense. We define the sequences by induction starting with u0 and v0.

Claim. There are u 6= v such that π1(u(0)) = π1(v(0)).

Suppose there are no such u and v. We will produce a contradiction to the fact that X is a
well order. Since U is infinite, we can pick u and v such that either π2(u(0)) and π2(v(0)) are
both positive or are both negative. Without loss of generality, assume they are both positive
and u <ZX v. Define a function g : N → ZX such that g(0) = v and g(i + 1) is the N-least
element of U strictly between u and g(i). The density of U insures that g(i + 1) is defined.
For any i ∈ N we have

u <ZX g(i+ 1) <ZX g(i) <ZX v.

We verify that π1(u(0)) <X π1(g(i + 1)(0)). Assume that this inequality does not hold.
By assumption, π1(u(0)) 6= π1(g(i + 1)(0)), so we must have π1(g(i + 1)(0)) <X π1(u(0)).
However, by the definition of ≤ZX and because π2(u(0)) > 0, this inequality implies that
g(i+ 1) <ZX u, which is a contradiction.

Because π1(u(0)) <X π1(g(i + 1)(0)) and u <ZX g(i + 1), the definition of ≤ZX implies
that π2(g(i + 1)(0)) > 0. Therefore, we can apply the reasoning of the previous paragraph
to g(i + 1) <ZX g(i) and conclude that π1(g(i + 1)(0)) <X π1(g(i)(0)). Define the function
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h : N → X by h(i) = π1(g(i)(0)). The properties of g imply that h(i + 1) <X h(i) for all i,
which contradicts the fact that X is a well order and proves the claim.

Let u, v ∈ U be such that u < v and π1(u(0)) = π1(v(0)). Let U1 = {x ∈ U |u ≤ x ≤ v}.
U1 is also a dense subset of X and for any x ∈ U1, π1(x(0)) = π1(u(0)). To finish the n = 0
case, it suffices to find r, s ∈ U1 such that r 6= s and π2(r(0)) = π2(s(0)). Suppose there are
no such elements. If r 6= s ∈ U1, then

r <ZX s ⇔ π2(r(0)) < π2(s(0)).

However, if r ∈ U1, then π2(r(0)) is between π2(u(0)) and π2(v(0)). Thus there are a finite
number of elements in U1, which contradicts the density of U1. Let 〈u0, v0〉 be the N-least
pair of elements of U such that u0 < v0 and u0(0) = v0(0).

The argument for the induction step is similar. Assume we have un and vn. Consider the
set V of elements x ∈ U with un ≤ZX x ≤ZX vn. For any x ∈ V , x(i) = un(i) for 0 ≤ i ≤ n.
By a notationally cumbersome, but similar argument, we can find r, s ∈ V such that r 6= s
and r(n+ 1) = s(n+ 1). Let 〈un+1, vn+1〉 be the N-least pair in V such that un+1 < vn+1 and
un+1(n+ 1) = vn+1(n+ 1).

Lemma 7.14. (RCA0) If X is a well order, then there are no dense subsets of ZX .

Proof. Suppose X is a well order and U is a dense subset of ZX . Let u0, u1, . . . and v0, v1, . . .
be the sequences from Lemma 7.13. Define F : N → X by

F (n) = π1(un(n)).

F is an infinite descending chain which contradicts the fact that X is a well order.

Proposition 7.15. (RCA0) (1) implies (2) where

1. For any countable abelian f.o. group A, there is a well order α and ε = 0 or 1 such that
ZαQε is the order type of A.

2. The well ordered initial segment W (X) exists for all linear orders X.

The proof of Proposition 7.15 follows from the next two lemmas. Let X = {x0, x1, . . .}
be an infinite linear order and G be the free abelian group on the generators {a0, a1, . . .}.
Elements of G are represented by finite sums,∑

i∈I

riai

where I is a finite set and ri ∈ Z \ {0}. For our purposes, it is more convenient to represent
the elements of ZX as finite sums rather than as sequences∑

i∈I

rixi
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where I is a finite set and ri ∈ Z \ {0}. When G and ZX are presented this way, there is a
natural bijection between them that sends

∑
i∈I riai to

∑
i∈I rixi.

X is used to define a full order on G. To compare two distinct elements,
∑

i∈I riai and∑
j∈J sjaj, let K = I ∪ J , let rk = 0 for k ∈ J \ I and let sk = 0 for k ∈ I \ J . Let n be such

that xn is X-maximal in {xk|k ∈ K ∧ rk 6= sk}. The order is defined by∑
i∈I

riai <
∑
j∈J

sjaj ↔ rn < sn.

This definition yields a full order on G. Furthermore, under this order, the bijection from
G to ZX is order preserving. Statement (1) in Proposition 7.15 gives an order preserving
bijection from G to ZαQε for some well order α and ε = 0 or 1.

Lemma 7.16. X is a well order if and only if ε = 0.

Proof.

Case. (⇒)
Suppose X is a well order. Because there is an order preserving bijection between G and

ZX and between G and ZαQε, it follows that there is an order preserving bijection between
ZX and ZαQε. If ε = 1, then the set {〈 〈〉, q 〉 | q ∈ Q} is dense in ZαQ. Because RCA0

proves that the image of any subset of the domain of a bijection exists, the image of this set
exists and is dense in ZX . This statement contradicts Lemma 7.14.

Case. (⇐)

Suppose X is not a well ordering and g : N → X is an infinite descending chain in X.
There is an infinite descending chain of generators in G,

. . .� ag(2) � ag(1) � ag(0).

Let H be the subgroup of G generated by pnag(n) where pn is the nth prime.∑
i∈I

riai ∈ H ↔ ∀i ∈ I ∃pn ≤ |ri| (g(n) = i ∧ pn divides ri)

Because the quantification is bounded, this condition is Σ0
0. It suffices to show that H is

dense, for in that case, the image of H in ZαQε is dense and by Lemma 7.14, ε must be 1.
To show H is dense, consider two elements of H,∑

i∈I

riai <
∑
j∈J

sjaj.

Define the coefficients in the sums for all the elements of I ∪ J by setting rj = 0 for j ∈ J \ I
and si = 0 for i ∈ I \ J . Let n be such that xn is X-maximal in {xk|k ∈ K ∧ sk 6= rk}. n is
in the range of g, so there is a k with g(k) = n. The element

∑
i∈I riai + pk+1ag(k+1) lies in

H and is strictly between the two elements given above.
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If X is not well ordered, then by Lemma 7.16 G has order type ZαQ. Let f : G → ZαQ
be the order preserving bijection. For any x ∈ X, there is an associated generator ax in G.
f(ax) has two components, one from Zα and one from Q. The second component is the key
to defining W (X).

Lemma 7.17. If X is not well ordered, then x ∈ X is in W (X) if and only if π2(f(ax)) =
π2(f(1G)).

Proof.

Case. (⇒)
Suppose x ∈ W (X). Let H be the subgroup generated by ay for y ≤X x. H exists since

its elements are exactly those of the form
∑

i∈I riai where ∀i ∈ I(xi ≤X x).

Claim. H is convex.

Let
∑

i∈I riai <G

∑
j∈J sjaj be two elements in H and let g ∈ G lie strictly between them.∑

i∈I riai <G g implies that for all y >X x, the coefficient of ay in g is greater than or equal
to 0. On the other hand, g <G

∑
j∈J sjaj implies that for all y >X x, the coefficient of ay in

g is less than or equal to 0. Hence, g ∈ H as required.
f(H) exists because f is a bijection and f(H) is convex because f is order preserving.

Suppose π2(f(ax)) 6= π2(f(1G)). The contradiction we derive is that f(H) has a dense sub-
ordering while H does not.

Define the well order X̂ by

X̂ = { y ∈ X | y ≤ x }.

Since H is the torsion free abelian group on the generators ay with y ∈ X̂, it follows from

the definition of ≤G that the order type of H is ZX̂ . Lemma 7.14 shows that H has no dense
suborderings.

As for f(H), since π2(f(ax)) 6= π2(f(1G)) and 1G ≤G ax, it follows that π2(f(1G)) <Q
π2(f(ax)). Thus, for any q ∈ Q strictly between these values, 〈 〈〉, q 〉 is strictly between
f(1G) and f(ax). Since f(H) is convex, the set of such points is in f(H). Thus f(H) has a
dense subordering.

Case. (⇐)

This case is similar to the proof of Lemma 7.16. Suppose x is not in the well ordered
initial segment of X. Let g : N → X be an infinite descending chain below x. This function
also gives a descending chain of generators.

. . .� ag(2) � ag(1) � ag(0)

Let H be the subgroup of G which is generated by the elements of the form pnag(n) for n ≥ 1.
Let P be the positive cone of G. As in the proof of Lemma 7.16, P ∩H exists and is a dense
subordering of G. Now, suppose that π2(f(ax)) = π2(f(1G)). To complete the proof, we show
that f(P ∩H) does not have a dense subordering.
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Claim. For any y ∈ f(H ∩ P ), π2(y) = π2(f(1G)).

Suppose not. If π2(y) <Q π2(f(1G)) then y <ZαQ f(1G) and f−1(y) <G 1G. This con-
tradicts the fact that 1G is the least element of f(H ∩ P ). If π2(f(1G)) <Q π2(y), then by
the similar reasoning and the fact that π2(f(1G)) = π2(f(ax)) we have that ax <G f−1(y).
However, since H is generated by pnag(n) for n ≥ 1, any element of H is below ax.

To show that f(H ∩ P ) has no dense suborderings, let f̃ : f(H ∩ P ) → Zα be the map
that takes y to π1(y). f̃ is order preserving and one-to-one, but is not necessarily a bijection.
However, the range of f̃ is

{ z ∈ Zα | 〈z, π2(f(1G))〉 ∈ f(H ∩ P ) }.

This condition is Σ0
0, so the range exists. Also, if U ⊆ f(H ∩ P ) then

f̃(U) = { z ∈ Zα | 〈z, π2(f(1G))〉 ∈ U }.

If U ⊆ f(H∩P ) is dense, so is f̃(U) ⊆ Zα. Hence, by Lemma 7.14, there are no dense subsets
of f(H ∩ P )

We can now give a proof of Proposition 7.15.

Proof. If X is well ordered, then W (X) = X. Otherwise, given the definitions above

W (X) = {x ∈ X | π2(f(ax)) = π2(f(1G))}.

We now define the Kleene-Brouwer order on a tree and use properties of this order to
prove the reversal of Theorem 7.5 in ACA0.

Definition 7.18. (RCA0) The Kleene-Brouwer order, KB, on FinN is given by: σ ≤KB τ
if and only if σ ⊇ τ or there is a j < min(lh(σ), lh(τ)) with σ(j) < τ(j) and σ(i) = τ(i) for
all i < j. If T is a tree, then KB(T ), the Kleene-Brouwer order of T , is KB ∩ (T × T ).

Lemma 7.19. (ACA0) A tree T has a path if and only if KB(T ) is not a well ordering.

Lemma 7.20. (ACA0) In Theorem 7.5, (3) implies (1).

Proof. Assume (3) and let 〈Ti | i ∈ N〉 be a sequence of trees. By Theorem 1.19, it suffices to
construct the set

{ i | Ti has a path }.

If none of the Ti’s has a path, then RCA0 can form X. Therefore, assume at least one Ti has
a path.

First we define a tree T that contains each Ti as a subtree.

T = { 〈〉 } ∪ { iaτ | τ ∈ Ti }
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T is ordered by the Kleene-Brouwer order, KB(T ). Since at least one Ti has a path, T has a
path and KB(T ) is not a well order. Define Ai by

Ai = { τ ∈ T | 〈i− 1〉 <KB τ ≤KB 〈i〉 }.

The map which sends τ ∈ Ti to iaτ ∈ T is one-one, preserves the tree structure and has
image Ai. Thus, Ti and Ai are isomorphic as trees, and KB(Ti) and KB(T ) ∩ (Ai × Ai) are
isomorphic as linear orders.

By Lemma 7.19, Ti has a path if and only if KB(Ti) is not well ordered, which holds if
and only if KB(T ) ∩ (Ai × Ai) is not well ordered. Thus it suffices to form the set:

{ i |KB(T ) ∩ (Ai × Ai) is not well ordered }.

Let G be the torsion free group on generators the aτ , τ ∈ T . Order the generators by
aτ � aγ if and only if τ <KB γ. As above, this order of the generators determines a full order
on G. By statement (3) in Theorem 7.5, there is an order preserving bijection f : G→ ZαQε.
Because KB(T ) is not a well order, it follows that ε = 1.

Claim. If Y ⊆ T and KB(T ) ∩ (Y × Y ) is well ordered, then there is an order preserving
bijection between ZY and the subgroup generated by aτ with τ ∈ Y , denoted 〈aτ |τ ∈ Y 〉.

As shown above, when the elements of 〈aτ |τ ∈ Y 〉 and ZY are represented as finite sums,
there is a natural order preserving bijection between them.

Claim. For each i, 〈aτ |τ ∈ Ai〉 has a dense subordering if and only if Ai is not well ordered
by KB(T ) ∩ (Ai × Ai).

