
Notes on Π1
0 classes for Math 661

Fall 2002 Notre Dame University

Reed Solomon

May 24, 2007

1 Definitions and basic examples of Boolean algebras

Definition 1.1. A partially ordered set (or poset for short) is a pair 〈X,≤X〉 where X is
a nonempty set, ≤X is a binary relation on X with the following properties for all x, y, z ∈ X:

x ≤X x

(x ≤X y ∧ y ≤X x) → x = y

(x ≤X y ∧ y ≤X z) → x ≤X z

If, in addition, 〈X,≤X〉 satisfies the property (x ≤X y ∨ y ≤X x) for all x and y, then it is
called a total or linear order.

We frequently drop the subscript X from ≤X as long as the underlying set is clear from
the context. If a partial order has a least element, then we denote this element by 0 and if it
has a greatest element, then we denote this element by 1. To be more formal, these elements
are defined by the following properties: ∀x ∈ X(0 ≤ x) and ∀x ∈ X(x ≤ 1). Be careful not
to confuse least elements with minimal elements or greatest elements with maximal elements.
An element u ∈ X is minimal if it is not the case that ∃x ∈ X(x < u) and an element v ∈ X
is maximal if it is not the case that ∃x ∈ X(v < x).

Definition 1.2. Let X be a poset and A ⊂ X. The element x ∈ X is an upper bound for
A if ∀a ∈ A(a ≤ x) and x is a lower bound for A if ∀a ∈ A(x ≤ a).

A chain in a poset X is a linear ordered subset of X. Recall that Zorn’s Lemma states
that if every chain in a nonempty poset X has an upper bound, then X has a maximal
element.

These notes have been compiled from many sources, none of which are adequately cited. I claim no
authorship of the results contained within and I am happy to supply detailed references for the sources of the
material contained within these notes. For a breif description of some of the sources, see Section 16.

1

Definition 1.3. A lattice is a poset X such that every pair of distinct elements x and y has
a least upper bound, denoted x ∨ y, and a greatest lower bound, denoted x ∧ y. A lattice is
called distributive if the following properties hold for all x, y, z ∈ X:

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z)

A lattice is called complemented if it has a greatest element 1, it has a least element 0
distinct from 1, and it satisfies

∀x∃y(x ∨ y = 1 ∧ x ∧ y = 0)

The element y in this condition is called the complement of x.

We can finally state the main definition for the first part of the course. A Boolean
algebra is a complemented distributive lattice. There are a number of simple properties that
you can verify as exercises. For example,

1. both ∨ and ∧ are commutative: x ∨ y = y ∨ x and x ∧ y = y ∧ x;

2. both ∨ and ∧ are associative: (x ∨ y) ∨ z = x ∨ (y ∨ z) and (x ∧ y) ∧ z = x ∧ (y ∧ z);

3. (x ∨ y) ∧ y = y and (x ∧ y) ∨ y = y;

4. x ∧ 1 = x ∨ 0 = x, x ∨ 1 = 1, and x ∧ 0 = 0;

5. every element has a unique complement, so we can denote the complement of x by x or
by c(x);

6. x = x.

Although we have presented the definition of a Boolean algebra as a structure 〈X,≤〉, we
could just as easily have defined it as a structure 〈X,∨,∧, c, 0, 1〉. In this case, we would have
required that the structure satisfy properties (1)–(3) above as well as the distributivity laws
and c(x)∧ x = 1 and c(x)∨ x = 0. Typically, we will denote the complement of an element x
by x rather than c(x). We can define the ordering by x ≤ y ⇔ x ∨ y = y or equivalently by
x ≤ y ⇔ x ∧ y = x.

The theory of Boolean algebras can also be developed in terms of commutative rings. A
commutative ring with unit which satisfies ∀b(b · b = b) is called a Boolean ring. Let B be
a Boolean algebra and define +B and ·B by

a ·B b = a ∧ b
a+B b = a4 b = (a ∧ b) ∨ (a ∧ b).

〈B,+B, ·B〉 is a Boolean ring. Conversely, if 〈B,+B, ·B〉 is a Boolean ring, then the partial
order a ≤ b⇔ a ·B b = a defines a Boolean algebra on the set B.

Before proceeding, we present a number of examples of Boolean algebras. These examples
all illustrate some feature of Boolean algebras which we will expand on later.

2

Example 1.4. Let L be any linear order. The interval Boolean algebra of L is denoted
by Int(L) and is the set of all half open intervals [x, y) with x < y in L and ordered by the
subset relation.

Example 1.5. Let A be any set. The power set Boolean algebra of A is the partial order
〈P(A),⊂〉.

Example 1.6. Let T be any topological space. The Boolean algebra of clopen sets of T
is the set of all subsets of T which are both open and closed, partially ordered by the subset
relation.

Example 1.7. The Boolean algebra of finite and cofinite sets of N is the collection of
all finite subsets of N and all cofinite subsets of N (that is, sets whose complement relative
to N is finite) partially ordered by the subset relation. This Boolean algebra is known as a
1-atom.

Example 1.8. Let N denote the natural numbers. For any sets A,B ⊂ N, let A4B denote
the symmetric difference of A and B:

A4B = (A−B) ∪ (B − A).

Define the equivalence relation A ∼ B ⇔ |A4 B| < ω. Let N/ ∼ be partially ordered by
A ≤ B ⇔ |A − B| < ω. This structure is a Boolean algebra called the Cantor-Bendixson
derivative of 〈P(N),⊂〉.

Example 1.9. Let B be any Boolean algebra and let x be a nonzero element in B. The
interval [0, x] ⊂ B is a Boolean algebra which has least element 0 and greatest element x.
The functions ∨ and ∧ are simply restricted to this interval and the complement is given by
y = x ∧ y = x− y.

2 Filters and quotient algebras

For the rest of these notes, B will denote an arbitrary Boolean algebra. The notions of a
filter and an ideal are dual in Boolean algebras, so we can develop either one and get the
other for free. Although ideals are more natural in general commutative rings, filters in
Boolean algebras have a natural interpretation as logical theories which we will exploit later.
Therefore, we develop filters explicitly rather than ideals.

Definition 2.1. A filter F in B is a nonempty subset of B such that

∀x, y ∈ F (x ∧ y ∈ F)

∀x ∈ F∀y ∈ B(x ≤ y → y ∈ F).

The dual object is called an ideal in B. That is, a nonempty subset I of B such that

∀x, y ∈ I(x ∨ y ∈ I)
∀x ∈ I∀y ∈ B(y ≤ x→ y ∈ I).

3

Notice that for any filter F , 1 ∈ F and for any ideal I, 0 ∈ I. For our purposes, we almost
always assume our filters and ideals are proper. That is, we assume F 6= B and I 6= B, or
equivalently, 0 6∈ F and 1 6∈ I.

We will be interested in when an arbitrary subset A of B can be extended to a (proper)
filter. A has the finite meet property if the meet of any finite subset of A is not equal to
0. For a finite set X ⊂ B, we denote the meet of the elements of X by

∧
X and the join of

the elements of X by
∨
X.

Lemma 2.2. In any Boolean algebra B, x ∧ y = 0 if and only if x ≤ y.

Proof. First, suppose that x ∧ y = 0. Then,

x = x ∧ 1 = x ∧ (y ∨ y) = (x ∧ y) ∨ (x ∧ y) = (x ∧ y) ≤ y.

Second, suppose that x ≤ y. Then, x ∧ y = x and

x ∧ y = (x ∧ y) ∧ y = x ∧ (y ∧ y) = x ∧ 0 = 0.

Lemma 2.3. If A has the finite meet property, then for any element x ∈ B, either A ∪ {x}
or A ∪ {x} has the finite meet property.

Proof. Suppose the lemma is false for A. Then there are finite subsets A0 and A1 of A for
which

∧
A0 ∧ x = 0 and

∧
A1 ∧ x = 0. However, because x = x,

∧
A0 ∧ x = 0 implies∧

A0 ≤ x. Similarly,
∧
A1 ≤ x. Therefore,

∧
A0 ∧

∧
A1 = 0, which contradicts the fact that

A has the finite meet property.

