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RT 2
2 and CAC

• Kω is the (countably) infinite graph in which every pair of nodes is
connected.

• Kω is the infinite graph in which no pair of nodes is connected.

Theorem (Graph Version of Ramsey’s Theorem for Pairs (RT 2
2 ))

Every infinite graph contains a copy of Kω or Kω.

Theorem (Chain–Antichain (CAC))

Every infinite poset has either an infinite chain or an infinite antichain.

In this talk, all chains and antichains are infinite.
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Proving CAC from RT 2
2

For a poset P, define its comparability graph GP by

• domain of GP = domain of P

• a and b are connected in GP iff a and b are comparable in P

Then,

• copies of Kω in GP are chains in P (and vice versa)

• copies of Kω in GP are antichains in P (and vice versa)

So, a solution to RT 2
2 in GP is a solution to CAC in P.
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How hard is it to solve CAC for a computable poset?

By transferring his results on RT 2
2 , Jockusch proved

• In the arithmetic hierarchy: Every computable poset has a ∆0
2 chain,

or a ∆0
2 antichain, or both a Π0

2 chain and a Π0
2 antichain.

• In low hierarchy: Every computable poset has a low2 chain or
antichain.

Herrmann proved that you cannot improve these bounds.

• There is a computable poset with no Σ0
2 chains or antichains.

• There is a computable poset with no low chains or antichains.
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A clever idea of Cholak, Jockusch and Slaman

Split RT 2
2 into a stable version SRT 2

2 and a cohesive version CRT 2
2 .

Definition

G is stable if for every x ∈ G , either x is connected to almost every other
node or x is not connected to almost every node.

• SRT 2
2 : Every infinite stable graph contains a copy of Kω or Kω.

• CRT 2
2 : Every infinite graph has an infinite stable subgraph.

• RT 2
2 ⇔ SRT 2

2 + CRT 2
2

• CRT 2
2 is strictly weaker than RT 2

2

• Open question: Is SRT 2
2 strictly weaker than RT 2

2 ?
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A clever idea of Hirschfeldt and Shore

Why not do the same thing for CAC?

To do this, they defined a notion of a stable poset (given later).

• SCAC : Every infinite stable poset has a chain or antichain.

• CCAC : Every infinite poset contains an infinite stable poset.

• CAC ⇔ SCAC + CCAC .

• Both SCAC and CCAC are strictly weaker than CAC .

• Analyzing SCAC and CCAC , they proved that CAC is strictly weaker
than RT 2

2 .
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Stable posets

Definition

Fix an infinite poset P. An element a ∈ P is

• small if a <P b for almost all b ∈ P

• large if b <P a for almost all b ∈ P

• isolated if a is incomparable with almost all b ∈ P

SP = the set of small elements in P

LP = the set of large elements in P

IP = the set of isolated elements in P

Definition (Hirschfeldt and Shore)

A poset P is stable if either P = SP ∪ IP or P = LP ∪ IP .
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Our work

Why restrict to P = SP ∪ IP or P = LP ∪ IP in definition of stability?

Definition

An infinite poset is weakly stable if P = SP ∪ LP ∪ IP .

Note that
stable ⇒ weakly stable

but not conversely. For example, let P be the linear order ω + ω∗ viewed
as a poset.

• SP = the elements in the ω part.

• LP = the elements in the ω∗ part.

• IP = ∅.
Therefore, P is weakly stable but not stable.
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Definition (Comparability graph GP of poset P)

GP = P with an edge between a and b if a and b are comparable.

P is a weakly stable poset ⇒ GP is a stable graph

P is a weakly stable poset 6⇐ GP is a stable graph

For the linear order Z (viewed as a partial order), we have

• GZ = Kω (and hence is a stable graph), but

• SZ = LZ = IZ = ∅ (and hence Z is not a weakly stable poset).

Notice that every copy L of Z has an infinite chain which is ∆0
1(L).
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Theorem (JKLLS)

If an infinite poset has a copy P such that no chain is ∆0
1(P), then

P is weakly stable ⇔ GP is stable

Assume GP is stable but P is not weakly stable. Fix a 6∈ SP ∪ LP ∪ IP .

• a 6∈ IP implies a is comparable with infinitely many (hence almost all)
p ∈ P.

• a 6∈ SP ∪ LP implies there are infinitely many p > a and infinitely
many p < a.

• If b ≤ a, then b < p for infinitely many p and hence b is comparable
with almost all p ∈ P. (Same for b ≥ a.)

• Let X ⊆ P consisting of elements comparable to a. X is ∆0
1(P).

• Every element of X is comparable with almost every p ∈ P.

• There is a chain C ∈ ∆0
1(X ) and hence C ∈ ∆0

1(P).
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Reverse mathematics

These two notions of stability give rise to two different stable versions of
CAC .

• SCAC : Every infinite stable poset has a chain or antichain.

• WSCAC : Every infinite weakly stable poset has a chain or antichain.

Theorem (JKLLS)

Over RCA0, SCAC and WSCAC are equivalent.
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Arithmetic hierarchy results

For a computable (weakly) stable P,

• each of SP , LP and IP are ∆0
2

• if P has chains, then P has ∆0
2 chains

• if P has antichains, then P has ∆0
2 antichains

For stable posets, we can do better than ∆0
2.

Theorem (JKLLS)

Every computable stable poset has a computable chain or a Π0
1 antichain.

However, the dual of this theorem fails.

Theorem (JKLLS)

There is a computable stable poset which has no Π0
1 chain or computable

antichain.
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In the case of weakly stable posets, one cannot improve on ∆0
2.

Theorem (JKLLS)

There is a computable weakly stable poset which has no Π0
1 chains or Π0

1

antichains.
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Lowness hierarchy

Theorem (Hirschfeldt and Shore)

Every computable stable poset has a low chain or a computable antichain.

The dual of this theorem does hold

Theorem (JKLLS)

Every computable stable poset has a computable chain or a low antichain.

and it can be generalized to weakly stable posets.

Theorem (JKLLS)

Every computable weakly stable poset has a low chain or a computable
antichain.

The dual of this theorem is open: Does a computable weakly stable poset
have a computable chain or a low antichain?
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