If Ai is well ordered, then by the first claim 〈aτ |τ ∈ Ai〉 has no dense suborderings. If Ai

is not well ordered, then we can use a descending chain to build a dense subordering as in
Lemma 7.16.

Claim. For each i > 0, 〈aτ |τ ∈ Ai〉 has a dense subordering if and only if π2(f(a〈i−1〉)) 6=
π2(f(a〈i〉)).

Suppose π2(f(a〈i−1〉)) 6= π2(f(a〈i〉)). Then

U = { γ ∈ T |π2(f(a〈i−1〉)) < π2(f(aγ)) < π2(f(a〈i〉)) }

is contained in Ai by the definition of the Kleene-Brouwer ordering. Since the elements of T
are all actually elements of N we can trim this set down father.

V = { τ ∈ U | ∀γ ∈ U(γ <N τ → π2(f(aγ)) 6= π2(f(aτ )) }

V ⊆ Ai is dense so by the second claim 〈aτ |τ ∈ Ai〉 has a dense subordering. To prove the
other direction, suppose π2(f(a〈i−1〉)) = π2(f(a〈i〉)) = q. The image of 〈aτ |τ ∈ Ai〉 in ZαQ is
contained in Zα × {q} which has no dense suborderings.

Similarly, we can show 〈 aτ |τ ≤ 〈0〉 〉 has a dense suborder if and only if π2(f(a〈0〉)) 6=
π2(f(1G)).
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For i > 0 we have shown KB(T )∩(Ai×Ai) is not well ordered if and only if π2(f(a〈i−1〉)) 6=
π2(f(a〈i〉)). For i = 0, KB(T ) ∩ (A0 × A0) is not well ordered if and only if π2(f(a0)) 6=
π2(f(1G)). These equivalences give us a Σ0

0 condition to form the set

{ i |KB(T ) ∩ (Ai × Ai) is not well ordered }.

7.3 Coding Turing Jumps

This section shows that RCA0 can prove the implication from (3) to (1) in Theorem 7.5.
The idea is that for any given set Y , RCA0 can produce a linear order X such that the well
ordered initial segment of X codes the Turing jump of Y . Thus, by Proposition 7.15, any
model of RCA0 and condition (3) from Theorem 7.5 is closed under Turing jumps and hence
is a model for ACA0. By Gödel’s Completeness Theorem, RCA0 plus condition (3) suffice to
prove ACA0, which in turn proves Π1

1 − CA0. Once we have proved Lemma 7.23, the proof
of Theorem 7.5 will be complete.

Definition 7.21. (RCA0) Let π(e, r,X) be a Π0
1 formula with exactly the displayed variables

free. π is universal lightface Π0
1 if for all Π0

1 formulas ψ(e, r,X) with the same free variables

RCA0 ` ∀e∃e′∀r∀X
(
π(e′, r,X) ↔ ψ(e, r,X)

)
.

Definition 7.22. (RCA0) Let π(e, r, Y ) be a fixed universal lightface Π0
1 formula. The Tur-

ing jump of Y , TJ(Y ), is given by

TJ(Y ) = { 〈e, r〉 |π(e, r, Y ) }.

Notice that in contrast to the usual definition of the Turing jump as a complete Σ0
1 set,

this definition makes it a complete Π0
1 set.

Lemma 7.23. (RCA0) (1) implies (2):

1. Let G be a countable abelian f.o. group. There is a well order α and ε = 0 or 1 such
that ZαQε is the order type of G.

2. ACA0

The strategy for building X so that W (X) codes TJ(Y ) is to use a marker construction.
The function m(n, t) gives the marker for n at stage t. At stage t we will only have markers
for n ≤ t, so m(n, t) = 0 for all n > t. For this reason, X will order N+. There is also a
function b(t) such that at the end of stage t, Xt will order 1, . . . b(t). While the markers may
change during the construction, the limit of m(n, t) always exists and

n ∈ TJ(Y ) ↔ lim
t→∞

m(n, t) ∈ W (X).
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To build X we keep track of which elements we know are not in TJ(Y ) and which elements
we guess may be in TJ(Y ). Because the formula π(e, r, Y ) introduced in the definition of the
Turing jump is Π0

1, it can be written as ∀xϕ(e, r, x, Y ). If we find a number x such that
¬ϕ(e, r, x, Y ) then we know 〈e, r〉 6∈ TJ(Y ). Once we find such a witness, we begin to build
an infinite descending chain below the marker for 〈e, r〉 so that this marker will not be in
W (X).

To keep track of this knowledge, at stage t each number n < b(t) is labeled either not fixed
or possibly fixed. A number labeled not fixed will have an infinite descending chain below it
when the construction of X is completed. Once a number is labeled not fixed, it remains not
fixed forever. However, a possibly fixed number may be changed at a later stage to not fixed.
However, as long as a number remains possibly fixed, nothings enters X below it. Thus, at
each stage the possibly fixed numbers form an initial segment of the part of X defined so far.

At stage t+ 1 of the construction, we check if ¬ϕ(e, r, x, Y ) holds where t = 〈e, r, x〉. If it
does not hold, then we do not yet have a witness for 〈e, r〉 6∈ TJ(Y ). In this case, we want
to extend the construction of the infinite descending chain below the not fixed elements and
otherwise leave X as it is.

However, if ¬ϕ(e, r, x, Y ) and m(〈e, r〉, t) is possibly fixed, then we have found a witness
to 〈e, r〉 6∈ TJ(Y ) and we did not already know this fact. In this case we label m(〈e, r〉, t) not
fixed and begin to build a descending chain below m(〈e, r〉, t). The complication is that there
may be other numbers m(n, t) which are possibly fixed and such that m(〈e, r〉, t) <X m(n, t).
We do not want to build a descending chain below m(n, t). To handle this problem, we define
the marker m(n, t+ 1) to be a new large number, place this number below m(〈e, r〉, t) in X,
label the number m(n, t) not fixed since we no longer care about it, and label m(n, t + 1)
possibly fixed. This redefinition of markers will happen only finitely often for each n.

We now give the formal construction. Xt denotes the portion of X defined by the end of
stage t.
Construction:
Stage 0: Define m(n, 0) = 0 for all n > 0, m(0, 0) = 1, and b(0) = 1. X0 consists of a single
element 1 which is labeled possibly fixed.
Stage t+1: By induction, assume the following facts hold at the end of stage t.

1. Each l ≤ b(t) except 0 is labeled either not fixed or possibly fixed.

2. The numbers labeled possibly fixed form an initial segment of Xt.

3. If l is not fixed, then either l 6= m(n, t) for any n ≤ t or l = m(n, t), n = 〈e, r〉 and
∃k ≤ t(¬ϕ(e, r, k, Y )).

4. If l is possibly fixed then there is an n ≤ t such that l = m(n, t).

5. If m(n, t) and m(ñ, t) are both possibly fixed, then m(n, t) <X m(ñ, t) if and only if
n <N ñ.

6. b(t) is the least not fixed element in Xt.
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There are two cases to consider in the construction. Assume t = 〈e, r, x〉.
Case. ¬ϕ(e, r, x, Y ) and m(〈e, r〉, t) is possibly fixed.

We have a new witness to the fact that 〈e, r〉 6∈ TJ(Y ). Let n = 〈e, r〉 and suppose Xt

looks like

m(bl, t) < . . . < m(b1, t) < m(n, t) < m(a1, t) < . . . < m(ak, t)︸ ︷︷ ︸
possibly fixed

< b(t) < . . .︸ ︷︷ ︸
not fixed

.

For all c, define m(c, t+ 1) as follows. If c > t+ 1, m(c, t) is not fixed, or m(c, t) ≤X m(n, t),
then m(c, t + 1) = m(c, t). For the elements m(a1, t) through m(ak, t), define m(ai, t + 1) =
b(t)+i and define m(t+1, t+1) = b(t)+k+1. The numbers m(ai, t) and m(n, t) = m(n, t+1)
have their labels changed to not fixed. The new elements m(ai, t + 1) are labeled possibly
fixed and are placed below m(n, t + 1), above m(b1, t + 1) and in ≤N-order on the ai’s. The
new element b(t) + k+ 1 = m(t+ 1, t+ 1) is labeled possibly fixed and inserted as the largest
possibly fixed element. Finally, the number b(t) + k + 2 is labeled not fixed and added to X
as the least not fixed element. b(t+ 1) is set to b(t) + k + 2. Xt+1 looks like

m(bl, t+ 1) < . . .m(b1, t+ 1) < m(a1, t+ 1) < . . .︸ ︷︷ ︸
possibly fixed

. . . < m(ak, t+ 1) < m(t+ 1, t+ 1)︸ ︷︷ ︸
possibly fixed

< b(t+ 1) < m(n, t+ 1) < . . .︸ ︷︷ ︸
not fixed

.

Case. Either ϕ(e, r, x, Y ) or m(〈e, r〉, t) is labeled not fixed.

Define m(c, t+ 1) = m(c, t) for all c except c = t+ 1, define m(t+ 1, t+ 1) = b(t) + 1 and
define b(t+ 1) = b(t) + 2. The labels on n ≤ b(t) remain the same, b(t) + 1 is labeled possibly
fixed and b(t)+2 = b(t+1) is labeled not fixed. b(t)+1 is added to X as the greatest possibly
fixed element and b(t+ 1) is added as the least not fixed element. If Xt had the numbers n1

and n2 as the greatest possibly fixed and the least not fixed elements respectively, then Xt+1

looks like
. . . < n1 < m(t+ 1, t+ 1)︸ ︷︷ ︸

possibly fixed

< b(t+ 1) < n2 < . . .︸ ︷︷ ︸
not fixed

.

Notice that in either case, the inductive assumptions are satisfied at the end of stage t+ 1.
End of Construction

The following facts are clear from the construction.

1. If m(n, t) is not fixed, then ∀t′ ≥ t (m(n, t′) = m(n, t)).

2. If m(n, t) and m(n′, t) are possibly fixed, then m(n, t) <X m(n′, t) if and only if n <N n
′.

3. If n 6∈ TJ(Y ) and n = 〈e, r〉, then there is a least t = 〈e, r, x〉 such that ¬ϕ(e, r, x, Y ).
The number m(n, t+ 1) is labeled not fixed at stage t+ 1.
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4. If n ∈ TJ(Y ) and n = 〈e, r〉 then for all t = 〈e, r, x〉, we have ϕ(e, r, x, Y ) and hence
m(n, t) is never labeled not fixed at stage t + 1. If the number m(n, t) is later labeled
not fixed at stage t′ > t then m(n, t′) 6= m(n, t).

5. If m(n, t) is labeled possibly fixed and m(a, t) <X m(n, t) with m(a, t + 1) 6= m(a, t),
then m(n, t+ 1) 6= m(n, t).

It remains to show that limt→∞m(n, t) exists for all n, that there is an infinite descending
chain below limt→∞m(n, t) in X if and only if n 6∈ TJ(Y ), and that this fact can be used to
give a ∆0

1 definition of TJ(Y ).

Lemma 7.24. (RCA0) For all n, there exists t such that for all t′ > t, m(n, t′) = m(n, t).
That is, limt→∞m(n, t) exists.

Proof. This lemma cannot be proved by induction in RCA0 because it would require Σ0
2

induction. We fix n and prove the lemma for this specific n.

Case. n 6∈ TJ(Y ) and n = 〈e, r〉
There is a t = 〈e, r, x〉 with ¬ϕ(e, r, x, Y ). At stage t + 1, m(n, t + 1) is labeled not fixed

and ∀t′ > t (m(n, t′) = m(n, t+ 1)).

Case. n ∈ TJ(Y )

Notice that m(n, t + 1) 6= m(n, t) if and only if t = 〈e, r, x〉, ¬ϕ(e, r, x, Y ), m(〈e, r〉, t) is
labeled possibly fixed, and m(〈e, r〉, t) <X m(n, t). Since m(n, t) is labeled possibly fixed at
stage t, it follows from m(〈e, r〉, t) <X m(n, t) that 〈e, r〉 <N n. Thus we have

m(n, t) 6= m(n, t+ 1)

if and only if

∃〈e, r〉 ≤ n∃x ≤ t∀k ≤ x
(
t = 〈e, r, x〉 ∧ ¬ϕ(e, r, x, Y ) ∧ ϕ(e, r, k, Y )

)
.

Therefore the set
{ t |m(n, t) 6= m(n, t+ 1) }

exists. It is finite since for each 〈e, r〉 ≤ n there is at most one x such that ¬ϕ(e, r, x, Y ) and
ϕ(e, r, k, Y ) for all k ≤ x. Hence limt→∞m(n, t) exists.

Lemma 7.25. (RCA0) If n 6∈ TJ(Y ) then there is a t ≥ n such that m(n, t) is labeled not
fixed at stage t.

Proof. Let t = 〈e, r, x〉 where ¬ϕ(e, r, x, Y ) and ∀k ≤ t(ϕ(e, r, k, Y )).