In the proof of Lemma 2.3, we used the fact that in any Boolean algebra

a ≤ x ∧ b ≤ x⇒ a ∧ b ≤ x ∧ x = 0 ⇒ a ∧ b = 0.

The second implication follows from the fact that 0 is the least element of B. How do we
know the first implication is true? We could prove it as a separate lemma (which is a simple
exercise), or we could notice that it holds in any power set algebra. That is, for any sets A,
B, X

A ⊂ X ∧B ⊂ X ⇒ A ∩B = ∅.

Later we will show that every Boolean algebra is isomorphic to a subalgebra of a power set
algebra. Therefore, any identity which holds in every power set algebra must hold in every
Boolean algebra. Of course, to avoid circularity, we should verify all facts without recourse
to this method for the present. However, this trick is quite useful in “eye-balling” identities
in Boolean algebras.

Lemma 2.4. A set A ⊂ B is contained in a proper filter if and only if A has the finite meet
property.

4

Proof. First, notice that every filter is closed under taking finite meets. Therefore, if A does
not have the finite meet property, then any filter containing A must contain 0, and therefore
cannot be proper.

Second, assume that A does have the finite meet property. Let A1 be the finite meet
closure of A.

A1 = {
∧

X |X ⊂ A ∧ |X| < ω }

Assuming that we understand the meet of a singleton set to be the unique element in that
set, it is clear that A ⊂ A1, that A1 is closed under taking finite meets, and that 0 6∈ A1. Let
F be the upward closure of A1.

F = {x | ∃a ∈ A1(a ≤ x) }

F is clearly closed upwards and 0 6∈ F . If x, y ∈ F , then there are elements ax, ay ∈ A1

such that ax ≤ x and ay ≤ y. Since A1 is closed under finite meets, ax ∧ ay ∈ A1, and since
ax ∧ ay ≤ x ∧ y, x ∧ y ∈ F . Therefore, F is a proper filter containing A.

It is straightforward to verify that the filter F constructed above is the minimal filter
containing A. We will also be concerned with maximum filters containing a given set. Such
filters are called ultrafilters.

Definition 2.5. An ultrafilter is a proper filter F such that there is no proper filter strictly
extending F .

Lemma 2.6. Let F be a filter in B. F is an ultrafilter if and only if for every x ∈ B, either
x ∈ F or x ∈ F , but not both.

Proof. First, if both x and x are in F , then x ∧ x = 0 ∈ F and so F is not proper. Second,
if neither x nor x is in F , then by Lemma 2.3, either F ∪ {x} or F ∪ {x} has the finite
meet property. Whichever set has the finite meet property can be extended to a proper filter
strictly containing F by Lemma 2.4. Therefore, F is not an ultrafilter.

Third, suppose that for each x, either x or x is in F , but not both. Let G be any filter
extending F . There must be some x ∈ G \ F . But, then x ∈ F and so x, x ∈ G. Therefore,
G is not proper and F must be an ultrafilter.

Example 2.7. Consider the power set algebra P(X). For each A ⊂ X, the set FA = {Y ⊂
X |A ⊂ Y } is a filter. FA is called the principal filter generated by A in P(X).

Definition 2.8. A filter F ⊂ B is principal if there is an element b ∈ B such that F = {x ∈
B|b ≤ x}.

We can classify exactly which ultrafilters F in P(X) are principal.

Lemma 2.9. A ultrafilter F in P(X) is principal if and only if there is a finite set A ∈ F .

5

Proof. Assume that there is such a finite set A = {a0, . . . , an}. We claim that the singleton
{ai} ∈ F for some i. If not, then since F is an ultrafilter, the set Xi = X \ {ai} is in F for
each i. But, the finite intersection of the Xi and A is ∅ and must be in F . Therefore, F is
not proper and hence not an ultrafilter.

For the other direction, assume that F does not contain any finite sets but that F is the
principal filter generated by an infinite set A. Let a ∈ A be any element and consider the
sets {a} and X \ {a}. Neither of these sets is in F and yet they are complements in P(X).
Therefore, F is not an ultrafilter.

Corollary 2.10. An ultrafilter F in P(X) is principal if and only if it contains a singleton
set.

We are now ready to prove the main result on the existence of ultrafilters.

Theorem 2.11. Every proper filter F in B can be extended to an ultrafilter.

Proof. We first prove this result using Zorn’s Lemma. Later we will give a more constructive
proof for countable Boolean algerbas using Weak König’s Lemma. Fix a proper filter F and
let F be the set of all proper filters in B containing F . Notice that F 6= ∅ since F ∈ F .
Consider F as a partially ordered set under inclusion. To apply Zorn’s Lemma we only need
to show that each chain in this poset has an upper bound.

Let {Gi | i ∈ I } be such a chain and let G = ∪i∈IGi. We claim that G is the desired
upper bound. It is clear that F ⊂ G. G is proper since 0 ∈ G if and only if 0 ∈ Gi for some
i. G is closed upwards since each Gi is closed upwards. If x, y ∈ G, then there are indices i, j
such that x ∈ Gi and y ∈ Gj. Without loss of generality (because the Gk sets form a chain),
assume that Gi ⊂ Gj. Then, x, y ∈ Gj, so x ∧ y ∈ Gj and x ∧ y ∈ G as required.

Corollary 2.12. Every set A with the finite meet property can be extended to an ultrafilter.

Proof. This is immediate from Lemma 2.4 and Theorem 2.11.

Corollary 2.13. Every nonzero element x ∈ B is in some ultrafilter.

Proof. The singleton set {x} has the finite meet property, so this result follows from the
previous corollary.

Corollary 2.14. If x 6= y are nonzero elements, then there is an ultrafilter containing one of
these elements but not the other.

Proof. Without loss of generality, assume that x 6≤ y. Then, x∧ y 6= 0. Therefore, {x, y} has
the finite meet property and can be extended to an ultrafilter. This ultrafilter cannot contain
y.

Example 2.15. We present one more example to show that not all ultrafilters are principal.
Let X be an infinite set and let A be the set of all cofinite sets in X. A has the finite
intersection property and therefore can be extended to an ultrafilter. However, this ultrafilter
does not contain any finite sets and therefore cannot be principal.

6

A Boolean algebra homomorphism (or just homomorphism) is a map g : B1 → B2 between
the Boolean algebras B1 and B2 which preserves ∧, ∨ and complementation. It is straightfor-
ward to check that such a map must send 0B0 to 0B1 and 1B0 to 1B1 . A subalgebra of a Boolean
algebra B is a nonempty subset A of B which is closed under ∧, ∨ and complementation. It
is also straightforward to check that a subalgebra must contain 0 and 1.

We will encounter the notions of quotient algebras during this course. Since filters and
ideals are dual objects in Boolean algebras, it is not surprising that we can form quotients
using either filters or ideals. We consider the definitions for both, since they will both be used
during the course.

Let F be a proper filter in B. There are a number of equivalent ways the define the
quotient algebra B/F . Two equivalent definitions for the equivalence relation ∼F are

x ∼F y ⇔ ∃f ∈ F (x ∧ f = y ∧ f)

x ∼F y ⇔ x ∨ y ∈ F ∧ x ∨ y ∈ F.

A third possible definition for ∼F involves defining the relations ≤F by x ≤F y if and only
if there is an element f ∈ F such that x ∧ f ≤ y. Then, x ∼F y if and only if x ≤F y and
y ≤F x. All of these definitions are equivalent. Under any of these definitions, ∼F forms a
congruence relation and the induced relations on B/F form a Boolean algebra. The natural
map which sends x to its equivalence class under ∼F is a homomorphism from B onto B/F .
The elements which are sent to 1 under this map are exactly the elements of F .

Let I be an ideal in B. There are also a number of equivalent ways to define B/I, each of
which is dual to one of the definitions above. The simplest definition to work with is

x ∼I y ⇔ x4 y ∈ I.

