Stability and posets

Carl Jockusch, Bart Kastermans, Steffen Lempp, Manny Lerman and Reed Solomon

April 9, 2011

RT_2^2 and CAC

- K_{ω} is the (countably) infinite graph in which every pair of nodes is connected.
- \overline{K}_{ω} is the infinite graph in which no pair of nodes is connected.

Theorem (Graph Version of Ramsey's Theorem for Pairs (RT_2^2))

Every infinite graph contains a copy of K_{ω} or \overline{K}_{ω} .

Theorem (Chain-Antichain (CAC))

Every infinite poset has either an infinite chain or an infinite antichain.

In this talk, all chains and antichains are infinite.

Proving CAC from RT_2^2

For a poset P, define its comparability graph G_P by

- domain of $G_P = \text{domain of } P$
- a and b are connected in G_P iff a and b are comparable in P

Then,

- copies of K_{ω} in G_P are chains in P (and vice versa)
- copies of \overline{K}_{ω} in G_P are antichains in P (and vice versa)

So, a solution to RT_2^2 in G_P is a solution to CAC in P.

How hard is it to solve CAC for a computable poset?

By transferring his results on RT_2^2 , Jockusch proved

- In the arithmetic hierarchy: Every computable poset has a Δ_2^0 chain, or a Δ_2^0 antichain, or both a Π_2^0 chain and a Π_2^0 antichain.
- In low hierarchy: Every computable poset has a low₂ chain or antichain.

Herrmann proved that you cannot improve these bounds.

- There is a computable poset with no Σ_2^0 chains or antichains.
- There is a computable poset with no low chains or antichains.

A clever idea of Cholak, Jockusch and Slaman

Split RT_2^2 into a stable version SRT_2^2 and a cohesive version CRT_2^2 .

Definition

G is *stable* if for every $x \in G$, either x is connected to almost every other node or x is not connected to almost every node.

- SRT_2^2 : Every infinite *stable* graph contains a copy of K_ω or \overline{K}_ω .
- *CRT*₂²: Every infinite graph has an infinite stable subgraph.
- $RT_2^2 \Leftrightarrow SRT_2^2 + CRT_2^2$
- CRT_2^2 is strictly weaker than RT_2^2
- Open question: Is SRT_2^2 strictly weaker than RT_2^2 ?

A clever idea of Hirschfeldt and Shore

Why not do the same thing for CAC?

To do this, they defined a notion of a stable poset (given later).

- SCAC: Every infinite stable poset has a chain or antichain.
- CCAC: Every infinite poset contains an infinite stable poset.
- $CAC \Leftrightarrow SCAC + CCAC$.
- Both SCAC and CCAC are strictly weaker than CAC.
- Analyzing SCAC and CCAC, they proved that CAC is strictly weaker than RT₂².

Stable posets

Definition

Fix an infinite poset P. An element $a \in P$ is

- small if $a <_P b$ for almost all $b \in P$
- large if $b <_P a$ for almost all $b \in P$
- *isolated* if a is incomparable with almost all $b \in P$

 S_P = the set of small elements in P

 L_P = the set of large elements in P

 I_P = the set of isolated elements in P

Definition (Hirschfeldt and Shore)

A poset P is stable if either $P = S_P \cup I_P$ or $P = L_P \cup I_P$.

Our work

Why restrict to $P = S_P \cup I_P$ or $P = L_P \cup I_P$ in definition of stability?

Definition

An infinite poset is weakly stable if $P = S_P \cup L_P \cup I_P$.

Note that

stable \Rightarrow weakly stable

but not conversely. For example, let P be the linear order $\omega + \omega^*$ viewed as a poset.

- S_P = the elements in the ω part.
- L_P = the elements in the ω^* part.
- $I_P = \emptyset$.

Therefore, P is weakly stable but not stable.

Definition (Comparability graph G_P of poset P)

 $G_P = P$ with an edge between a and b if a and b are comparable.

P is a weakly stable poset $\Rightarrow G_P$ is a stable graph

P is a weakly stable poset $\notin G_P$ is a stable graph

For the linear order \mathbb{Z} (viewed as a partial order), we have

- $G_{\mathbb{Z}} = K_{\omega}$ (and hence is a stable graph), but
- $S_{\mathbb{Z}} = L_{\mathbb{Z}} = I_{\mathbb{Z}} = \emptyset$ (and hence \mathbb{Z} is not a weakly stable poset).

Notice that every copy \mathcal{L} of \mathbb{Z} has an infinite chain which is $\Delta_1^0(\mathcal{L})$.

Theorem (JKLLS)

If an infinite poset has a copy P such that no chain is $\Delta_1^0(P)$, then

P is weakly stable \Leftrightarrow G_P is stable

Assume G_P is stable but P is not weakly stable. Fix $a \notin S_P \cup L_P \cup I_P$.

- a ∉ I_P implies a is comparable with infinitely many (hence almost all)
 p ∈ P.
- $a \notin S_P \cup L_P$ implies there are infinitely many p > a and infinitely many p < a.
- If $b \le a$, then b < p for infinitely many p and hence b is comparable with almost all $p \in P$. (Same for $b \ge a$.)
- Let $X \subseteq P$ consisting of elements comparable to a. X is $\Delta_1^0(P)$.
- Every element of X is comparable with almost every $p \in P$.
- There is a chain $C \in \Delta_1^0(X)$ and hence $C \in \Delta_1^0(P)$.

Reverse mathematics

These two notions of stability give rise to two different stable versions of *CAC*.

- SCAC: Every infinite stable poset has a chain or antichain.
- WSCAC: Every infinite weakly stable poset has a chain or antichain.

Theorem (JKLLS)

Over RCA₀, SCAC and WSCAC are equivalent.

Arithmetic hierarchy results

For a computable (weakly) stable P,

- each of S_P , L_P and I_P are Δ_2^0
- if P has chains, then P has Δ_2^0 chains
- if P has antichains, then P has Δ_2^0 antichains

For stable posets, we can do better than Δ_2^0 .

Theorem (JKLLS)

Every computable stable poset has a computable chain or a Π^0_1 antichain.

However, the dual of this theorem fails.

Theorem (JKLLS)

There is a computable stable poset which has no Π_1^0 chain or computable antichain.

In the case of weakly stable posets, one cannot improve on Δ_2^0 .

Theorem (JKLLS)

There is a computable weakly stable poset which has no Π^0_1 chains or Π^0_1 antichains.

Lowness hierarchy

Theorem (Hirschfeldt and Shore)

Every computable stable poset has a low chain or a computable antichain.

The dual of this theorem does hold

Theorem (JKLLS)

Every computable stable poset has a computable chain or a low antichain.

and it can be generalized to weakly stable posets.

Theorem (JKLLS)

Every computable weakly stable poset has a low chain or a computable antichain.

The dual of this theorem is open: Does a computable weakly stable poset have a computable chain or a low antichain?