Lemma 7.26. (RCA0) If n 6∈ TJ(Y ) and m(n, t̃) is labeled not fixed at stage t̃, then m(n, t̃) =
limt→∞m(n, t) and there is an infinite descending chain below m(n, t̃) in X.

Proof. The function f : N → N given by k 7→ b(t̃ + k) is an infinite descending chain below
m(n, t̃).
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In fact it is clear that if n is any number labeled not fixed at stage t̃ then the function f
in the proof of the previous lemma gives an infinite descending chain below n.

Lemma 7.27. (RCA0) If n ∈ TJ(Y ) and limt→∞m(n, t) = ñ then there is a finite number
of elements below ñ in X.

Proof. Let t̃ be such that m(n, t̃) = ñ. Since m(n, t) is an increasing function, m(n, t) never
changes after t̃ and since n ∈ TJ(Y ), ñ is labeled possibly fixed at all stages after t̃. Because
ñ is labeled possibly fixed, nothing is ever placed below ñ in X after stage t̃. Since the size
of Xt̃ is bounded by b(t̃), there are only a finite number of elements below ñ in X.

Lemma 7.28. (RCA0) n ∈ TJ(Y ) if and only if ∃t(m(n, t) ∈ W (X)).

Proof. We have shown that any number labeled not fixed has an infinite descending chain
below it and that n ∈ TJ(Y ) if and only if limt→∞m(n, t) ∈ W (X). Notice that ifm(n, t+1) 6=
m(n, t), then the number m(n, t) is labeled not fixed and hence m(n, t) 6∈ W (X). Thus,
a number k is in W (X) if and only if k = limt→∞m(n, t) for some n and n ∈ TJ(Y ).
However, if m(n, t̃) ∈ W (X), then the label on m(n, t̃) never changes to not fixed. Hence,
m(n, t̃) = limt→∞m(n, t) and so n ∈ TJ(Y ). If m(n, t) 6∈ W (X) for all t, then in particular
limt→∞m(n, t) 6∈ W (X) and so n 6∈ TJ(Y ).

To complete the proof of Lemma 7.23, notice that the original definition of TJ(Y ) was
given by a Π0

1 formula. Lemma 7.28 gives a definition of TJ(Y ) that is Σ0
1 in W (X). However,

by Proposition 7.15, we know that RCA0 plus statement (1) of Lemma 7.23 imply that
W (X) exists. Hence, assuming statement (1), TJ(Y ) is defined by a ∆0

1 condition. This step
completes the proof of Lemma 7.23, which in turn completes the proof of Theorem 7.5.
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Chapter 8

Spaces of Orders and Computable
Presentations

In this chapter, we turn our attention to two questions from Downey and Kurtz (1986).
First, is every c.b. Π0

1 class representable up to Turing degree by the space of orders on some
computable torsion free abelian group? Second, is every fully orderable computable group
classically isomorphic to a computably fully orderable computable group? Since we will only
be concerned with full orders, the terms order and full order will be used interchangeably.

8.1 Π0
1 Classes and Spaces of Orders

Recall that for an orderable group G, X(G) denotes the space of positive cones of full orders
on G. We proved the following connection between X(G) and c.b. Π0

1 classes in Chapter 3.

Theorem 8.1. Let G be a fully orderable computable group. There is a c.b. Π0
1 class C and

a Turing degree preserving bijection ϕ : X(G) → C.

Metakides and Nerode (1979) proved a similar result for ordered fields. Let X(F ) denote
the set of positive cones of orders on an orderable field F . As with groups, there is a set of
algebraic conditions that determines if a subset of F is the positive cone of a full order.

Theorem 8.2 (Metakides and Nerode (1979)). Let F be a computable field. There is a
c.b. Π0

1 class C and a Turing degree preserving bijection ϕ : X(F ) → C.

Metakides and Nerode (1979), however, carried this argument one step farther. They
proved that every c.b. Π0

1 class can be represented by X(F ) for some computable field F .

Theorem 8.3 (Metakides and Nerode (1979)). Let C be a c.b. Π0
1 class. There is a

computable field F and a degree preserving bijection ϕ : X(F ) → C.
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Downey and Kurtz (1986) asked if there is a result similar to Theorem 8.3 for computable
torsion free abelian groups. Unfortunately, it is not possible to have a result this strong. For
groups, if P is the positive cone of a full order and

P−1 = { g−1 | g ∈ P }.

then P−1 is also the positive cone of a full order. Notice that P ≡T P−1, so any degree
which contains a member of X(G) contains at least two members of X(G). However, there
is a c.b. Π0

1 class C such that for any f, g ∈ C, if f 6= g then deg(f) 6= deg(g). Therefore,
there cannot be a degree preserving bijection between C and X(G) for any fully orderable
computable group G.

There are two natural modifications of the question of representing c.b. Π0
1 classes. Given

a c.b. Π0
1 class C:

1. Is there a computable torsion free abelian group G such that

{ deg(f)|f ∈ C } = { deg(P )|P ∈ X(G) } ?

2. Is there a fully orderable computable group G and a two-to-one degree preserving map
ϕ : X(G) → C?

The answer to both questions turns out to be no. Notice that if the answer to (1) is no,
then the answer to (2) is also no. Before answering (1), we need some abelian group theory.

Definition 8.4. Let G be an abelian group. The elements g0, . . . , gn ∈ G \ 1G are linearly
independent if and only if for any α0, . . . , αn ∈ Z the equality

α0g0 + α1g1 + · · ·+ αngn = 0G

implies αigi = 0G for all i. If G is torsion free, this condition means that αi = 0 for all
i. An infinite set B ⊆ G \ 1G is linearly independent if every finite subset of B is linearly
independent. A maximal set of linearly independent elements is called a basis for G and the
cardinality of any basis is called the rank of G.

For example, G has rank 1 if and only if G is isomorphic to a subgroup of Q. If G is a
torsion free divisible abelian group, then G can be viewed as a vector space over Q. In this
case, the definitions of linear independence, basis and rank for G as a group agree exactly
with the definitions of the same terms for G as a vector space.

Our study of computable torsion free abelian groups breaks into three categories: groups of
rank 1, groups of finite rank > 1, and groups of infinite rank. Recall that if G is a computable
torsion free abelian group and D is a computable divisible closure of G, then there is a degree
preserving bijection ϕ : X(G) → X(D). Therefore, when studying the cardinality of X(G) or
the degrees of members of X(G), we can assume without loss of generality that G is divisible.
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Lemma 8.5. If G is a computable torsion free abelian group of rank 1, then G has exactly
two orders, both of which are computable.

Proof. Any divisible closure of G is computably isomorphic to Q. Q has exactly two orders
both of which are computable, so G has exactly two orders both of which are computable.

Lemma 8.6. If G is a computable torsion free abelian group with finite rank strictly greater
than 1, then G has 2ω orders and has orders of every Turing degree.

Proof. We assume that G is divisible. Since G has finite rank, we can also assume that we
have a basis for G. For simplicity, we consider the case when G has rank 2 and later prove
the lemma for larger ranks.

Let {a, b} be a basis for G. Any element of G can be written as p1a + p2b for some
p1, p2 ∈ Q. The lexicographic order on G is computable:

p1a+ p2b ∈ P ⇔ p1 > 0 ∨ (p1 = 0 ∧ p2 ≥ 0).

Therefore, G has a computable order. Let a be an arbitrary noncomputable degree and r ∈ a
be a real such that 0 < r < 1. Notice that r must be irrational since 0 <T r. We define
the map fr : G → R that sends p1a + p2b to p1 + p2r. Because r is irrational, this map is
a monomorphism and defines an isomorphism between G and a subgroup of R. We use the
structure of R to define a full order ≤r on G. For g, h ∈ G

g ≤r h ⇔ fr(g) ≤R fr(h).

It remains to show that deg(r) = deg(≤r), for then we have deg(≤r) = a.

Claim. deg(r) ≤T deg(≤r)

The idea is to use ≤r to compute a binary expansion for r. We need to determine the
coefficients ai ∈ {0, 1} in

r =
ω∑

i=1

ai

2i
.

To compute a1, notice that

r >R
1

2
⇔ 2r >R 1 ⇔ 2b >r a

r <R
1

2
⇔ 2r <R 1 ⇔ 2b <r a.

Using ≤r we compute:

2b >r a⇒ a1 = 1

2b <r a⇒ a1 = 0.
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To compute an+1, we assume by induction that we know a1, . . . , an and that

n∑
i=1

ai

2i
<R r <R

n∑
i=1

ai

2i
+

1

2n
.

To find an+1, we need to know if

r <R

n∑
i=1

ai

2i
+

1

2n+1
.

If this inequality holds, then an+1 = 0 and otherwise an+1 = 1. By the definition of ≤r, we
have that

r <R

n∑
i=1

ai

2i
+

1

2n+1
⇔ b <r

n∑
i=1

ai

2i
a +

a

2n+1
.

Note that the required induction hypothesis holds once we set an+1 to the correct value. The
claim is proved.

Claim. deg(≤r) ≤T deg(r)

Assume we have coefficients ai ∈ {0, 1} for the sum

r =
ω∑

i=1

ai

2i
.

We need to be able to compare elements of the form

p

q
a+

p′

q′
b and

m

n
a+

m′

n′
b

where the numbers in the fractions are from Z and q, q′, n, n′ > 0. If we multiply by qq′nn′

we see that it suffices to be able to compare elements of the form

n1a+m1b and n2a+m2b.

However, by collecting terms we have

n1a+m1b ≤r n2a+m2b ⇔ (n1 − n2)a ≤r (m2 −m1)b.

Therefore, it suffices to be able to compare na and mb for n,m ∈ Z. We will further assume
that n,m ∈ N \ 0 since the other cases are either easy (i.e. n = 0 and m > 0) or reduce to
this case (i.e. n < 0 and m < 0).

The map fr sends na 7→ n and mb 7→ mr. To compare n and mr as elements of R, we
need to compute an approximation to r to an accuracy such that there are no integers within
the error bounds for m times the approximation. For any k we know that

m ·
k∑

i=1

ai

2i
<R m · r <R m ·

(
k∑

i=1

ai

2i
+

1

2k

)
.
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We need to find a k such that there are no integers in the interval[
m ·

k∑
i=1

ai

2i
, m ·

(
k∑

i=1

ai

2i
+

1

2k

)]
.

Once we know such a k exists, we can find it by searching. Because mr is irrational, it must
sit strictly between two integers. Let d be the distance from mr to the nearest integer and
let k be such that m/2k < d. It follows that

m ·

(
r −

k∑
i=1

ai

2i

)
<

m

2k
< d

and

m ·

(
k∑

i=1

ai

2i
+

1

2k
− r

)
<

m

2k
< d.

Thus, there is a k as required for the approximation. We can now compare na and mb as
follows:

na <r mb ⇔ n <R mr ⇔ n <R m ·
k∑

i=1

ai

2i
.

The claims show that deg(r) = deg(≤R) and hence G has orders of every degree. Since
there are 2ω degrees, G has 2ω distinct orders. This completes the proof for groups of rank 2.

Assume G is a computable torsion free abelian group of finite rank n > 2. We assume that
G is divisible and that we have a basis {g1, . . . , gn} for G. Any element of G can be written
as

q1g1 + · · ·+ qngn

for some q1, . . . , qn ∈ Q. G is the direct product of the computable subgroups generated
by {g1, g2} and {g3, . . . , gn}, so we can lexicographically order G using the orders on these
subgroups as in Theorem 3.21.

For any degree a, the subgroup generated by {g1, g2} has an order of degree a. The
subgroup generated by {g3, . . . , gn} is computably orderable and therefore, the direct product
has an order of degree a.

Lemma 8.7. If G is a computable torsion free abelian group with infinite rank, then G has
2ω distinct orders and has orders of every degree a ≥T 0′

Proof. Unlike in the proof of Lemma 8.6, we cannot assume that we have a basis for G.
However, there is a basis computable in 0′. Define

A = { 〈g1, . . . , gn+1〉 | ∃〈q1, . . . , qn〉 (gn+1 = q1g1 + · · ·+ qngn) }.
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A is defined by a Σ0
1 statement, so A ≤T 0′. To obtain a basis for G, define a sequence of

finite sequences
〈e1〉, 〈e1, e2〉, . . . , 〈e1, . . . , en〉, . . .

by: e1 is the least nonidentity element of G and en+1 is the N-least element of G such that
〈e1, . . . , en, en+1〉 6∈ A. A basis for G is given by

B = { g | g appears in a sequence 〈e1, . . . , en〉 }.

B is computable from A, so B ≤T 0′.
Once we have a basis e1, e2, . . . for G, we can write each element of G as

q1e1 + · · ·+ qnen

for some q1, . . . qn ∈ Q with qn 6= 0. We split G into the direct product of the subgroup
generated by {e1, e2} and the subgroup generated by {e3, e4, . . .}. The lexicographic order on
the subgroup generated by {e3, e4, . . .} is computable from the basis B.