As above, ∼I is a congruence relation and the induced structure on B/I gives a Boolean
algebra. The elements mapped from B to 0 under the natural homomorphism from B to B/I
are exactly the elements of I.

As usual with homomorphisms between algebraic structures, if g : B1 → B2 is a homo-
morphism, then g(B1) is a subalgebra of B2. Furthermore, g−1(1) is a filter in B1 and g−1(0)
is an ideal in B1. Both B1/g

−1(0) and B1/g
−1(1) are isomorphic to g(B1).

In general for commutative rings, not all prime ideals are maximal. We next show that
the analogous statement about filters in Boolean algebras does not hold. A filter F is called
prime if x ∨ y ∈ F implies either x ∈ F or y ∈ F .

Lemma 2.16. A proper filter F is prime if and only if it is an ultrafilter.

Proof. Suppose F is an ultrafilter, x ∨ y ∈ F and x 6∈ F . Because F is an ultrafilter, x 6∈ F
implies that x ∈ F . Because x, x ∨ y ∈ F , we have

x ∧ (x ∨ y) = (x ∧ x) ∨ (x ∧ y) = x ∧ y ∈ F.

But, F is closed upwards, so y ∈ F as required.
Suppose that F is prime and x is any element of B. Since x ∨ x = 1 and 1 ∈ F , we must

have either x ∈ F or x ∈ F . However, this condition on F implies F is an ultrafilter.

7

3 Lindenbaum algebras

Let L be a language (either predicate or propositional). We define the Lindenbaum algebra
Lind(L) of L. Let Sent(L) denote the set of sentences in the language L and define an
equivalence relation on this set by ϕ ∼ ψ if and only if ` ϕ↔ ψ. The set Sent(L)/ ∼ defines
the elements of Lind(L). This equivalence relation is also a congruence relation with respect
to the logical operations ∧, ∨, ¬ and →. Therefore, we can define the Boolean operations by:

[ϕ] ≤ [ψ] ⇔` ϕ→ ψ;

[ϕ] ∧ [ψ] = [ϕ ∧ ψ];

[ϕ] ∨ [ψ] = [ϕ ∨ ψ];

[ϕ] = [¬ϕ].

In this representation, the sentences ϕ for which [ϕ] = 1 are exactly the tautologies and the
sentences for which [ψ] = 0 are exactly the negations of tautologies.

A theory T in the language L is just a set of sentences in this language. If T is closed under
logical deduction, then we call T a closed theory. Let T be a closed theory. T 6= Sent(L) if
and only if T is consistent. Since T is closed under logical deduction, if ϕ ∈ T and ` ϕ→ ψ,
then ψ ∈ T and if ϕ, ψ ∈ T , then ϕ ∧ ψ ∈ T . In other words, the set of equivalence classes of
elements of the closed theory T forms a filter in the Lindenbaum algebra.

Conversely, let F be a filter in Lind(L) and let T be the set of sentences whose equivalence
class lies in F . We claim that T is a closed theory. Since F is nonempty by definition, F
contains 1 and hence T contains all the tautologies. Therefore, to see that T is closed under
logical deduction, it suffices to check that T is closed under modus ponens; that is, if ϕ ∈ T
and ϕ→ ψ ∈ T , then ψ ∈ T . Suppose [ϕ], [ϕ→ ψ] ∈ F . Since F is closed under meets,

[ϕ ∧ (¬ϕ ∨ ψ)] = [(ϕ ∧ ¬ϕ) ∨ (ϕ ∧ ψ)] ∈ F.

Therefore, [ϕ ∧ ψ] ∈ F . Since F is closed upwards and [ϕ ∧ ψ] ≤ [ψ], we have [ψ] ∈ F and
ψ ∈ T as required.

Therefore, the closed theories in L correspond exactly to the filters in the Lindenbaum
algebra. A closed theory is consistent if and only if 0 is not in the corresponding filter.
Therefore, consistent closed theories correspond exactly to proper filters. Furthermore, the
complete consistent theories in L correspond exactly to the ultrafilters in the Lindenbaum
algebra. Therefore, in the context of theories, Corollary 2.12 says that any consistent set of
sentences can be extended to a complete consistent theory.

These results can all be easily extended to work with provability over a particular (not
necessarily closed) theory. That is, if we fix an L-theory T , we could define ϕ ∼T ψ if and
only if T ` ϕ ↔ ψ. This relation is also an equivalence relation and the ordering [ϕ] ≤ [ψ]
if and only if T ` ϕ → ψ gives a Boolean algebra just as above. This algebra is called
the Lindenbaum algebra of the theory T and will be denoted LindT (L) or just LindT if the
language is clear from the context.

These notions will be useful in the context of computable theories. In particular, if A is
a computable set of axioms for a (possibly noncomputable) closed theory T (think about the
axioms for Peano arithmetic), then LindA ∼= LindT .

8

Finally, to connect these notions to the ideas of quotient algebras, let T be a closed theory
and F the associated filter. It is not hard to check that LindT ∼= Lind(L)/F .

4 Stone representation theorem

We have referred to the power set algebra P(X) on several occasions. It is unfortunately not
the case that every Boolean algebra has this form. Consider for example the algebra of finite
and cofinite subsets of N. This algebra is countable and hence cannot be a power set algebra.
However, the Stone representation theorem says that every Boolean algebra is a subalgebra
of a power set algebra.

For any Boolean algebra B, let S(B) be the set of all ultrafilters on B. S(B) is called the
Stone space of B. It has a natural topology which we will discuss after proving our first
version of the Stone Representation Theorem.

Theorem 4.1. Any Boolean algebra B is isomorphic to a subalgebra of the power set algebra
P(S(B)).

Proof. Define the map g : B → P(S(B)) by setting

g(x) = {F ∈ S(B) |x ∈ F }.

First, we check that this map is a homomorphism. Because ultrafilters are always prime, an
ultrafilter contains x ∨ y if and only if it contains x or y. Therefore, g(x ∨ y) = g(x) ∪ g(y).
Because an ultrafilter contains x if and only if it does not contain x, g(x) = S(B) \ g(x). By
duality, g must also preserve ∧ and hence it is a homomorphism.

Second, we check that g is one-to-one. We have already seen that if x 6= y, then there is
an ultrafilter containing one of these elements but not the other. Therefore, g(x) 6= g(y).

The topology on S(B) is the topology generated by the sets g(x) for x ∈ B. That is, the
basic open sets in S(B) are precisely the sets of ultrafilters containing a specified element.
We next examine such spaces in more detail.

A topological space is a Boolean space if it is compact, Hausdorff and has a basis of
clopen sets. (That is, a basis of sets which are both closed and open.)

Lemma 4.2. S(B) is a Boolean space.

Proof. Since g(x) = S(B) \ g(x), each basic open set is also closed. Therefore, S(B) has a
basis of clopen sets.

Suppose that U, V ∈ S(B) are distinct ultrafilters. Then, there is an element u ∈ U with
u 6∈ V . Hence u ∈ V and so U ∈ g(u) and V ∈ g(u). Since g(u) ∩ g(u) = ∅, these serve as
disjoint open sets which separate U and V , which shows that S(B) is Hausdorff.

To see that S(B) is compact, it suffices to show that every cover of S(B) by basic open
sets has a finite subcover. For a contradiction, assume that {g(xi)|i ∈ I} is an infinite cover

9

which does not have a finite subcover. That is, for each finite I0 ⊂ I, ∪i∈I0g(xi) 6= S(B).
Taking complements, we have that

∩i∈I0g(xi) = g(
∧
i∈I0

xi) 6= ∅ = g(0).

Thus,
∧
i∈I0 xi 6= 0 for any finite set I0 ⊂ I. This exactly says that {xi|i ∈ I} has the finite

intersection property and so can be extended to an ultrafilter U . But, U is not covered by
{g(xi)|i ∈ I} since xi ∈ U for every i ∈ I. This fact gives the desired contradiction.

We can now state the second version of the Stone Representation Theorem.

