Stability and posets Carl Jockusch, Bart Kastermans, Steffen Lempp, Manny Lerman and Reed Solomon April 9, 2011 # RT_2^2 and CAC - K_{ω} is the (countably) infinite graph in which every pair of nodes is connected. - \overline{K}_{ω} is the infinite graph in which no pair of nodes is connected. Theorem (Graph Version of Ramsey's Theorem for Pairs (RT_2^2)) Every infinite graph contains a copy of K_{ω} or \overline{K}_{ω} . ### Theorem (Chain-Antichain (CAC)) Every infinite poset has either an infinite chain or an infinite antichain. In this talk, all chains and antichains are infinite. # Proving CAC from RT_2^2 For a poset P, define its comparability graph G_P by - domain of $G_P = \text{domain of } P$ - a and b are connected in G_P iff a and b are comparable in P #### Then, - copies of K_{ω} in G_P are chains in P (and vice versa) - copies of \overline{K}_{ω} in G_P are antichains in P (and vice versa) So, a solution to RT_2^2 in G_P is a solution to CAC in P. # How hard is it to solve CAC for a computable poset? By transferring his results on RT_2^2 , Jockusch proved - In the arithmetic hierarchy: Every computable poset has a Δ_2^0 chain, or a Δ_2^0 antichain, or both a Π_2^0 chain and a Π_2^0 antichain. - In low hierarchy: Every computable poset has a low₂ chain or antichain. Herrmann proved that you cannot improve these bounds. - There is a computable poset with no Σ_2^0 chains or antichains. - There is a computable poset with no low chains or antichains. ## A clever idea of Cholak, Jockusch and Slaman Split RT_2^2 into a stable version SRT_2^2 and a cohesive version CRT_2^2 . #### Definition *G* is *stable* if for every $x \in G$, either x is connected to almost every other node or x is not connected to almost every node. - SRT_2^2 : Every infinite *stable* graph contains a copy of K_ω or \overline{K}_ω . - *CRT*₂²: Every infinite graph has an infinite stable subgraph. - $RT_2^2 \Leftrightarrow SRT_2^2 + CRT_2^2$ - CRT_2^2 is strictly weaker than RT_2^2 - Open question: Is SRT_2^2 strictly weaker than RT_2^2 ? ### A clever idea of Hirschfeldt and Shore ### Why not do the same thing for CAC? To do this, they defined a notion of a stable poset (given later). - SCAC: Every infinite stable poset has a chain or antichain. - CCAC: Every infinite poset contains an infinite stable poset. - $CAC \Leftrightarrow SCAC + CCAC$. - Both SCAC and CCAC are strictly weaker than CAC. - Analyzing SCAC and CCAC, they proved that CAC is strictly weaker than RT₂². # Stable posets #### **Definition** Fix an infinite poset P. An element $a \in P$ is - small if $a <_P b$ for almost all $b \in P$ - large if $b <_P a$ for almost all $b \in P$ - *isolated* if a is incomparable with almost all $b \in P$ S_P = the set of small elements in P L_P = the set of large elements in P I_P = the set of isolated elements in P ### Definition (Hirschfeldt and Shore) A poset P is stable if either $P = S_P \cup I_P$ or $P = L_P \cup I_P$. ### Our work Why restrict to $P = S_P \cup I_P$ or $P = L_P \cup I_P$ in definition of stability? #### Definition An infinite poset is weakly stable if $P = S_P \cup L_P \cup I_P$. Note that stable \Rightarrow weakly stable but not conversely. For example, let P be the linear order $\omega + \omega^*$ viewed as a poset. - S_P = the elements in the ω part. - L_P = the elements in the ω^* part. - $I_P = \emptyset$. Therefore, P is weakly stable but not stable. ### Definition (Comparability graph G_P of poset P) $G_P = P$ with an edge between a and b if a and b are comparable. P is a weakly stable poset $\Rightarrow G_P$ is a stable graph P is a weakly stable poset $\notin G_P$ is a stable graph For the linear order \mathbb{Z} (viewed as a partial order), we have - $G_{\mathbb{Z}} = K_{\omega}$ (and hence is a stable graph), but - $S_{\mathbb{Z}} = L_{\mathbb{Z}} = I_{\mathbb{Z}} = \emptyset$ (and hence \mathbb{Z} is not a weakly stable poset). Notice that every copy \mathcal{L} of \mathbb{Z} has an infinite chain which is $\Delta_1^0(\mathcal{L})$. ### Theorem (JKLLS) If an infinite poset has a copy P such that no chain is $\Delta_1^0(P)$, then *P* is weakly stable \Leftrightarrow G_P is stable Assume G_P is stable but P is not weakly stable. Fix $a \notin S_P \cup L_P \cup I_P$. - a ∉ I_P implies a is comparable with infinitely many (hence almost all) p ∈ P. - $a \notin S_P \cup L_P$ implies there are infinitely many p > a and infinitely many p < a. - If $b \le a$, then b < p for infinitely many p and hence b is comparable with almost all $p \in P$. (Same for $b \ge a$.) - Let $X \subseteq P$ consisting of elements comparable to a. X is $\Delta_1^0(P)$. - Every element of X is comparable with almost every $p \in P$. - There is a chain $C \in \Delta_1^0(X)$ and hence $C \in \Delta_1^0(P)$. ### Reverse mathematics These two notions of stability give rise to two different stable versions of *CAC*. - SCAC: Every infinite stable poset has a chain or antichain. - WSCAC: Every infinite weakly stable poset has a chain or antichain. ### Theorem (JKLLS) Over RCA₀, SCAC and WSCAC are equivalent. # Arithmetic hierarchy results For a computable (weakly) stable P, - each of S_P , L_P and I_P are Δ_2^0 - if P has chains, then P has Δ_2^0 chains - if P has antichains, then P has Δ_2^0 antichains For stable posets, we can do better than Δ_2^0 . ### Theorem (JKLLS) Every computable stable poset has a computable chain or a Π^0_1 antichain. However, the dual of this theorem fails. ### Theorem (JKLLS) There is a computable stable poset which has no Π_1^0 chain or computable antichain. In the case of weakly stable posets, one cannot improve on Δ_2^0 . ### Theorem (JKLLS) There is a computable weakly stable poset which has no Π^0_1 chains or Π^0_1 antichains. ## Lowness hierarchy ### Theorem (Hirschfeldt and Shore) Every computable stable poset has a low chain or a computable antichain. The dual of this theorem does hold ### Theorem (JKLLS) Every computable stable poset has a computable chain or a low antichain. and it can be generalized to weakly stable posets. ### Theorem (JKLLS) Every computable weakly stable poset has a low chain or a computable antichain. The dual of this theorem is open: Does a computable weakly stable poset have a computable chain or a low antichain?