Suppose a is any degree above 0′. The basis B is computable from a and so the subgroup
generated by {e3, e4, . . .} has an order computable in a. By Lemma 8.6, the subgroup gen-
erated by {e1, e2} has an order exactly of degree a. Therefore, the lexicographic product of
these orders has degree exactly a.

Theorem 8.8. There is a c.b. Π0
1 class C such that for any computable torsion free abelian

group G
{ deg(f) | f ∈ C } 6= { deg(p) |P ∈ X(G) }.

Proof. Recall from Theorem 1.9 that there is an infinite c.b. Π0
1 class C such that for any

f, g ∈ C, if f 6= g then f and g are Turing incomparable. Let C be such a c.b. Π0
1 class. Let

G be any computable torsion free abelian group. By Lemmas 8.5, 8.6 and 8.7 we know that
G has either only computable orders, orders of every degree or orders of every degree above
0′. In any of these cases, it is impossible for the set of degrees of elements of X(G) to be equal
to the set of degrees of elements of C.

Theorem 8.8 shows that the spaces of orders on computable torsion free abelian groups
do not suffice to represent all c.b. Π0

1 classes even in a weak sense. The next theorem shows
that they cannot represent even the restricted class of Π0

1 classes of separating sets.

Theorem 8.9. There is a Π0
1 class of separating sets C such that for any computable torsion

free abelian group G
{ deg(f) | f ∈ C } 6= { deg(p) |P ∈ X(G) }.

Proof. The proof is exactly the same as the proof of Theorem 8.8 except that it relies on a
different result about Π0

1 classes of separating sets. From Theorem 1.10 we know that there
is a Π0

1 class of separating sets C such that for any A,B ∈ C either A ≡T B or A and B are
Turing incomparable.
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8.2 Extension to Nilpotent Groups

Recall from Theorem 3.34 that the space of orders of any orderable computable group can
be represented by a c.b. Π0

1 class. So far in this chapter we have only looked at torsion free
abelian groups. Perhaps we need to widen our view to the class of all fully orderable groups
if we want to represent all c.b. Π0

1 classes. This problem of whether all orderable computable
groups suffice to represent c.b. Π0

1 classes is still open. We can, however, extend the negative
results from abelian groups to nilpotent groups. The goal for this section is to show that there
is a c.b. Π0

1 class C such that for any computable torsion free nilpotent group G we have

{ deg(f) | f ∈ C } 6= { deg(p) |P ∈ X(G) }.

Before proving results about the number and complexity of full orders on nilpotent groups,
we need a description of a general method for building these full orders. Recall that if N is a
normal subgroup of an O-group G, then a full order ≤N on N is called a G-order if for any
a, b ∈ N and g ∈ G

a ≤N b⇒ gag−1 ≤G gbg−1.

Let P (N) be the positive cone of a full G-order on N and ≤G/N be a full order on the quotient
group. These orders induce a full order on G defined by

g ≤G h ⇔ aN <G/N bN ∨ (aN = bN ∧ a−1b ∈ P (N)).

Under ≤G, N is convex and the induced orders on N and G/N are the same as the ones used
to build ≤G.

Let G be a torsion free nilpotent group. Recall that this means G has a finite upper central
series

〈1G〉 = ζ0(G) ≤ ζ1(G) ≤ · · · ≤ ζn(G) = G

where ζ1(G) is the center of G and for each 0 ≤ i < n, ζi+1(G)/ζi(G) is the center of G/ζi(G).
By Lemma 3.17, we know that each ζi+1(G)/ζi(G) is a torsion free abelian group and therefore
is fully orderable. We will use this structure to build orders on G under which the terms in
the upper central series are convex.

To order G, start by ordering the torsion free abelian subgroup ζ1(G). Because ζ1(G) is
the center of G, any order we put on it will be a G-order. Next, consider ζ2(G)/ζ1(G). This
quotient group is torsion free and abelian, so it is orderable. Because ≤ζ1(G) is a G-order, and
hence a ζ2(G)-order, we have an induced order, ≤ζ2(G), on ζ2(G).

The key fact is that the order ≤ζ2(G) is a G-order. Suppose a <ζ2(G) b. There are two cases
to consider. If aζ1(G) 6= bζ1(G), then it must be that aζ1(G) < bζ1(G). Because ζ2(G)/ζ1(G)
is the center of G/ζ1(G) we have that

gag−1ζ1(G) = aζ1(G) < bζ1(G) = gbg−1ζ1(G).

Therefore, by the definition of the induced order, gag−1 <ζ2(G) gbg
−1. The second case is when

aζ1(G) = bζ1(G). In this case, gag−1ζ1(G) = gbg−1ζ1(G) and the order on these elements is
determined by ≤ζ1(G), which we already know is a G-order.
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Now that we have ordered ζ2(G), we proceed up the upper central series ordering each term
from the order on the previous term and the order on the quotient. This method does not
construct all the possible orders on G, but it will give enough for our purposes. In particular,
it is possible to have orders under which the terms in the upper central series are not convex
and this procedure will never yield an order like that.

Proposition 8.10. Let G be a properly 2 step torsion free nilpotent group and C be the center
of G. The rank of G/C is greater than or equal to 2.

Proof. For a contradiction, suppose that the rank of G/C is 1. This statement is equivalent
to saying that G/C is isomorphic to a subgroup of Q. Since G is properly 2 step nilpotent,
and hence not abelian, there must be elements a, b ∈ G such that ab 6= ba. Thus, neither a
nor b is in C and so aC 6= 1GC and bC 6= 1GC.

Since G/C is a subgroup of Q, there must be integers p, q 6= 0 such that

apC = bqC.

This equality implies that there is a c ∈ C such that ap = bqc and we get

apb = bqcb = bqbc = bbqc = bap.

Thus ap commutes with b and so [ap, b] = 1G. By commutator identities we have that

[x2, y] = [x, y] ·
[
[x, y], x

]
· [x, y] = [x, y]2.

The second inequality follows because in a 2 step nilpotent group the commutators commute
with all elements of the group. By induction, we have that

[ap, b] = [a, b]p

for any p ≥ 0. In a 2 step nilpotent group [x−1, y] = [y, x], so [ap, b] = [b, a−p] for p < 0.
Applying another commutator identity for 2 step nilpotent groups, [x, yn] = [x, y]n, we have
that for p < 0

[ap, b] = [b, a−p] = [b, a]−p = [a, b]p.

So, for any p ∈ Z, [ap, b] = [a, b]p. Therefore, since [ap, b] = 1G, we know that [a, b]p = 1G.
But, G is torsion free, so [a, b] = 1G. This fact contradicts our original choice of a and b as
noncommuting elements.

Corollary 8.11. If G is a countable properly 2 step torsion free nilpotent group, then G has
2ω distinct full orders.

Proof. For any O-group there is always a full order under which the center is convex (see
Kokorin and Kopytov (1974)). In fact, our general method for constructing full orders on
nilpotent groups makes the center convex. Let ≤ be such an order on G and let C be the
center of G. Notice ≤ |C is a full G-order. Therefore, if we have any order on G/C, we can
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combine it lexicographically with ≤ |C to get a full order on G. Furthermore, if we take two
distinct orders on G/C, this process yields distinct orders on G.

By Proposition 8.10, G/C has rank ≥ 2 and so by Lemma 8.6, G/C has 2ω distinct orders.
Therefore, G has 2ω orders.

Lemma 8.12 (Robinson (1982)). If m ≥ 3 and G is a properly m step nilpotent group,
then G/ζm−2(G) is a properly 2 step nilpotent group.

Corollary 8.13. If m ≥ 2 and G is a torsion free properly m step nilpotent group, then G
has 2ω orders.

Proof. The case for m = 2 was handled in Corollary 8.11. If m ≥ 3, then by Lemma 8.12,
G/ζm−2(G) is a properly 2 step nilpotent and hence has 2ω orders.

Let ≤ be an order on G under which the terms in the upper central series are convex as
in our general method. As in the proof of Corollary 8.11, the restriction ≤ |ζm−2(G) is a full
G-order on ζm−2(G). Therefore, ≤ |ζm−2(G) can be combined lexicographically with any order
on G/ζm−2(G) to give an order of G. Thus, G has 2ω orders.

We need to know not only about the number of orders, but also about the degrees of
orders of computable torsion free nilpotent groups.

Lemma 8.14. A computable torsion free properly 2 step nilpotent group has orders of every
degree above 0′′.

Proof. Let G be a computable torsion free properly 2 step nilpotent group. The center C is
computable in 0′, so G/C is a torsion free abelian group computable in 0′ with rank > 1. By
the relativized versions of Lemmas 8.6 and 8.7, G/C has orders of every degree above 0′′.

Since C is a torsion free abelian group computable in 0′, it has an order computable in 0′′

(in fact, it has an order which is low over 0′). Fix such an order. Because C is the center of
G, any order on C is a G-order. Let a be any degree above 0′′. An order on G/C of degree a
can be lexicographically combined with the order on C to produce an order on G which has
degree a.

We want to use similar ideas to handle nilpotent groups with longer upper central series.
Notice that ζ1(G) is computable in 0′, so G/ζ1(G) is computable in 0′ and ζ1(G) has a G-order
computable in 0′′. The center of G/ζ1(G) is computable in 0′′, so ζ2(G) and G/ζ2(G) are both
computable in 0′′. Therefore, ζ2(G)/ζ1(G) has a G-order computable in 0(3) and there is an
induced order on ζ2(G) computable in 0(3). Continuing this process, it is clear that ζn(G) will
be computable in 0(n) and have a G-order computable in 0(n+1).

Lemma 8.15. Let n > 1 and let G be a computable torsion free properly n step nilpotent
group. For every degree a ≥T 0(n), G has an order of degree a.
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Proof. The case for n = 2 was done in Lemma 8.14, so assume that n > 2. By Lemma 8.12
and the comments above, we know that G/ζn−2(G) is a torsion free properly 2 step nilpotent
group computable in 0(n−2). By the relativized version of Lemma 8.14, G/ζn−2(G) has orders
of every degree above 0(n). By the comments made above, ζn−2(G) is computable in 0(n−2)

and has a G-order computable in 0(n−1).
Let a be any degree above 0(n). An order of degree a on G/ζn−2(G) together with a

G-order of degree 0(n−1) on ζn−2(G) induces an order of degree a on G.

Theorem 8.16. There is a c.b. Π0
1 class of separating sets C such that for any torsion free

nilpotent group G
{ deg(f) | f ∈ C } 6= { deg(p) |P ∈ X(G) }.

Proof. If G is abelian, the theorem follows from Theorem 8.9. Otherwise, G must be properly
n step nilpotent for some n > 1. The theorem now follows from Lemma 8.15 and the proof
of Theorem 8.9.

8.3 Computable Presentations

In this section, we turn our attention to the question of whether every orderable computable
group is classically isomorphic to a computably orderable computable group. Downey and
Kurtz (1986) asked this question because their example of a computable torsion free abelian
group with no computable order was isomorphic to Πω

i=1Zi, which with the right presentation
is computably orderable. The answer to this question for general groups is still unknown, but
we will answer it for abelian groups and for finitely generated nilpotent groups.

In Section 8.1, we made the simplifying assumption that our abelian groups were divisible
because it did not change the change the number or the complexity of the orders. Here, we
cannot make such an assumption because it changes the structure of the group. The next
lemma shows that we can reduce the problem of finding computable orders to the problem of
finding a computable basis.

Lemma 8.17. Let G be a computable torsion free abelian group. If B is a basis for G, then
G has a full order that is computable from B.

Proof. Let e1, e2, . . . , en, . . . be a (possible finite) list of the elements of B. We order the
elements of the basis by

e1 � e2 � · · · � en � · · · .
This order of the basis elements induces an order on all of G. To compare g and h ∈ G with
g 6= h, first write each element in the form

ng =
∑
i∈I

piei

mh =
∑
j∈J

qjej
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where I, J are finite sets and n,m, pi and qj ∈ Z \ {0}. Let K be the maximum of I ∪ J and
set pk = 0 if k 6∈ I and qk = 0 if k 6∈ J . The order on g and h is given by

g < h ⇔ pk

n
<Q

qk
m
.

Because the summation forms for each element are computable from B, this order is com-
putable from B.

Theorem 8.18. Every computable torsion free abelian group of finite rank has a computable
order.

Proof. This theorem follows immediately from Lemma 8.17 because every finite set is com-
putable.

We know that Theorem 8.18 is not true for groups of infinite rank because of the Downey
and Kurtz (1986) example and the fact that WKL0 is required to prove that every torsion
free abelian group is orderable. However, we can use the following result from the study of
computable abelian groups.

Theorem 8.19 (Dobritsa (1983)). Let G be a computable torsion free abelian group. There
is a computable group H which is classically isomorphic to G and has a computable basis.

This theorem was originally stated and proved using the terminology of the Russian
school’s approach to computable mathematics (i.e. using the language of constructivizations).
The proof below is written using the language of the Western approach.