Theorem 4.3. Any Boolean algebra B is isomorphic to the algebra of clopen subsets of the
Boolean space S(B).

Proof. From the proof of Theorem 4.1, the image of B under the map g forms a base for the
topology on the Boolean space S(B). Therefore, it suffices to show the following fact: if X is
a Boolean space and A is a subalgebra of P(X) which is base for the topology of X, then A
is the algebra of clopen sets in X.

To show that A is contained in the algebra, notice that the elements of A are all open
sets since they form a base for the topology. Also, since A is closed under complementation,
each element of A is the complement of an open set, and hence is also closed. Therefore, each
element of A is clopen.

To show that all clopen sets are contained in A, let Y be such a set. Since A forms a base
for the topology, for each y ∈ Y , there is a set Ay ∈ A such that y ∈ Ay. Without loss of
generality (since Y is an open set), we can assume Ay ⊂ Y . Thus {Ay|y ∈ Y } forms an open
cover for Y . But, Y is a closed subset of a compact space and hence is compact. Therefore,
there is a finite subcover Y = Ay1 ∪ · · · ∪Ayn . But, A is an algebra, so it is closed under finite
unions and Y ∈ A as required.

We now have two operations: one to pass from a Boolean algebra B to a Boolean topo-
logical space S(B), and one to pass from a Boolean topological space X to the Boolean
algebra of clopen sets. We know that passing from B to S(B) to the algebra of clopen sets
returns an isomorphic Boolean algebra. We next show that passing from a Boolean space X
to the Boolean algebra of clopen sets and back to a Boolean space returns a homeomorphic
topological space. This is the last version of the Stone Representation Theorem.

Theorem 4.4. Every Boolean space is homeomorphic to the Stone space of its Boolean algebra
of clopen sets.

Proof. Let X be a Boolean topological space and let B be its Boolean algebra of clopen sets.
Let h : X → S(B) be defined by

h(x) = {A ⊂ X |A is clopen ∧ x ∈ A }.

Notice that since for each clopen set A, either x ∈ A or x ∈ X \ A but not both, h(x) is an
ultrafilter in B. Therefore, h does map into S(B).

10

This map is one-to-one because X is Hausdorff and it has a base of clopen sets. That is,
for distinct points x and y in X, there is a clopen set Z such that x ∈ Z and y 6∈ Z. Therefore
Z ∈ h(x) and Z 6∈ h(y), so h(x) 6= h(y).

To see that h is onto, let U be an ultrafilter in B. The elements of U are clopen sets in X
and U has the finite intersection property. We claim that ∩{Z|Z ∈ U} 6= ∅. Suppose for a
moment that this claim is true and let x be an element of this intersection. Then, x ∈ Z for
all Z ∈ U , so U ⊂ h(x). But, both U and h(x) are ultrafilters and so h(x) = U as required.

It remains to show that the intersection above is not empty. For a contradiction, assume
that ∩{Z|Z ∈ U} = ∅. Taking complements gives ∪{Z|Z ∈ U} = X and hence {Z|Z ∈ U} is
an open cover of X. Since X is compact, there must be a finite subcover X = ∪{Z|Z ∈ U0}
for some finite U0 ⊂ U . Taking complements again, ∩{Z|Z ∈ U0} = ∅. However, U is an
ultrafilter and hence has the finite meet property. Therefore, this empty intersection gives
the desired contradiction.

Finally, for any Z ∈ B, we claim that

{U ∈ S(B) |Z ∈ U } = {h(x) |x ∈ Z }.

Notice that this equality finishes the proof since it shows that h maps the base of the topology
of X onto the base of the topology for S(B). Therefore, h is a homeomorphism. To see the
containment ⊇, recall that h(x) = {A ∈ B|x ∈ A}. Therefore, if x ∈ Z, then h(x) is an
ultrafilter containing Z. To see the containment ⊆, fix an ultrafilter U ∈ S(B) with Z ∈ U .
Since h is onto, we know h(x) = U for some x. However, since Z ∈ U and x ∈ A for all
A ∈ h(x), we have that x ∈ Z as required.

5 Interval algebras

In this section, we examine countable Boolean algebras more closely and give another repre-
sentation theorem for such algebras.

An element x ∈ B is called an atom if x 6= 0 and for any y ∈ B, if y < x, then y = 0.
B is called atomless if B does not contain any atoms. B is called atomic if every nonzero
x ∈ B bounds an atom. Similarly, a nonzero element x ∈ B is called atomless or atomic just
if the algebra [0, x] has that property.

If you are not used to working with atoms in a Boolean algebra, the following theorem
provides a good exercise in working through the definitions. It is nothing other than a
generalization of Lemma 2.9.

Lemma 5.1. Let B be a Boolean algebra. An ultrafilter U in B is principal if and only if U
contains a finite join of atoms. Furthermore, U contains a finite join of atoms if and only if
U contains an atom.

Proposition 5.2. If A and B are countable atomless Boolean algebras, then A ∼= B.

Proof. By the Stone Representation Theorem, we think of A and B as algebras of sets when-
ever it helps our intuition during the proof. Our construction of the isomorphism is a back-
and-forth argument. We build the isomorphism g : A → B in finite stages, alternating

11

between satisfying conditions to insure that it is defined on all of A and that it is onto. Let
A0 = {0A, 1A}, B0 = {0B, 1B},

A \ A0 = {a1, a2, . . .},
B \B0 = {b1, b2, . . .}.

We begin the construction at stage 0 by mapping g0(0A) = 0B and g0(1A) = 1B. Assume
that at the end of stage s, we have defined finite subalgebras As of A and Bs of B and we
have defined an isomorphism gs between these algebras.

At stage s+1 where s = 2t, we make sure that at gets into the domain of gs+1. If at ∈ As,
then we let As+1 = As, Bs+1 = Bs, gs+1 = gs and go to the next stage. Otherwise, let As+1 be
the finite subalgebra of A generated by As and at. (To see that this subalgebra is finite, it is
easiest to think of As as a finite algebra of sets given by a Venn diagram and at adds one new
circle to this diagram.) To define gs+1 on As+1 it suffices to specify how gs+1 is defined on the
atoms of As+1 and then extend by taking finite joins. (Again, thinking in terms of algebras
of sets is a good idea here. As is given by a Venn diagram and at adds a new circle to this
diagram. Each atomic region in As either remains unsplit by this new circle or else it is split
into two new atomic regions. These two cases are exactly the ones we consider below.)

Consider each atom x in the finite subalgebra As and the effect of adding at to As on
this atom. If x ∧ at = 0 or x ∧ at = 0, then x remains an atom in As+1 and we can let
gs+1(x) = gs(x).

Otherwise, x is split by at into two nonzero pieces x ∧ at and x ∧ at. Because gs(x) is a
nonzero element of B and B is atomless, there is a nonzero element y < gs(x) in B. Fix such
a y and notice that y cannot be in Bs since x is an atom in As and gs is an isomorphism from
As to Bs. Let z = gs(x) − y. Then, y ∨ z = gs(x) and y ∧ z = 0. Define gs+1(x ∧ at) = y
and gs+1(x ∧ at) = z. Since (x ∧ at) ∨ (x ∧ at) = x, when we extend this map by taking finite
unions, we will have gs+1(x) = gs(x). Also, since (x∧ at)∧ (x∧ at) = 0, the new definition of
gs+1 is consistent with mapping gs+1(0A) = 0B.

It is clear that the map gs+1 on the atoms of As+1 extends naturally to a one-to-one
homomorphism into B which extends gs. Let Bs+1 be the image of gs+1, so that gs+1 is an
isomorphism between the finite subalgebras As+1 and Bs+1.

At stage s+ 1 where s = 2t+ 1, we make sure that bt is in the range of gs+1 by extending
g−1
s in a way analogous to our extension of gs above. Because gs ⊂ gs+1 at each stage, we

have a limiting map g which is the desired isomorphism from A to B.

Corollary 5.3. Let A be a countable Boolean algebra. There is a embedding of A into Int(Q).

Proof. This result is just the “forth” direction of the back-and-forth argument above.