Definition 8.20. Let G be a torsion free abelian group. The elements a0, . . . , ak are t-
dependent if there are integers m0, . . . ,mk such that each |mi| ≤ t, at least one mi 6= 0
and

m0a0 +m1a1 + · · ·+mkak = 0G.

If there are no such integers, then a0, . . . ak are called t-independent.

Proof. Notice that if G has finite rank, then G has a computable basis. Assume that G has
infinite rank. The main idea is to build H in stages while approximating a basis for G. During
the construction, we define the elements of H and a bijection

ψ : H → G.

Only at the end, when we have verified certain properties of the construction, do we define the
group structure on H and verify that ψ is a group isomorphism. Because the approximation
of ψ changes frequently, ψ will not be computable, but will be ∆0

2.
Before starting the construction, it is worth introducing the notation that is used. cti is

the guess at the ith basis element of G at stage t. There is a computable function f(t) which
defines the domain of H at stage t,

Ht = {h0, h1, . . . , hf(t)}.
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The first t+ 1 basis elements of H are denoted by

{b0, . . . , bt} ⊆ Ht.

If i > 0 and hi enters H at stage t, then hi is assigned a (t + 2)-tuple of integers from
[−t, t]. The statement 〈α, α0, . . . , αt〉 is assigned to hi is written as

αhi = α0b0 + α1b1 + · · ·+ αtbt.

The intuition is that these tuples uniquely determine each element of H in terms of the basis
elements. A slight technical point about our use of tuples in this proof is that we only consider
tuples up to trailing zeros. That is, the tuples 〈1, 2〉, 〈1, 2, 0〉 and 〈1, 2, 0, 0, 0, 0〉 are considered
equal. Also, any tuple which is assigned will have the property that the greatest common
divisor of α, α0, . . . , αt is 1.

The approximation to ψ at stage t is denoted ψt. The elements

{ct0, . . . , ctt}

are defined at stage t. We guarantee at stage t that

αhi = α0b0 + · · ·+ αtbt

if and only if
αψt(hi) = α0c

t
0 + · · ·+ αtc

t
t.

If at a later stage any of the cti change, we will change the approximation of ψ to guarantee
that this equality continues to hold. At stage t, all tuples of the form 〈1, α0, . . . , αt〉 with
each |αi| ≤ t will be assigned and possibly some tuples of the form 〈α, α0, . . . , αt〉 where the
greatest common divisor of the elements of the tuple is 1.
Construction
Stage 0: Define c00 to be the N-least nonidentity element of G. Set f(0) = 1, so H0 contains 0
and 1, which to avoid confusion are denoted h0 and h1. The map ψ0 : H0 → G sends h0 7→ 0G

and h1 7→ c00. b0 is set to h1 and the tuples 1 · h1 = 1 · b0 and 1 · h0 = 0 · b0 are assigned.
Stage t + 1 : At the end of stage t we have the following objects:

{b0, . . . , bt} ⊆ {h0, . . . , hf(t)} = Ht

ψt : Ht → G

{ct0, . . . , ctt} ⊆ G.

Each hi, 0 < i ≤ f(t), has been assigned to a tuple, the length of which depends on the stage
at which hi entered H. The following property is satisfied, assuming hi entered H at stage
s ≤ t:

αhi = α0b0 + · · ·+ αsbs ⇔ αψt(hi) = α0c
t
0 + · · ·+ αsc

t
s.
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The construction proceeds are follows. Let ctt+1 = 0G. Let I be the least number such
that ct0, . . . , c

t
I are t + 1-dependent. Find the N-least elements c′I+j, 0 ≤ j ≤ t + 1 − I, of G

such that
ct0, . . . , c

t
I−1, c

′
I , . . . , c

′
t+1

are (t+ 1)-independent. Define ct+1
k = ctk for k < I and ct+1

k = t!c′k + ctk for I ≤ k ≤ t+ 1.
Let N be the number of tuples 〈1, α0, . . . , αt+1〉 where |αi| ≤ t + 1 for each i ≤ t + 1 and

either αt+1 6= 0 or |αi| = t+ 1 for at least one i ≤ t. Notice that none of these tuples has been
assigned at a previous stage. Let M be the number of elements of G which are less than t+ 1
and satisfy an equation of the form

αg = α0c
t+1
0 + · · ·+ αt+1c

t+1
t+1

with α 6= 0, 1, the greatest common divisor of α, α0, . . . , αt+1 is 1 and the tuple
〈α, α0, . . . , αt+1〉 has not been used before. Recall, that we equate tuples up to trailing zeros,
so these tuples could have been used before.

Define f(t+ 1) = f(t) +N +M . The definition of ψt+1 splits into cases. For i = 0,

ψt+1(h0) = 0G.

For 1 ≤ i ≤ f(t), assume that hi was introduced at stage s ≤ t and assigned the tuple

αhi = α0b0 + · · ·+ αsbs

with |α|, |α0|, . . . , |αs| ≤ s. By assumption we know that

α0c
t
0 + · · ·+ αsc

t
s = αψt(hi). (8.1)

We split into two subcases. If s < I, then set ψt+1(hi) = ψt(hi). Because ct+1
0 = ct0, . . . , c

t+1
s =

cts, we know that ψt+1(hi) still satisfies Equation (8.1). If s ≥ I, then

α0c
t
0 + · · ·+ αsc

t
s 6= α0c

t+1
0 + · · ·+ αsc

t+1
s .

However, by the definition of the elements ct+1
k for k ≥ I we have

α0c
t
0 + · · ·+ αsc

t
s = α0c

t
0 + · · ·+ αsc

t
s + t!(c′I + · · ·+ c′s).

Because α0c
t
0 + · · · + αsc

t
s appears on one side of Equation 8.1, we know it is divisible by α

in G. Notice that if s = t + 1, then this statement is not quite true because αt+1c
t
t+1 does

not appear in Equation 8.1. However, we can leave this term out because ctt+1 = 0G. Because
|α| ≤ s ≤ t, t!(c′I + · · ·+ c′s) is also divisible by α in G. Let ψt+1(hi) be the N-least solution to

α0c
t+1
0 + · · ·+ αsc

t+1
s = αx

in G. Notice that we have extended Equation 8.1 to stage t+ 1.
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For f(t) < i ≤ f(t) + N , let 〈1, α0, . . . , αt+1〉 be the (i − f(t))th tuple satisfying the
conditions in the definition of N . Let

ψt+1(hi) = α0c
t+1
0 + · · ·+ αt+1c

t+1
t+1

and assign hi the tuple
1 · hi = α0b0 + · · ·+ αt+1bt+1.

bt+1 is defined to be whichever hi is assigned the tuple

1 · hi = 0b0 + · · ·+ 0bt + 1bt+1.

For f(t) + N < i ≤ f(t + 1), let g be the (i − f(t) − N)th element of G satisfying the
conditions in the definition of M . Suppose g satisfies the equation

αg = α0c
t+1
0 + · · ·+ αt+1c

t+1
t+1

with the same restrictions on the coefficients as in the definition of M . Set ψt+1(hi) = g and
assign hi the tuple

αhi = α0b0 + · · ·+ αt+1bt+1.

This case completes stage t + 1 of the construction. Notice that we have met the induction
requirements assumed at the beginning of state t.
End of Construction

The following lemmas verify the required properties of the construction.

Lemma 8.21. For each i, limt→∞ cti = ci exists and the set of elements ci is independent.

Proof. The lemma is proved by induction on i. Because c00 6= 0G, it never changes and so
c0 = c00.

Assume s is a stage such that c0 = cs0, . . . , ci−1 = csi−1. Let g be the N-least element of G
such that

{c0, . . . , ci−1, g}

is an independent set. Let t ≥ s be the least stage such that each g̃ ≤N g is (t+ 1)-dependent
on {c0, . . . , ci−1}. By definition, at stage t + 1 we set c′i = g and ct+1

i = cti + t!g. Notice that
{c0, . . . , ci−1, c

t
i + t!g} is independent, so ct+1

i never changes again. Therefore, ci = ct+1
i .

Lemma 8.22. For each i ∈ ω, limt→∞ ψt(hi) = ψ(hi) exists.

Proof. Fix i and we show that limt→∞ ψt(hi) exists. Suppose hi is assigned the tuple

αhi = α0b0 + · · ·+ αsbs.

Let t be a stage such that ct0 = c0, . . . , c
t
s = cs. For any stage t′ ≥ t, when defining ψt′+1(hi) we

will be in the case of 1 ≤ i ≤ f(t′) and s < I. Thus, ψt′+1(hi) = ψt′(hi) for every t′ ≥ t.
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Lemma 8.23. The domain of ψ is ω and the range of ψ is G.

Proof. The domain of ψ is all of ω because f(t) is a strictly increasing function. To show
that the range of ψ is G, let g ∈ G. Let t be a stage such that ct0 = c0, . . . , c

t
s = cs and

αg = α0c0 + · · ·+αscs, where the greatest common divisor of the coefficients in 1 and αs 6= 0.
Let t′ be the maximum of t, the code for g, and the absolute values of α and the αi’s. If the
tuple 〈α, α0, . . . , αs〉 has not been assigned by stage t′, it will be assigned at stage t′. In either
case, whichever element hi is assigned this tuple will satisfy

αψt′(hi) = α0c
t′

0 + · · ·+ αsc
t′

s = α0c0 + · · ·+ αscs = αg.

Notice that because the approximations to the basis elements of G have stabilized by stage
t′, we know that ψt′(hi) = ψ(hi). Thus, we have

αψ(hi) = αg.

Because G is torsion free, this equation implies that ψ(hi) = g.

We have now shown that ψ is a bijection and that {c0, c1, . . .} is a basis for G. It remains to
show how to define the group structure on H and to check that ψ is a group homomorphism.

To define +H , consider hi +H hj. By possibly adding some zeros to the end of the tuples
assigned to hi or hj, we can assume that we have

αψ(hi) = α0c0 + · · ·+ αtct

βψ(hj) = β0c0 + · · ·+ βtct.

Multiplying the top equation by β, the bottom equation by α and adding them together we
get

αβ
(
ψ(hi) + ψ(hj)

)
= (α0β + αβ0)c0 + · · ·+ (αtβ + αβt)ct.

Let n be the greatest common divisor of αβ and the αiβ + αβi terms. We define hi +H hj to
be the element hk that is assigned the tuple

〈 αβ
n
,
α0β + αβ0

n
, . . . ,

αtβ + αβt

n
〉.

Notice that because ψ is onto G, there must be some hk that is assigned this tuple. In fact,
hk is exactly the element such that ψ(hk) = ψ(hi) +G ψ(hj).

Lemma 8.24. H is a group under this definition of +H and ψ is an isomorphism.

Proof. It is clear that +H is defined to mimic +G. That is

hi +H hj = hk ⇔ ψ(hi) +G ψ(hj) = ψ(hk).

The fact that G is a group implies that H is a group and this equivalence shows that ψ is an
isomorphism.
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The set of elements {b0, b1, . . .} is a basis for H. This set is computably enumerable and
so is its complement. To test if g is not one of the bi, just look for an equation of the form

αx = α0b0 + · · ·+ αtbt

that is satisfied by g. Thus, H has a computable basis, which completes the proof of Theorem
8.19.

Theorem 8.25. Every computable torsion free abelian group is classically isomorphic to a
computable group with a computable order.

Proof. Let G be a computable torsion free abelian group. Theorem 8.18 has already handled
the case when G has finite rank. If G has infinite rank, then let H be as in Theorem 8.19.
By Lemma 8.17, H has a computable order.

As in Section 8.2, we would like to extend this result to the class of nilpotent groups.
Unfortunately, for reasons explained below, we are only able to extend it to finitely generated
nilpotent groups.

The class of finitely generated nilpotent groups has been extensively studied in computa-
tional algebra. These groups has many nice computational properties. For example, every
finitely generated nilpotent group is finitely presented, they have the max property, which
implies that every subgroup is finitely generated, and they are residually finite which implies
that the word problem is solvable. In addition, the conjugacy and isomorphism problems are
solvable.

Theorem 8.26 (Baumslag et al. (1991)). Let G be a computable finitely generated nilpo-
tent group. Each term in the upper central series of G is computable.

Theorem 8.27. If G be a computable torsion free finitely generated nilpotent group, then G
has a computable order.

Proof. The idea is to build up the computable order using the terms in the upper central
series as in Section 8.2. Notice that since each subgroup ζi(G) is computable, the factors
ζi+1(G)/ζi(G) are computable. Also, because every subgroup of G is finitely generated, the
groups ζi+1(G)/ζi(G) are finitely generated torsion free abelian groups. In particular, they
have finite rank and therefore, by Theorem 8.18, they are computably orderable.

All that remains is to put together the computable orders on the finite number of fact
groups. Because ζ1(G) is a subgroup of G, ζ1(G) is finitely generated and so computably or-
derable. Combining this order with a computable order on ζ2(G)/ζ1(G) induces a computable
order on ζ2(G). We continue ordering the terms of the upper central series until we reach
G.