Because the countable atomless Boolean algebra is determined up to isomorphism, we
can use any representation of it that we want. Because different representation are useful is
different situations, we mention several different representations for the countable atomless
Boolean algebra. The following algebras are all the countable atomless Boolean algebra:

• Int(Q);

12

• the algebra of clopen sets of 2ω;

• the free Boolean algebra on a countable number of generators an, n ∈ ω;

• Lind(L) where L is the propositional language with a countable number of propositional
variables An, n ∈ ω.

We can now give our representation theorem for countable Boolean algebras by interval
algebras.

Theorem 5.4. Every countable Boolean algebra B is isomorphic to the interval algebra Int(L)
of some linear order L ⊂ Q.

Proof. As above, we let B0 = {0B, 1B} and B \ B0 = {b1, b2, . . .}. At stage s > 0, we let
Bs = B0 ∪ {b1, . . . , bs} and B∗

s be the finite subalgebra generated by Bs. We build L ⊂ [0, 1]
in stages such that L0 = {0, 1} and Ls is a finite linear order which will be a suborder of L.
We also build an isomorphism gs between B∗

s and Int(L).
At stage 0, Int(L) has two elements, ∅ and [0, 1). We define g0(0B) = ∅ and g0(1B) = [0, 1).

At the end of stage s, we have the set of atoms {as1 , . . . , asn} in the subalgebra B∗
s , the linear

order Ls ⊂ Q of size n + 1 given by 0 = xs0 < xs1 < · · · < xsn = 1, and the map gs which
sends gs(asj

) = [xsj−1
, xsj

). (Notice that these intervals each consist of a single point in Ls.)
At stage s + 1, check if bs+1 ∈ B∗

s . If so, then B∗
s+1 = B∗

s and we can let Ls+1 = Ls,
gs+1 = gs and go to the next stage. Otherwise, we consider the atoms in B∗

s which are
split into two pieces in B∗

s+1 just as in the last proof. (As above, we let gs+1 = gs on the
atoms which are not split at this stage.) Let ai be an atom such that ai ∧ bs+1 6= 0B and
ai ∧ bs+1 6= 0B. Pick a new point y from the interval (xi−1, xi) and add y to Ls+1. We have
now split the interval [xi−1, xi) into [xi−1, y) ∪ [y, xi). Define gs+1 to map ai ∧ bs+1 to one of
these new intervals and to map ai ∧ bs+1 to the other interval.

We have defined gs+1 to map the atoms of B∗
s+1 to the atoms of Int(Ls+1), so we can extend

preserving ∨ to get an isomorphism between these finite algebras. By the construction, it is
clear that gs ⊂ gs+1. Hence, the limiting map g gives the desired isomorphism from B onto
Int(L).

One important comment about this representation theorem is that the linear order L is
not unique. That is, there are linear orders L1 6∼= L2 such that Int(L1) ∼= Int(L2).

6 Effectiveness issues

Since this course is intended to address computability issues, this result is a good place to
start. We begin by setting up some of the standard terminology from computable model
theory. A countable language is a (propositional or predicate) language with countably
many function symbols f0, f1, . . ., countably many relation symbols R0, R1, . . . and countably
many constants a0, a1, (Of course they do not need to have these particular names,
and there could be only finitely many (or none) of each type of symbol.) A computable
language is a countable language for which the function, relation and constant symbols form

13

a computable set and there is a computable function assigning the arity to each function and
relation symbol.

If L is a computable language, then a computable model A for L is given by a com-
putable set A (the domain of the model) and a uniformly computable interpretation for the
function, relation and constant symbols. Equivalently, we could require that the open diagram
of 〈A, a ∈ A〉 is computable. If the language is finite, then it is sufficient to require that each
function and relation symbol is interpreted in a computable manner. That is, uniformity is
not an issue for finite languages. If the model is supposed to satisfy a set of axioms (such as
for a group or field or Boolean algebra), then we require the interpretation of the symbols to
satisfy these axioms. If the full diagram of A is computable, then we say A is a decidable
model.

Restricting this definition to Boolean algebras, we see that a computable Boolean algebra
is given by a computable domain set B together with two constants 0 and 1 and computable
functions for ∧, ∨ and complementation which satisfy the required axioms.

Frequently, we will start with a particular abstract model (or really an abstract isomor-
phism type) A and want to consider computable models which are isomorphic to A. A com-
putable copy of an abstract model A is a computable model which is classically isomorphic
to A. Notice that there can be computable copies of A with radically different computable
properties. For example, one computable copy might be decidable while a different one is not.
A concrete example that is not hard to construct is a computable copy of the linear order type
〈ω,≤〉 in which the successor relation is not computable. This copy differs computationally
from the “obvious” presentation in which the successor relation is decidable.

The proof of Proposition 5.2 is effective in the following sense. If B1 and B2 are computable
atomless Boolean algebras, then the proof of Proposition 5.2 yields a computable isomorphism
from B1 to B2. Therefore, any two computable copies of the countable atomless Boolean
algebra are computably isomorphic and therefore have the same computational properties.
(Such structures are called computably categorical.) Similarly, the proof of Corollary 5.3 is
effective in the sense that if B1 is any computable Boolean algebra and B2 is any computable
copy of the countable atomless Boolean algebra, then there is a computable embedding from
B1 into B2. Finally, Theorem 5.4 is effective in the sense that given a computable Boolean
algebra B, the proof of this theorem produces a computable linear order L such that B is
computably isomorphic to Int(L).

We will also be concerned with c.e. Boolean algebras. An c.e. Boolean algebra is given
by a computable set B, computable functions ∧, ∨, and complementation, and an c.e. binary
relation ≤ on B. For a, b ∈ B, we define a ∼ b if and only if a ≤ b and b ≤ a, and we require
that ∼ is an equivalence relation on which ∧, ∨, complementation, and ≤ are well defined and
such that B/ ∼ together with these functions and relations forms a Boolean algebra. This
Boolean algebra is the c.e. Boolean algebra.

The intuition here is that in an c.e. Boolean algebra, the equality relation is Σ0
1. We may

see that a ≤ b and for a long time think that a and b represent different elements of the
Boolean algebra, before seeing that b ≤ a so that a and b are really two names for the same
element of the Boolean algebra.

The most natural example of an c.e. Boolean algebra is given by quotients by c.e. ideals or

14

filters. Let B be a computable Boolean algebra, I an c.e. ideal (meaning I ⊂ B is an c.e. set),
and F an c.e. filter. Then B/I and B/F are both c.e. Boolean algebras. Furthermore, any
c.e. Boolean algebra can be realized as Int(Q)/F for an c.e. filter F in Int(Q).

To see another natural example of an c.e. Boolean algebra, consider a computable language
L and a computable theory T in this language. The relation ϕ ∼T ψ from the definition of
LindT is an c.e. relation. Therefore, LindT is an c.e. Boolean algebra. To be more formal,
we define an c.e. presentation for this Boolean algebra by letting B be the set of sentences in
L, defining meet and join as ∧ and ∨, defining the complement of ϕ to be ¬ϕ, and defining
ϕ ≤ ψ if and only if T ` ϕ → ψ. This presentation gives an c.e. copy of LindT and explains
the computability theoretic content of the Lindenbaum algebra construction.

7 Tree representations

After the last section, to is natural to ask about the effectiveness of the Stone Representation
Theorem for countable algebras. To begin to discuss this issue, we examine an alternate
construction of the Boolean space associated to a countable Boolean algebra.

Definition 7.1. A binary branching tree T is a subset of 2<ω which is closed under initial
segments. A path through T is a function f : ω → 2 such that for all n, 〈f(0), · · · , f(n)〉 ∈ T .
We denote the set of all paths through a binary branching tree T by [T].

Let B be a countable Boolean algebra and let B \ {0, 1} be enumerated as b0, b1, To
simplify the notation below, we let b1 = b and b0 = b for any b ∈ B. We associate a binary
branching tree TB to B and use this tree to represent the Stone space of B. For any string σ
of length n,

σ ∈ TB ⇔ b
σ(0)
0 ∧ bσ(1)

1 ∧ · · · ∧ bσ(n−1)
n−1 6= 0.

In other words, σ ∈ TB if and only if the set {bσ(0)
0 , . . . , b

σ(n−1)
n−1 } has the finite meet property.

Consider any path f through TB and let Uf = {bf(n)
n |n ∈ ω} ∪ {1}. We claim that

Uf is an ultrafilter of B. First, since our enumeration of the bn does not contain either 0

or 1, 0 6∈ Uf . Second, suppose b
f(n)
n ≤ bm. If f(m) = 0, then b

f(n)
n ∧ b

f(m)
m = 0 and so

b
f(0)
0 ∧ · · · ∧ bf(max(m,n))

max(m,n) = 0 which contradicts the fact that f is a path in T . Therefore,

f(m) = 1 and bm ∈ Uf . A similar argument shows that if b
f(n)
n ∧ bf(m)

m = bp, then f(p) = 1 so
bp ∈ Uf . This establishes that Uf is a filter. Since f(n) ∈ {0, 1}, either bn ∈ U or bn ∈ U for
each bn. Therefore, U is an ultrafilter.

On the other hand, every ultrafilter U in B can be associated to a path fU in B. Let
fU(n) = 1 if bn ∈ U and fU(n) = 0 if bn ∈ U . Notice that fU is a path in TB since U has the
finite meet property. Since the mappings U 7→ fU and f 7→ Uf are inverse maps, there is a
one-to-one correspondence between the ultrafilters in B and the paths through TB.

To define the appropriate topology on [TB], consider the full binary branching tree 2<ω

and the set [2<ω] = 2ω. The basic open sets for the topology on 2ω are

Oσ = { f ∈ 2ω |σ ⊂ f }

15

for each string σ ∈ 2<ω. Under this topology, 2ω is a Boolean space. Furthermore, [TB] is a
closed set in 2ω and so it is also a Boolean space under the subset topology. In fact, [TB] is
homeomorphic to the Stone space of B.

We should also discuss computability issues here. The construction of TB is effective in the
sense that if B is a computable Boolean algebra, then TB is a computable binary branching
tree. Furthermore, the correspondence given above between ultrafilters in B and paths in
TB preserves the Turing degrees of the objects involved. That is, for all ultrafilters U in B,
U ≡T fU . We have therefore shown the following theorem.

Theorem 7.2. Let B be a countable Boolean algebra. There is a binary branching tree TB
such that [TB] is homeomorphic to the Stone space of B. Furthermore, if B is computable,
then TB is computable and the bijection between ultrafilters in B and paths in TB can be chosen
to preserve Turing degree.

We present the following application of this theorem as our first real taste of the usefulness
of tree representations in computable algebra.

Theorem 7.3. Every computable Boolean algebra has a computable ultrafilter.

Proof. Fix a computable Boolean algebra B and let TB be as above. Notice that if σ is a node
in TB of length n, then b

σ(0)
0 ∧ · · · ∧ bσ(n1)

n−1 6= 0 and therefore this element can be extended to
an ultrafilter. Since the ultrafilters correspond exactly to the paths through TB, this means
that there is a path in TB that passes through σ. In other words, every node on TB extends
to a path. Therefore, TB has a computable path f and the associated ultrafilter Uf is a
computable ultrafilter.

In fact, we can say something more here. Consider an c.e. Boolean algebra with underlying
set B and equivalence relation ∼. We can associate a computable binary branching tree SB
to this Boolean algebra which is slightly different from TB, but for which [SB] = [TB]. We
build the tree SB in stages. At stage 0, put the empty string λ into SB.

At the end of stage s, we will have put all strings of length ≤ s into SB that will ever go
into SB. Assume that σ0, . . . σn are the strings of length s in SB at the end of stage s. At
stage s + 1, we consider each of these strings individually. For σi, we consider each string
τ ⊂ σi. For each such string of length m, run the enumeration of ≤ for s many steps and
check if b

τ(0)
0 ∧ · · · ∧ bτ(m−1)

m−1 ∼ 0. If so, the do not extend σi at stage s + 1. If not, then add
both σi ∗ 0 and σi ∗ 1 to SB.

The idea here is that we cannot tell right away if σ should be in the tree TB. So, we
take our best guess that it should be in if we have not seen a proper initial segment which
generates the 0 element in the c.e. Boolean algebra by stage |σ|. If we later find out that we
were wrong, we terminate all extentions of σ at the stage at which we find out that we are
wrong. SB will have many nodes which cannot be extended to a path, but the nodes which do
extend to a path are exactly the nodes that are in TB. Therefore, [SB] = [TB]. Furthermore,
as above, the natural bijection between ultrafilters in B and paths in SB preserves Turing
degree. We have therefore shown the following theorem.

16

Theorem 7.4. For any c.e. Boolean algebra B, there is a computable binary branching tree SB
such that [SB] is homeomorphic to the Stone space of B. Furthermore, this homeomorphism
can be chosen to preserve Turing degrees between the ultrafilters in B and the paths in SB.

Unfortunately, we cannot now conclude a theorem like Theorem 7.3 for c.e. Boolean al-
gebras since the computable tree SB has nodes that do not extend to paths. However, we
can relate this result to complete consistent extensions of computable theories. Let T be a
consistent computable (not necessarily closed) theory. LindT is an c.e. Boolean algebra and
therefore there is an associated computable binary branching tree S. The set [S] corresponds
exactly to the set of ultrafilters of LindT , which in turn correspond exactly to the complete
consistent extensions of T . Therefore, we have established the following corollary.

Corollary 7.5. For any consistent computable theory T , there is a computable binary branch-
ing tree ST and a one-to-one Turing degree preserving bijection between the complete consistent
extensions of T and the paths through ST .

8 Cantor-Bendixson derivatives

The Cantor-Bendixson derivative is a useful algebraic operation that can be performed on
any of the representations of Boolean algebras we have considered so far. It is usually defined
in the context of topological spaces.

Definition 8.1. Let X be a topological space. An isolated point in X is a point x ∈ X such
that {x} is open. The Cantor-Bendixson derivative CB(X) of X is the set of nonisolated
points in X.

Consider what this definition says in the context of Stone spaces. Let B be a Boolean
algebra and let S(B) be its Stone space. CB(S(B)) is formed by removing all isolated ultra-
filters from S(B). By the definition of the topology on S(B), an ultrafilter U is isolated in
S(B) if and only if there is an element b ∈ B such that U is the only ultrafilter that contains
b.

Lemma 8.2. An ultrafilter is isolated if and only if it is principal.

Proof. First, consider an atom b ∈ B and let F be the principal filter generated by b. (That
is, F is the set of all elements above b.) We claim that F is an ultrafilter. Because b is an
atom, for all c ∈ B, either b ≤ c or b ∧ c = 0. But, b ∧ c = 0 implies that b ≤ c. So, for any
c ∈ B, either c ∈ F or c ∈ F and hence F is an ultrafilter.

This argument shows that if an atom is in a proper filter than that filter is exactly the
principal ultrafilter generated by that atom. Therefore, any ultrafilter containing an atom
is isolated. By Lemma 5.1, every principal ultrafilter contains an atom and therefore any
principal ultrafilter is isolated.

Conversely, suppose that U is isolated by an element b (that is, it is the unique ultrafilter
containing b) but is not principal. By Lemma 5.1, U cannot contain an atom and so b is not
an atom. Let c, d be nonzero elements such that c ∧ d = 0 and c ∨ d = b. Since c ∧ d = 0,

17

we have that c 6≤ d and d 6≤ c. Therefore, the proof of Corollary 2.14 shows that there are
ultrafilters Uc and Ud such that c ∈ Uc, d 6∈ Uc and c 6∈ Ud, d ∈ Ud. Since c, d ≤ b, both
of these ultrafilters contain b. Either Uc 6= U or Ud 6= U , and whichever inequality holds
contradicts the assumption that U is the only ultrafilter containing b.