The proof of Theorem 8.27 does not work for infinitely generated nilpotent groups because
the terms in the upper central series are not necessarily computable. In Theorem 3.28, we
saw that even for 2 step nilpotent groups, the center need not be computable.
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Appendix A

Miscellaneous Definitions and Proofs

In this appendix, we present some of the background definitions and technical proofs required
in Chapter 5. Section A.1 contains the definitions and basic facts about free groups and free
products. Section A.2 contains the proofs of the basic formulas for the class of triangular
matrices. Section A.3 contains the proofs of the formulas used in the embedding of the free
product A ∗B into the class of triangular matrices.

A.1 Free Groups and Free Products

Let A ⊆ N. For the purposes of defining the free group on the set of generators A, it is
convenient to think of the elements of A as distinct symbols in some alphabet. Let a1 stand
for the pair 〈a, 1〉 and a−1 stand for the pair 〈a,−1〉. In this section ε will always denote
either 1 or −1, and hence aε is either 〈a, 1〉 or 〈a,−1〉.

Definition A.1. (RCA0) If A ⊆ N, then the set of words over A, denoted by WordA, is
the set of finite sequences of pairs 〈a, ε〉 where a ∈ A and ε = ±1. In our notation,

WordA = FinÃ

where Ã = {aε | a ∈ A ∧ ε = ±1}. The empty sequence in WordA is denoted by 1A.

In keeping with standard mathematical notation, we write aε1
1 · · · a

εk
k for the sequence

σ ∈ WordA with σ(i) = aεi
i for 1 ≤ i ≤ k. We also write w1 · w2 for the concatenation of the

sequences w1, w2 in WordA.
A sequence x ∈ WordA is called reduced if there is no place in the sequence where a1 and

a−1 appear next to each other for any a ∈ A. This notion is defined formally below.

Definition A.2. (RCA0) The set of reduced words over A, denoted by RedA, is the subset
of WordA such that x ∈ RedA if and only if x ∈ WordA and

∀i < (lh(x)− 1)
(
π1(x(i)) 6= π1(x(i+ 1)) ∨ π2(x(i)) = π2(x(i+ 1))

)
where π1 and π2 are the standard projection functions on pairs.
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Both WordA and RedA have Σ0
0 definitions, so RCA0 proves they exist. We next want to

define an equivalence relation on WordA such that each equivalence class contains exactly one
element of RedA. This equivalence relation is used to put a group structure on RedA. Two
words are 1 step equivalent if either they are the same sequence or one results from the other
by deleting a pair a1, a−1 that appear next to each other.

Definition A.3. (RCA0) Two words x, y ∈ WordA are 1 step equivalent, x ∼1 y, if and
only if one of the following conditions holds:

1. x = y

2. lh(x) = lh(y) + 1 and

∃i < lh(x)
(
∀j < i

(
x(j) = y(j)

)
∧

∧ ∀j ≥ i
(
j < lh(y) → y(j) = x(j + 2)

)
∧

∧ π1(x(i+ 1)) = π1(x(i)) ∧ π2(x(i+ 1)) + π2(x(i)) = 0
)

3. Same as 2 with the roles of x and y switched.

The elements x(i) and x(i+ 1) are said to be cancelled in x or inserted in y.

The conditions in this definition are Σ0
0 so RCA0 proves the existence of the set of all pairs

〈x, y〉 with x ∼1 y.

Definition A.4. (RCA0) Two words x, y ∈ WordA are freely equivalent, x ∼ y, if there is
a finite sequence σ of elements of WordA such that

1. σ(0) = x

2. σ(lh(σ)− 1) = y

3. σ(i) ∼1 σ(i+ 1) for all i < lh(σ)− 1.

This defines an equivalence relation. Notice that the condition in this definition is Σ0
1, so

we have to work harder to prove the existence of the set of pairs 〈x, y〉 with x ∼ y in RCA0.
In order to form this set, we define a function ρ by recursion.

ρ : WordA → RedA

ρ(1A) = 1A

ρ(aε) = aε for a ∈ A, ε = ±1

If ρ(U) = aε1
1 · · · a

εk
k then

ρ(U · aε) =

{
aε1

1 · · · a
εk
k a

ε if a 6= ak or a = ak ∧ εk + ε 6= 0

aε1
i · · · a

εk−1

k−1 if a = ak ∧ εk + ε = 0
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Lemma A.5. (RCA0) The following properties hold of ρ for all words W , W1 and W2 in
WordA and all a ∈ A.

1. ρ(W ) ∈ RedA

2. ρ(W ) ∼ W

3. W ∈ RedA → ρ(W ) = W

4. ρ(W1 ·W2) = ρ(ρ(W1) ·W2)

5. ρ(W · aε · a−ε) = ρ(W )

6. ρ(W1 · aε · a−ε ·W2) = ρ(W1 ·W2)

Proof. The proofs are all by induction either on the length of W or on the length of W2. To
prove that ρ(W ) ∈ RedA, we prove ∀nϕ(n) by induction where ϕ(n) is

lh(W ) = n→ ρ(W ) ∈ RedA.

The only element of WordA with length 0 is 1A. Since ρ(1A) = 1A, we have that ϕ(0) holds.
If lh(W ) = 1, then W = aε for some a ∈ A. By the definition of ρ, ρ(aε) = aε and so ϕ(1)
holds. In the case when lh(W ) > 1, we write W as the concatenation W = U · aε. By the
induction hypothesis, ρ(U) ∈ RedA. Assume ρ(U) = aε1

1 · · · a
εk
k and split into two cases.

If ak 6= a or ak = a but εk+ε 6= 0, then by definition ρ(W ) = aε1
1 · · · a

εk
k a

ε and ρ(W ) ∈ RedA.
If ak = a and εk + ε = 0, then ρ(W ) = aε1

1 · · · a
εk−1

k−1 . Again, since ρ(U) ∈ RedA we have
ρ(W ) ∈ RedA. This proves property (1).

To prove ρ(W ) ∼ W , we use Σ0
1 induction on lh(W ). If lh(W ) = 0 or lh(W ) = 1,

then the argument is the same as for property 1. Assume lh(W ) > 1 and W = U · aε with
U ∼ ρ(U) = aε1

1 · · · a
εk
k . Let σ be the sequence which shows the free equivalence of U and

ρ(U). Split into the same two cases as in the proof of property 1. If ρ(W ) = aε1
1 · · · a

εk
k a

ε then
σ̃ gives the free equivalence of W and ρ(W ) where σ̃ is defined from σ by

σ̃(i) = σ(i)aε.

If ρ(W ) = aε1
1 · · · a

εk−1

k−1 then σ̃ gives the free equivalence of W and ρ(W ) where σ̃ is defined by

∀i < lh(σ)(σ̃(i) = σ(i) · aε)

σ̃(lh(σ)) = ρ(W )).

To verify that this proof is indeed Σ0
1 induction, notice that we proved ∀nϕ(n) where

ϕ(n) ≡ (W ∈ WordA ∧ lh(W ) = n) → ρ(W ) ∼ W.

ϕ(n) is Σ0
1.

The proofs of the remaining properties involve similar case analysis, except for the last
property. Property 6 is a direct consequence of Properties 3 and 5. For more details, see
Magnus et al. (1965)
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Lemma A.6. (RCA0) If x ∼ y then ρ(x) = ρ(y).

Proof. From the definition of 1 step equivalence and from Property 6 of Lemma A.5, it
follows that if x ∼1 y, then ρ(x) = ρ(y). Assume x ∼ y and let σ be the sequence that shows
x ∼ y. Since σ(i) ∼1 σ(i + 1) for all i < (lh(σ) − 1), we have ρ(σ(i)) = ρ(σ(i + 1)). Thus,
ρ(σ(0)) = ρ(σ(lh(σ)− 1)) and so ρ(x) = ρ(y).

Proposition A.7. (RCA0) For every x ∈ WordA there is a unique y ∈ RedA such that x ∼ y.

Proof. Since ρ(x) ∈ RedA and x ∼ ρ(x), we know that there is at least one y ∈ RedA such
that x ∼ y. It remains to show that if x ∼ y and y ∈ RedA then y = ρ(x). Because x ∼ y
implies that ρ(x) = ρ(y) and y ∈ RedA implies ρ(y) = y, we have ρ(x) = y as required.

Because free equivalence is an equivalence relation, it follows that if ρ(x) = ρ(y) then
x ∼ y. Together with Lemma A.6 this shows that x ∼ y if and only if ρ(x) = ρ(y). The set
of pairs 〈x, y〉 such that x ∼ y can be formed by Σ0

0 comprehension.

{〈x, y〉 | x ∼ y} = {〈x, y〉 | ρ(x) = ρ(y)}

Using this set, we can give the formal definition of the free group on the set of generators A.

Definition A.8. (RCA0) Let A ⊆ N. The set of elements of the free group on the set of
generators A is RedA. The empty sequence 1A is the identity element and multiplication is
defined by

x · y = ρ(x · y)

where ρ(x · y) is ρ applied to the concatenation of the strings x and y.

The definition of the free product of two groups A ∗ B is similar to this definition of
free groups. Instead of using sequences of generators and inverses as elements, we will use
sequences whose elements alternate between A and B. For example, if ai ∈ A and bi ∈ B
then strings such as

〈a1, b3, a2〉 and 〈b2, a1〉

are in A ∗ B. To form this group, we start with the set of finite strings over A ∪ B. Strings
are reduced by removing occurrences of 1A and 1B and by multiplying elements of the same
group which appear next to each other in the string. For example,

〈a1, 1A, b2, b3〉 7→ 〈a1, b2 ·B b3〉.

The definitions and lemmas for free products parallel those given for free groups.

Definition A.9. (RCA0) If A,B are groups then WordA∗B is the set of finite sequences of
elements of A ∪B.

WordA∗B = FinA∪B

1A∗B denotes the empty sequence.
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Definition A.10. (RCA0) The set of reduced words, RedA∗B, is the subset of WordA∗B
such that x ∈ RedA∗B if and only if x ∈ WordA∗B and one of the following conditions holds:

1. x = 1A∗B

2. For all i < lh(x), σ(i) is not 1A or 1B, and for all i < (lh(x) − 1), if σ(i) ∈ A then
σ(i+ 1) ∈ B and if σ(i) ∈ B then σ(i+ 1) ∈ A.

Definition A.11. (RCA0) Two words x, y ∈ WordA∗B are 1 step equivalent, x ∼1 y, if
and only if one of the following conditions holds:

1. x = y

2. lh(x) = lh(y) + 1 and the sequence y is the same as x except one occurrence of 1A or
1B is removed.

3. lh(x) = lh(y) + 1 and the sequence y is the same as x except there is an i < lh(y)
such that either x(i), x(i + 1) ∈ A and y(i) = x(i) ·A x(i + 1) or x(i), x(i + 1) ∈ B and
y(i) = x(i) ·B x(i+ 1).

4. Switch the roles of x and y in condition 2.

5. Switch the roles of x and y in condition 3.

Definition A.12. (RCA0) Two words x, y ∈ WordA∗B are freely equivalent, x ∼ y, if there
exists a finite sequence σ of elements of WordA∗B such that

1. σ(0) = x

2. σ(lh(σ)− 1) = y

3. ∀i < (lh(σ)− 1) (σ(i) ∼1 σ(i+ 1)).

As in the case of free groups, this is a Σ0
1 condition and so we have to use a function

ρ : WordA∗B → RedA∗B to help form the set of pairs 〈x, y〉 with x ∼ y. Unlike the case of free
groups, we will retain the sequence notation to make the definition clearer.

ρ(1A∗B) = 1A∗B

ρ(〈g〉) =

{
1A∗B if g = 1A ∨ g = 1B

〈g〉 otherwise

If ρ(U) = 〈h1, h2, . . . , hr〉 then

ρ(Ua〈g〉) =



〈h1, . . . , hr〉 if g = 1A ∨ g = 1B

〈h1, . . . , hr−1〉 if g = h−1
r

〈h1, . . . , hr, g〉 if (g ∈ A \ 1A ∧ hr ∈ B)
∨ (g ∈ B \ 1B ∧ hr ∈ A)

〈h1, . . . , hr−1, hr ·A g〉 if g ∈ A \ 1A ∧ hr ∈ A \ g−1

〈h1, . . . hr−1, hr ·B g〉 if g ∈ B \ 1B ∧ hr ∈ B \ g−1
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As in the free group case, we want to show that each word in WordA∗B is freely equivalent
to a unique reduced word. To prove this fact, we prove various properties of ρ.

Lemma A.13. (RCA0) The following properties of ρ hold for all W1,W2,W in WordA∗B.