Combining Lemmas 5.1 and 8.2 yields the fact that an ultrafilter is isolated if and only if
it contains a finite join of atoms. Therefore, CB(S(B)) is formed by removing the ultrafilters
containing finite joins of atoms from S(B).

To translate this definition in terms of a binary branching tree T , think of the topological
space [T]. A path f is isolated in [T] is there is an n such that f is the only path through
f |n. Therefore, topologically, CB([T]) consists of all the nonisolated paths in [T]. In terms
of the actual tree T , we define CB(T) to be the binary branching tree formed by removing
all nodes σ from T that have either no paths through them or a unique path through them.
Notice that CB([T]) = [CB(T)].

To translate this definition in terms of Boolean algebras, consider the Cantor-Bendixson
derivative of the Stone space. CB(S(B)) is formed by removing all the ultrafilters that contain
finite joins of atoms. So, to replicate this process in the Boolean algebra, we want to take a
quotient that will collapse the finite joins of atoms.

Definition 8.3. Let B be a Boolean algebra. The Frechet ideal F(B) of B is the ideal
generated by the atoms of B.

As long as B is not finite, F(B) is a proper ideal. The Cantor-Bendixson derivative of B
is defined to be the quotient algebra CB(B) = B/F(B).

Finally, we define the Cantor-Bendixson derivative of a linear order L. Consider the
interval algebra Int(L). In order to mimic the definition in the case of Boolean algebras, we
want to collapse all finite joins of atoms in Int(L). An atom in the interval algebra is given
by the half-open interval of a pair of successive elements [a, b). Therefore, the analog of the
Frechet ideal is the equivalence relation a ∼ b if and only if the interval [a, b] is finite. The
Cantor-Bendixson derivative CB(Int(L)) is the quotient order L/ ∼. The following lemmas
relates these notions and is a good exercise in working out the definitions above.

Lemma 8.4. If L is a linear order and B = Int(L), then CB(B) ∼= Int(CB(L)).

9 Definitions and basic examples of Π0
1 classes

We will be concerned with what are sometimes called recursively bounded Π0
1 classes or

Π0
1 classes of sets.

In this section of the notes, we frequently use the variables X,Y, Z to range over subsets
of 2ω. We use the variables f, g, h to range over elements of ωω. We use σ, τ to range over
strings, either from ω<ω or 2<ω, which will be clear from the context.

Definition 9.1. A tree T is a subset of ω<ω that is closed under initial segments. A finitely
branching tree is a tree T such that there is a function f ∈ ωω and all nodes σ ∈ T satisfy
σ(n) ≤ f(n). If this function is computable, then the tree is called a highly computable
tree. A binary branching tree is a subset of 2<ω which is closed under initial segments.

18

If f : ω → ω is a function, then f |n is the finite sequence 〈f(0), . . . , f(n−1)〉. Notice that
if f happens to map into {0, 1}, then f |n is a finite binary sequence. If T is any type of tree,
we use [T] to denote the set of all functions f such that ∀n(f |n ∈ T). Any function f ∈ [T] is
called a path through T and [T] is called the set of paths through T . Notice that the term
“path” will always mean “infinite path”.

We will be concerned with predicates R(k,X) which are computable or Π0
1. Recall that

there are several equivalent ways to define such predicates. R(k,X) is a computable predi-
cate if there is an index e such that ϕXe (k) is defined for all X and all k and ϕXe (k) = R(k,X).
Equivalently, R(k,X) is definable by a ∆0

1 formula in second order arithmetic. R(k,X) is a
Π0

1 predicate if there is an index e such that ϕXe (k, n) is defined for all X, k, n and

R(k,X) holds ⇔ ∀n(ϕXe (k, n))

R(k,X) does not hold ⇔ ∃n(¬ϕXe (k, n)).

Equivalently, R(k,X) is definable by a Π0
1 formula in second order arithmetic. The next

lemma gives a useful Normal Form Theorem for Π0
1 predicates.

Lemma 9.2. R(k,X) is a Π0
1 predicate if and only if there is a primitive recursive function

f such that

R(k,X) holds ⇔ ∀n(f(k, n,X|n) = 1)

R(k,X) does not hold ⇔ ∃n(f(k, n,X|n) = 0).

Proof. Fix an index e as in the definition of a Π0
1 predicate. Define a computable function f

by f(k, n, σ) = 0 if there is an m ≤ n for which ϕσe,n(k,m) ↓= 0, and define f(k, n, σ) = 1
otherwise. It is not hard to check that f has the required properties. Notice that f is primitive
recursive since the Kleene T -predicate is primitive computable and hence for any string σ and
any s, the relation ϕσe,s(k,m) = 0 is a primitive computable relation.

We begin with a proposition which will yield several definitions for Π0
1 classes.

Proposition 9.3. For any class P ⊂ ωω, the following are equivalent.

1. P = [T] for a computable tree T ⊂ ω<ω.

2. P = [T] for a primitive recursive tree T ⊂ ω<ω.

3. P = {f ∈ ωω|∀n(R(n, f))} for some computable relation R.

4. P = [T] for some Π0
1 tree T .

Proof. To see (1) ⇒ (2), let P = [S] where S ⊂ ω<ω is a computable tree. Fix an index e for
a computable function ϕe such that ϕe(σ) = 1 if σ ∈ S and ϕe(σ) = 0 if σ 6∈ S. As usual, we
have the approximations ϕe,s to ϕe. Define a primitive recursive tree T by τ ∈ T if and only
if

∀n < |τ |(¬ϕe,|τ |(τ |n) = 0).

19

Notice that if σ ∈ S, then for all n < |σ|, σ|n ∈ S and hence ϕe(σ|n) = 1. Therefore, S ⊂ T
and so [S] ⊂ [T]. Furthermore, if f 6∈ [S], then for some n, f |n 6∈ S. Let σ = f |n and let s be
such that ϕe,s(σ) ↓= 0. For all τ with σ ⊂ τ and |τ | > s, we have ϕe,|τ |(τ |n) = ϕe,|τ |(σ) = 0.
Hence, all extensions of σ of length longer than s are not in T . Therefore, f 6∈ [T] as required.

Next we show (2) ⇒ (3). Recall that to say R(n, f) is computable means that there is
a computable function ϕe such that for all f ∈ ωω and all n, R(n, f) ⇔ ϕfe (n) = 1 and
¬R(n, f) ⇔ ϕfe (n) = 0. Define R(n, f) ⇔ f |n ∈ T . R is clearly computable and has the
desired property.

To see (3)⇒ (1), fix an index e such that R(n, f) ⇔ ϕfe (n) = 1 and ¬R(n, f) ⇔ ϕfe (n) = 0.
Define a computable tree T by

τ ∈ T ⇔ ∀k < |τ |(¬ϕτe,|τ |(k) = 0).

Assume that ∀nR(n, f) holds. Then, ∀n, s(¬ϕf |se,s (n) = 0) and so f ∈ [T]. If ∃n¬R(n, f), then

fix such an n. There must be an s ≥ n such that ϕ
f |s
e,s (n) = 0. But this implies that f |s 6∈ T

and hence f 6∈ [T].
It is clear that (1) implies (4), so it only remains to show that (4) implies (1). Let S ⊂ ω<ω

be a Π0
1 tree. There is a computable relation R such that σ ∈ S if and only if ∀nR(n, σ). Define

T by τ ∈ T if and only if ∀m,n ≤ |τ |(R(m, τ |n)). If σ ∈ S, then for all m ≤ |σ|(σ|m ∈ S)
and so ∀n,m ≤ |σ|(R(n, σ|m)). Therefore, σ ∈ T , so S ⊂ T and [S] ⊂ [T]. If σ 6∈ S, then
there is an n such that ¬R(n, σ). As above, this implies σ has no extensions in [T].

Definition 9.4. A Π0
1 class is a class P ⊂ ωω which satisfies any of the conditions from

Proposition 9.3. If P = [T] for a finitely branching tree, then P is called a bounded Π0
1

class, and if T is highly computable, then P is called a computablely bounded Π0
1 class.