1. ρ(W ) ∈ RedA∗B

2. ρ(W ) ∼ W

3. W ∈ RedA∗B → ρ(W ) = W

4. ρ(Wa
1 W2) = ρ(ρ(W1)

aW2)

5. ρ(Wa〈1A〉) = ρ(Wa〈1B〉) = ρ(W )

6. ρ(Wa
1 〈1A〉aW2) = ρ(Wa

1 〈1B〉aW2) = ρ(Wa
1 W2)

7. If g, h ∈ A then ρ(Wa〈g, h〉) = ρ(Wa〈g ·A h〉)

8. If g, h ∈ B then ρ(Wa〈g, h〉) = ρ(Wa〈g ·B h〉)

9. If g, h ∈ A then ρ(Wa
1 〈g, h〉aW2) = ρ(Wa

1 〈g ·A h〉aW2)

10. If g, h ∈ B then ρ(Wa
1 〈g, h〉aW2) = ρ(Wa

1 〈g ·B h〉aW2)

The proof of this lemma is a series of inductions as in Lemma A.5. For more details, see
Magnus et al. (1965). As in the free group case, we use this lemma to show that x ∼ y if
and only if ρ(x) = ρ(y). The proof of the following proposition is also the same as in the free
group case.

Proposition A.14. (RCA0) For every x ∈ WordA∗B there is a unique y ∈ RedA∗B such that
x ∼ y.

From this proposition, we obtain

{〈x, y〉 | x ∼ y} = {〈x, y〉 | ρ(x) = ρ(y)}.

Thus, RCA0 can form the set of pair 〈x, y〉 such that x ∼ y. Using this set we give the formal
definition of the free product A ∗B.

Definition A.15. (RCA0) The set of elements of the free product of the groups A and B,
denoted A∗B, is RedA∗B. The empty sequence 1A∗B is the identity element and multiplication
is given by

x · y = ρ(xay).

Unraveling the definitions, we can find a connection between free products of Z and free
groups.
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Proposition A.16. (RCA0) The free product Z ∗ Z is isomorphic to F2, the free group on
two generators.

Proof. Let a, b denote the generators of F2. A typical element of F2 has the form
〈a, a, b−1, a, b, b〉. For notational convenience, let a also denote 1 in the first copy of Z and b
denote 1 in the second copy of Z. A typical element of Z ∗Z has the form 〈2a,−b, a, 2b〉. The
isomorphism is built by expanding elements resembling na in sequences in Z ∗ Z to n-tuple
〈a, a, . . . , a〉. For example

〈2a,−b, a, 2b〉 7→ 〈a, a, b−1, a, b, b〉.

Writing this map formally, we obtain the isomorphism.

A.2 Proofs for TriQ[C]

In this section, we prove some of the technical results about TriK that were left out of Chapter
5. We are looking at the class of infinite upper triangular matrices with entries from an f.o. ring
K such that the elements along the main diagonal are positive and invertible.

Definition A.17. (RCA0) Let (K,≤) be a fully ordered ring with positive cone P . The
function f : N+ × N+ → K is in the class TriK if and only if it satisfies the following
conditions:

1. For all i > j, f(i, j) = 0K .

2. For all i, f(i, i) ∈ P and ∃x ∈ K(f(i, i) · x = 1K).

We use the notation f ∈ TriK to mean that f is a function satisfying the conditions of
this definition. The product of f and g is defined to be the function

f · g : N+ × N+ → K

f · g(i, j) =

j∑
n=i

f(i, n)g(n, j).

The identity function I ∈ TriK is given by I(i, i) = 1K and I(i, j) = 0K for i 6= j.
Given f, g ∈ TriK , we say that f < g if and only if for some pair 〈i, j〉 ∈ N+ × N+ with

i ≤ j the following two conditions hold:

1. f(i, j) <K g(i, j)

2. f(k, k + s) = g(k, k + s) for all k, s such that i+ s < j or i+ s = j and k < i.
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A pair 〈i, j〉 for which these conditions hold is called a witness for f < g. Writing this
condition in terms of a positive cone, we say that f ∈ P (TriK) if and only if f = I or I < f
in the order given above. If f 6= I this is equivalent to either

∃i [f(i, i) > 1 ∧ ∀j < i(f(j, j) = 1)]

or

∀i (f(i, i) = 1) ∧ ∃i, j [ i < j ∧ f(i, j) > 0 ∧
∧ ∀k ∀s > 0 ((i+ s < j ∨ (i+ s = j ∧ k < i)) → f(k, k + s) = 0) ].

We want to verify that the elements of TriK satisfy the axioms of a f.o. group. In Chapter
5, we proved in RCA0 that the multiplication is associative. Here, we verify that there are
inverse elements and that P (TriK) is normal, pure and closed under multiplication. As pointed
out in Chapter 5, RCA0 is not strong enough to show that P (TriK) is full.

Lemma A.18. (RCA0) If f ∈ TriK, then f has an inverse g ∈ TriK, in the sense that
f · g = g · f = I, given by:

g(i, j) =



0 j < i

f(i, j)−1 i = j

− f(i,j)
f(i,i)f(j,j)

+
∑

i<k1<j
f(i,k1)f(k1,j)

f(i,i)f(k1,k1),f(j,j)
−

−
∑

i<k1<k2<j
f(i,k1)f(k1,k2)f(k2,j)

f(i,i)f(k1,k1)f(k2,k2)f(j,j)
+ · · · i < j

· · ·+ (−1)j−i f(i,i+1)···f(j−1,j)
f(i,i)f(i+1,i+1)···f(j,j)

Since f(n, n) is invertible, we write it in the denominator of a fraction as shorthand for
f(n, n)−1.

Proof. We verify that f · g(i, j) = I(i, j) by splitting into the cases of i = j, i < j and i > j.
If i = j then

f · g(i, j) = f(i, i)f(i, i)−1 = 1.

If i > j then we have already noted that for f, g ∈ TriK

f · g(i, j) = 0.

The case for i < j is more complicated. For each fixed j, this case is proved by induction on
j − i. The base case is when j − i = 0 and is given by our calculation above. If j − i = l,
then the induction hypothesis is that the formula is correct for g(j − k, j) for all 0 ≤ k < l.
We need to show that f · g(j − l, j) = 0. To prove this, we start by assuming that f · g = I
and work backwards to derive g(j − l, j). If f · g(j − l, j) = 0 then we must have

f(j − l, j − l)g(j − l, j) + f(j − l, j − l + 1)g(j − l + 1, j) + · · ·
· · ·+ f(j − l, j)g(j, j) = 0.
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Solving this equation for g(j − l, j) we have

g(j − l, j) =
l−1∑
n=0

− f(j − l, j − n)

f(j − l, j − l)
g(j − n, j). (A.1)

To finish the proof, we need to show that this sum is equal to

− f(j − l, j)

f(j − l, j − l)f(j, j)
+

l−1∑
k1=1

f(j − l, j − k1)f(j − k1, j)

f(j − l, j − l)f(j − k1, j − k1)f(j, j)
−

−
l−2∑

k1=1

l−1∑
k2=k1+1

f(j − l, j − k2)f(j − k2, j − k1)f(j − k1, j)

f(j − l, j − l)f(j − k1, j − k1)f(j − k2, j − k2)f(j, j)
+ · · ·

· · ·+ (−1)l f(j − l, j − l + 1)f(j − l + 1, j − l + 2) · · · f(j − 1, j)

f(j − l, j − l)f(j − l + 1, j − l + 1) · · · f(j, j)
. (A.2)

To prove this equality, we will split equation (A.2) into a sum with summands of the form

− f(j − l, j − n)

f(j − l, j − l)
·X

and show that X = g(j − n, j). For the case n = 0 we see that

− f(j − l, j)

f(j − l, j − l)

appears only in the first summand of equation (A.2). That is, it only appears in

− f(j − l, j)

f(j − l, j − l)f(j, j)
.

In this case X = f(j, j)−1 = g(j, j) as required.
For the case of n = 1

− f(j − l, j − 1)

f(j − l, j − l)

appears only in the second sum of equation (A.2) and only when k1 = 1. Thus in this case,
we have

X = − f(j − 1, j)

f(j − 1, j − 1)f(j, j)
.

By the bounded induction hypothesis, this is exactly g(j − 1, j).
In general, for 1 ≤ n < l, we have

− f(j − l, j − n)

f(j − l, j − l)
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does not appear in the first summand, but does appear in each of the other summands of
equation (A.2) up to the (n+1)st one. If we examine how it appears in each of these summands,
we see that in the 2nd term, we get

− f(j − n, j)

f(j − n, j − n)f(j, j)

which is exactly the first term in g(j − n, j). From the 3rd term, we have something every
time k2 = n and hence we get

n−1∑
k1=1

f(j − n, j − k1)f(j − k1, j)

f(j − n, j − n)f(j − k1, j − k1)f(j, j)
.

This sum is exactly the second term in g(j − n, j). This process continues until we reach the
(n + 1)st term. From this term, we only get something when k1 = 1, k2 = 2, . . . kn = n. This
give us

(−1)n f(j − n, j − n+ 1) · · · f(j − 1, j)

f(j − n, j − n) · · · f(j, j)
.

This product is exactly the last term of g(j−n, j) and shows X = g(j−n, j) as required. We
have now shown that f · g = I. From here, we have that g · f · g = g. By a simpler induction,
it can be shown that if h · g = g then h = I. Hence g · f = I as well.

Lemma A.19. (RCA0)

1. If f, g ∈ P (TriK) then f · g ∈ P (TriK)

2. If f ∈ P (TriK) and f 6= I then f−1 6∈ P (TriK)

3. If f ∈ P (TriK) and g ∈ TriK then gfg−1 ∈ P (TriK)

Proof. To prove the first statement of the lemma, assume f, g ∈ P (TriK). For notational
purposes, let h = f · g. We need to show h ∈ P (TriK). Without loss of generality, assume
that f, g, h 6= I. There are two cases to consider.

Case. ∃i(f(i, i) 6= 1 ∨ g(i, i) 6= 1)

Let i be the least such number. Then, h(i, i) = f(i, i)g(i, i) > 1 and for all j < i,
h(j, j) = 1. Thus h ∈ P (TriK).

Case. ∀i(f(i, i) = 1 ∧ g(i, i) = 1)

Let the pair 〈i, j〉 be a witness for f > I. Without loss of generality, assume that g(i, j) ≥ 0
and that g(k, k + s) = 0 for all k and s > 0 such that i + s < j or i + s = j and k < i.
That is, assume that the witness to g > I comes later in the order on the diagonals than the
witness for f . We need to show that h(i, j) > 0, that h(k, k + s) = 0 for k, s as above and
that h(n, n) = 1 for all n.
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Since f(n, n) = g(n, n) = 1, it is clear that h(n, n) = 1. To show that h(i, j) > 0, we
examine

h(i, j) =

j∑
n=i

f(i, n)g(n, j).

By the assumptions made above on f and g, we have that f(i, i) = g(j, j) = 1 and f(i, i+ 1)
though f(i, j − 1) are all 0. Thus, this sum reduces to g(i, j) + f(i, j). Since g(i, j) ≥ 0 and
f(i, j) > 0, we have that h(i, j) > 0 are required.

Suppose s > 0, i+ s < j or i+ s = j and k < i. We have the following equalities:

h(k, k + s) =
k+s∑
n=k

f(k, n)g(n, k + s)

=
s∑

n=0

f(k, k + n)g(k + n, k + s)

= f(k, k)g(k, k + s) + f(k, k + s)g(k + s, k + s)+

+
s−1∑
n=1

f(k, k + n)g(k + n, k + s).

The first term in the last equation is 0 because g(k, k+ s) = 0. The second term is 0 because
f(k, k+s) = 0. For the third term, since i+s ≤ j we have that i+n < j for all n in the sum.
Thus f(k, k + n) = 0 and the third term is 0. This shows that h(k, k + s) = 0 and finishes
the proof of the first statement of the lemma.

To prove the second assertion of the lemma, assume that f 6= I, f ∈ P (TriK) and g = f−1.
We need to show that g 6∈ P (TriK). There are two cases to consider.

Case. ∃i(f(i, i) 6= 1)

Let i be the least such number. Since f ∈ P (TriK) we know f(i, i) > 1. By the formula
for inverses, g(i, i) = f(i, i)−1 < 1. Hence, g 6∈ P (TriK).

Case. ∀i(f(i, i) = 1)

It follows from the formula for inverses that g(i, i) = 1 for all i as well. Let the pair 〈i, j〉
be a witness for f > I. Using the formula for inverses and the fact that f(i, i) = 1 for all i,
we have

g(i, j) = −f(i, j) +
∑

i<k1<j

f(i, k1)f(k1, j) − · · ·

· · · (−1)j−i
(
f(i, i+ 1)f(i+ 1, i+ 2) · · · f(j − 1, j)

)
.

For any subscripted k appearing in this sum we have i < k < j and we can set s = k − i. It
follows that i+ s = k < j and so by the assumptions on f

f(i, k) = f(i, i+ s) = 0.
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All terms in g(i, j) vanish except for the first one. This computation shows that g(i, j) =
−f(i, j) < 0. It remains to show that g(k, k + s) = 0 for k and s such that s > 0 and either
i + s < j or i + s = j and k < i. Using the formula for inverses again and the fact that
f(i, i) = 1 we have

g(k, k + s) = −f(k, k + s) +
∑

0<n1<s

f(k, k + n1)f(k + n1, k + s) − · · ·

· · ·+ (−1)j−i(f(k, k + 1) · · · f(k + s− 1, k + s)).

Again, by the restrictions on f , this sum is 0. Hence, the pair 〈i, j〉 is the witness for
g 6∈ P (TriK).

To verify the third statement of the lemma, let f ∈ P (TriK) and g ∈ TriK . For notational
simplicity, let h = gfg−1. We need to show that h ∈ P (TriK). Again, there are two cases to
consider.

Case. ∃i(f(i, i) > 1)

In this case we have:

h(i, i) = g(i, i)f(i, i)g(i, i)−1 = f(i, i).

Thus, h(i, i) > 1 and for all j < i, h(j, j) = 1 as required.

Case. ∀i(f(i, i) = 1)

Let 〈i, j〉 be the witness for f ∈ P (TriK). It is clear that h(i, i) = 1 for all i. We need to
show that the pair 〈i, j〉 is a witness for h ∈ P (TriK). First, we show that h(i, j) > 0. We
have

h(i, j) =

j∑
n=i

(g · f)(i, n)g−1(n, j)

(g · f)(i, n) =
n∑

m=i

g(i,m)f(m,n).

Consider f(m,n) as it appears in (g · f)(i, n) for n < j. When i ≤ m < n < j, we have by
the assumptions on f and 〈i, j〉 that f(m,n) = 0. Also, f(n, n) = 1. Hence, we have

n < j ⇒ (g · f)(i, n) = g(i, n)f(n, n) = g(i, n)

n = j ⇒ (g · f)(i, n) = g(i, i)f(i, j) + g(i, j).
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Putting this back into the formula for h(i, j) we have:

h(i, j) =

j∑
n=i

(g · f)(i, n)g−1(n, j)

=

j−1∑
n=i

(g · f)(i, n)g−1(n, j) + (g · f)(i, j)g−1(j, j)

=

j−1∑
n=i

g(i, n)g−1(n, j) +
(
g(i, i)f(i, j) + g(i, j)

)
g−1(j, j)

=

j−1∑
n=i

g(i, n)g−1(n, j) + g(i, i)f(i, j)g−1(j, j) + g(i, j)g−1(j, j).

Using the facts that I = g · g−1 and I(i, j) = 0 we have

I(i, j) =

j∑
n=i

g(i, n)g−1(n, j)

0 =

j−1∑
n=i

g(i, n)g−1(n, j) + g(i, j)g−1(j, j)

−
j−1∑
n=i

g(i, n)g−1(n, j) = g(i, j)g−1(j, j).

Plugging this into the formula above, we obtain

h(i, j) =

j−1∑
n=i

g(i, n)g−1(n, j) + g(i, i)f(i, j)g−1(j, j)−
j−1∑
n=i

g(i, n)g−1(n, j)

= g(i, i)f(i, j)g−1(j, j).

Since each of g(i, i), f(i, j), and g−1(j, j) are strictly positive, we have that h(i, j) > 0. It
remains to show that h(k, k + s) for the appropriate k and s.

h(k, k + s) =
s∑

n=0

(g · f)(k, k + n)g−1(k + n, k + s)

(g · f)(k, k + n) =
n∑

m=0

g(k, k +m)f(k +m, k + n)

Recall that the conditions on k and s are that s > 0 and either s + i < j or s + i = j and
k < i. To examine the bottom equation, let t = n −m. From the ranges of the indices on
the sums, it follows that t ≤ s and t = s only if n = s and m = 0. We can use t to write
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f(k +m, k + n) as f(k +m, k +m+ t). Since 〈i, j〉 is the witness for f ∈ P (TriK), we know
that if t > 0, then f(k + m, k + m + t) = 0 if t + i < j or t + i = j and k + m < i. We now
look at lots of cases. We first split into the cases when t > 0 and t = 0 and then subdivide
further from there.

If t > 0 and s+ i < j then, since t ≤ s, we have that t+ i < j and so f(k+m, k+m+ t) =
f(k + m, k + n) = 0. Still assuming t > 0, suppose that s + i = j and m + t = n < s. It
follows from n 6= s that t < s. Hence, t+ i < j and f(k +m, k +m+ t) = 0. This still leaves
the case when s+ i = j and n = s. We will consider this case last.

Next assume that t = 0. This implies that m = n and hence f(k + m, k + n) = f(k +
n, k + n) = 1. Our calculations so far show that if n < s, then all the terms in the sum for
(g ·f)(k, k+n) drop out except for the g(k, k+n)f(k+n, k+n) term which is just g(k, k+n).

We return to the case when s+ i = j and n = s. The sum looks like

(g · f)(k, k + s) =
s∑

m=0

g(k, k +m)f(k +m, k + s).

If 0 < m < s then f(k+m, k+s) = 0 since i+s = j and so i+s−m < j. Also, f(k, k+s) = 0
and f(k + s, k + s) = 1. Thus

(g · f)(k, k + s) = g(k, k)f(k, k + s) + g(k, k + s)f(k + s, k + s)

= g(k, k + s).

Altogether, we now have that for 0 ≤ n ≤ s, g · f(k, k + n) = g(k, k + n). Putting this back
into the formula for h(k, k + s) we obtain

h(k, k + s) =
s∑

n=0

(g · f)(k, k + n)g−1(k + n, k + s)

=
s∑

n=0

g(k, k + n)g−1(k + n, k + s).

As above, we apply the facts that I = g · g−1 and I(k, k + s) = 0 for s > 0 to get

0 =
s∑

n=0

g(k, k + n)g−1(k + n, k + s).

Thus, h(k, k + s) = 0 as required.

A.3 Proofs for Free Product Embedding

In this section, we prove the properties of the embedding of A ∗B into TriQ[C]. Recall that A
and B are f.o. groups and C is the restricted direct product

C = A×B ×
∞∏

i,j=1

〈xij〉 ×
∞∏

i,j=1

〈yij〉 ×
∞∏
i=1

〈ui〉 ×
∞∏
i=1

〈vi〉
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Q[C] is the group ring of C over Q. The elements are the finite formal sums
∑
αici with

αi ∈ Q \ {0}, ci ∈ C and all the ci distinct. Addition is defined by∑
i∈I

αici +
∑
j∈J

βjcj =∑
i∈I\J

αici +
∑

j∈J\I

βjcj +
∑

i∈I∩J

(αi + βi)ci

with the stipulation that any terms in the third sum with αi + βi = 0 are removed. Multipli-
cation is defined by (∑

i∈I

αici

)(∑
j∈J

βjcj

)
=
∑
i∈I

∑
j∈J

(αiβj)cicj

where the terms with the same value from C in this finite sum are collected and any term
with coefficient 0 is dropped. The additive identity here is the empty sum I = ∅, and the
multiplicative identity is the sum with one element 1Q1C . The sum

∑
i∈I αici is in P (Q[C])

if and only if I = ∅ or αj >Q 0 where j is such that cj is the ≤C-least element among the ci
with i ∈ I.

See Chapter 5 for the definitions of the elements X, Y, U, V ∈ TriQ[C] and the maps

α, α′, α′′ : A→ TriQ[C]

β, β′, β′′ : B → TriQ[C]

γ : A ∗B → TriQ[C].

In Chapter 5, we proved that γ satisfies the properties of a group homomorphism. The
proof that γ is one-to-one required the explicit formulas for α′(a)(i, j) and β′(b)(i, j) which
are proved below.

Lemma A.20. (RCA0)

α′(a)(i, i) =

{
1 i is odd
a i is even

Proof. This comes directly from the formulas for f and g.

Lemma A.21. (RCA0) If i < j and i, j are both even, then

α′(a)(i, j) = (1− a)

j−1∑
n=i+1
n odd

(
−xinxnj +

∑
i<k1<n

(xik1xk1nxnj) −

−
∑

i<k1<k2<n

(xik1xk1k2xk2nxnj) + · · ·+ (−1)n−ixi(i+1) · · ·x(n−1)nxnj

)

124



Proof. The proof consists of grinding through the calculations one step at a time, and breaking
the sum up into pieces.

α′(a)(i, j) =

j∑
n=i

g(i, n)f(n, j)

= g(i, i)f(i, j)︸ ︷︷ ︸
(I)

+ g(i, j)f(j, j)︸ ︷︷ ︸
(II)

+

j−1∑
n=i+1

g(i, n)f(n, j)︸ ︷︷ ︸
(III)

Since i is even, (I) is axij. Since j is even, f(j, j) = a, and so (II) equals

a

(
−xij +

∑
i<k1<j

(xik1xk1j) − · · ·+ (−1)j−i(xi(i+1) · · ·x(j−1)j)

)
(III) breaks into two cases: when n is even and when n is odd.

j−1∑
n=i+1
n odd

(
g(i, n) · xnj

)
︸ ︷︷ ︸

(IV )

+

j−1∑
n=i+1
n even

(
g(i, n) · axnj

)
︸ ︷︷ ︸

(V )

=

j−1∑
n=i+1
n odd

(
−xinxnj +

∑
i<k1<n

(xik1xk1nxnj) − · · ·+ (−1)n−i(xi(i+1) · · ·xnj)

)
+

a ·
j−1∑

n=i+1
n even

(
−xinxnj +

∑
i<k1<n

(xik1xk1nxnj)− · · ·+ (−1)n−i(xi(i+1) · · ·xnj)

)

There are a couple of important observations. First, (I) cancels with the first term in (II).
Second, all of the terms in (V) appear in and cancel with terms in (II). Third, since j is
even, it follows that j − 1 is odd and so the last term in (II) does not cancel. Performing the
cancelations, we are left with

a ·

( ∑
i<k1<j
k1 odd

(xik1xk1j) −
∑

i<k1<k2<j
k2 odd

(xik1xk1k2xk2j) +

+ · · ·+ (−1)j−i(xi(i+1) · · ·x(j−1)j)

)
+

+

j−1∑
n=i+1
n odd

(
−xinxnj +

∑
i<k1<n

(xik1xk1nxnj)− · · ·+ (−1)n−i(xi(i+1) · · ·xnj)

)
.
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This equation yields the formula in the statement of the lemma once the following general
rewriting principles are applied.

∑
i<k1<j
k1 odd

xik1xk1j ⇒ −
j−1∑

n=i+1
n odd

−xinxnj

−
∑

i<k1<k2<j
k2 odd

xik1xk1k2xk2j ⇒ −
j−1∑

n=i+1
n odd

( ∑
i<k1<n

xik1xk1nxnj

)

These principles continue for longer linear sequences of subscripted k’s. For example, a similar
rewriting rule can be applied to the sum over i < k1 < k2 < k3 < j with k3 odd.

Lemma A.22. (RCA0) If i < j, i is even, and j is odd then

α′(a)(i, j) = (1− a)(−xij) + (1− a)

j−1∑
n=i+1
n even

(
xinxnj −

∑
i<k1<n

(xik1xk1nxnj) +

+
∑

i<k1<k2<n

xik1xk1k2xknnxnj − · · ·+ (−1)n−ixii+1 · · ·xn−1nxnj

)
.

Proof. This proof proceeds as the last one. I will outline it and point out what needs to be
changed from the last proof. As before we have

α′(a)(i, j) =

j∑
n=i

g(i, n)f(n, j)

= g(i, i)f(i, j)︸ ︷︷ ︸
(I)

+ g(i, j)f(j, j)︸ ︷︷ ︸
(II)

+

j−1∑
n=i+1

g(i, n)f(n, j)︸ ︷︷ ︸
(III)

.

Since i is still even, (I) remains axij. However, since j is odd, f(j, j) = 1 and so (II) is

−xij +
∑

i<k1<j

(xik1xk1j) − · · ·+ (−1)j−i(xi(i+1) · · ·x(j−1)j).

(III) still breaks into two pieces.

j−1∑
n=i+1
n odd

(g(i, n) · xnj)

︸ ︷︷ ︸
(IV )

+

j−1∑
n=i+1
n even

(g(i, n) · axnj)

︸ ︷︷ ︸
(V )
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This time, (I) does not cancel with the first term of (II), and instead of the terms of (V)
appearing in (II), the terms in (IV) appear there. Since j is odd, it follows that j− 1 is even,
and so the last term in (II) does not cancel. The lemma follows after cancelling and rewriting
as above.

Using similar methods, we can prove the next two lemmas as well.

Lemma A.23. (RCA0) If i < j and both i, j are odd then

α′(a)(i, j) = (1− a)

j−1∑
n=i+1
n even

(
xinxnj −

∑
i<k1<n

(xik1xk1nxnj) +

+
∑

i<k1<k2<n

(xik1xk1k2xk2nxnj) + · · ·+ (−1)n−ixi(i+1) · · ·x(n−1)nxnj

)
.

Lemma A.24. (RCA0) If i < j, i is odd, and j is even then

α′(a)(i, j) = (1− a)(xij) + (1− a)

j−1∑
n=i+1
n odd

(
−xinxnj +

∑
i<k1<n

(xik1xk1nxnj) −

−
∑

i<k1<k2<n

xik1xk1k2xknnxnj + · · ·+ (−1)n−ixi(i+1) · · ·x(n−1)nxnj

)
.
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