A Π0
1 class of sets is a class P ⊂ 2ω for which there is a computable tree T ⊂ 2<ω with

P = [T].

Our main interest will be with Π0
1 classes of sets. Whenever we refer to a Π0

1 class of sets
P = [T], we assume that T is a computable binary branching tree. Proposition 9.3 can be
restated in terms of Π0

1 classes of sets.

Proposition 9.5. For any class P ⊂ 2ω, the following are equivalent.

1. P = [T] for a computable tree T ⊂ 2<ω.

2. P = [T] for a primitive recursive tree T ⊂ 2<ω.

3. P = {X ∈ 2ω|∀n(R(n,X))} for some computable relation R.

4. P = [T] for some Π0
1 tree T ⊂ 2<ω.

By Proposition 9.5, there is an effective list of all Π0
1 classes of sets. Let fe for e ∈ ω

effectively enumerate all primitive recursive functions from 2<ω into 2. Define Te to be a tree
such that

σ ∈ Te ⇔ ∀τ ⊂ σ(fe(τ) = 1).

20

Then the sequence [Te] enumerates all Π0
1 classes of sets. When we refer to an index for a Π0

1

class of sets P , we mean an index e such that P = [Te].
For any finitely branching tree T ⊂ ω<ω, the topology on [T] is given by basic open sets

Oσ = { f ∈ [T] |σ ⊂ f }.

Since T is finitely branching, [T] is compact and these basic open sets are also closed. Fur-
thermore, [T] is Hausdorff and hence is a Boolean space. Notice that this topology is exactly
the same as the topology we described when we studied the tree representation for the Stone
space of a countable Boolean algebra. Recall that we say that f ∈ [T] is an isolated path if
there is an n such that f is the unique path in T passing through f |n.

Lemma 9.6. An isolated path f ∈ [T] in a Π0
1 class of sets is computable.

Proof. Let n be such that f is the unique path in T passing through f |n. As a finite amount
of information, we can assume that we know the values of f for numbers ≤ n. We define the
values of f for numbers greater than this by induction. Assume that m > n and we know
f |m = 〈f(0), . . . , f(m − 1)〉. We search the values of nodes in T above f |m ∗ 0 and f |m ∗ 1
until we find that T is finite above one of these nodes. Notice that it must be finite above one
of these nodes since otherwise there would be a path in T passing though f |m ∗ 0 and one
passing through f |m∗1, which contradicts the fact that f is the unique path passing through
f |n ⊂ f |m. We set f(m) = 1− i where i is such that the tree above f |m ∗ i is finite.

We next show that up to homeomorphism, it does not matter whether we consider Π0
1

classes of sets or computablely bounded Π0
1 classes.

Proposition 9.7. For every highly computable tree T , there is a computable tree S ⊂ 2<ω

such that the spaces [T] and [S] are computablely homeomorphic.

Proof. We define a computable mapping ψ from ω<ω to 2<ω that sends σ ∈ ω<ω to

ψ(σ) = 〈0σ(0)10σ(1)1 · · · 0σ(|σ|−1)1〉.

The mapping ψ extends to infinite strings in ωω in the obvious way. ψ is not a homeomorphism
between ωω and 2ω because ωω is not compact while 2ω is compact. However, let f be a
computable function such that for all σ ∈ T and n < |σ|, σ(n) < f(n). If we define the tree

S = {ψ(σ) ∗ 0i |σ ∈ T ∧ i < f(|σ|) }

then ψ is a homeomorphism between [T] and [S]. We leave the details to the reader.

We conclude this section with several examples of Π0
1 classes of sets.

Example 9.8. By Proposition 9.5, the class Pe = {X|∀s(ϕXe,s(e) ↑)} is a Π0
1 class of sets and

there is a computable tree Qe ⊂ 2<ω such that [Qe] = Pe. Similarly, there are computable
binary branching trees Qi

e such that [Qi
e] = {X|∀s(ϕXe,s(i) ↑)}.

21

Example 9.9. Let A and B be disjoint computablely enumerable sets. The class Sep(A,B)
of separating sets of A and B is defined to be

Sep(A,B) = {C ⊂ ω |A ⊂ C ∧ C ∩B = ∅ }.

Sep(A,B) is a Π0
1 class of sets. Π0

1 classes of this type are called Π0
1 classes of separating

sets.

Example 9.10. A useful example of a class of separating sets comes from letting A =
{e|ϕe(e) = 0} and B = {e|ϕe(e) = 1}. A set X is in Sep(A,B) if and only if for all e,
X(e) 6= ϕe(e). Therefore, this Π0

1 class of sets gives exactly the DNR2 functions. (These
functions are called “diagonally noncomputable” and the subscript 2 indicates that we are
dealing only with {0, 1}-valued functions.) These sets are extremely useful. In particular,
there are two equivalences for when a Turing degree a is the degree of a DNR2 set. a has this
property if and only if a is the degree of a complete extension of Peano arithmetic, and also
if and only if a can compute a path through every nonempty Π0

1 class of sets.

Example 9.11. The union and the intersection of two Π0
1 classes of sets are Π0

1 classes of sets.
Of course, this example can be extended to finite unions and intersection. Furthermore, taking
finite unions and intersections is uniform in the indices for the Π0

1 classes of sets involved.

Example 9.12. Let Pi for i ∈ ω be a computable descending chain of nonempty Π0
1 classes

of sets. That is, Pi+1 ⊂ Pi for all i. Then, P = ∩i∈ωPi is a nonempty Π0
1 class of sets. (To

see this is so, recall that we can assume that each Pi is given by a computable tree and all
we need to show about P is that it is given by a Π0

1 tree. To see why P is nonempty, notice
that it is the intersection of a nested sequence of nonempty closed sets in 2ω.)

10 Topological basics

Our goal in this section is to examine some of the basic topological facts associated with Π0
1

classes of sets. Before beginning this discussion, we introduce the standard metric function
d(X, Y) on 2ω. If X 6= Y , then let n be the least number such that X(n) 6= Y (n). We define
d(X, Y) = 2−n.

Lemma 10.1. The metric d(X,Y) generates the topology we have defined on 2ω.

Proof. Fix any set X and any natural number n. The closed disc of radius 2−n around X is
equal to the open disc of radius 2−n+1 around X and both are equal to the set of all sets Y
such that X|n ⊆ Y . Therefore, the topology we defined is contained in the metric topology.

For the other containment, let X be any set of consider the set A of all Y such that
d(X, Y) < r for some real number r. Let n be the largest n such that 2−n ≤ r. Then A is
exactly the set of all Y such that X|n ⊂ Y . Therefore, the metric topology is contained in
the topology we defined earlier.

Lemma 10.2. For every closed set C ⊂ 2ω, there is a binary branching tree T such that
C = [T].

22

Proof. Recall that the basis of clopen sets for the topology on 2ω is given byOσ = {X|σ ⊂ X}.
We define the tree T by

σ ∈ T ⇔ ∃X ∈ C(σ ⊂ X).

That is, σ ∈ T if and only if the basic clopen set Oσ has nontrivial intersection with C.
It remains to show that C = [T]. To see the ⊇ containment, let X ∈ [T]. Then, for every

n, X|n ∈ T , so we can fix a point Xn ∈ C such that Xn ∈ OX|n. Since both X and Xn are in
OX|n, d(X,Xn) ≤ 2−n. Therefore, the points Xn converge to X in the metric topology. Since
C is closed and the points Xn are all in C, we must have X ∈ C as required.

To see the ⊆ containment, let Y ∈ C. Then, for every n, Y |n ∈ T by the definition of T .
Therefore, Y ∈ [T] as required.

Lemma 10.2 tells us that we can view all closed sets in 2ω as sets of paths through binary
branching trees. Since Π0

1 classes are defined as the set of paths through a computable binary
branching tree, we can view them as expressing the class of effectively closed sets.

We next show that every computable functional defines a continuous map on 2ω.

Lemma 10.3. If Ψ is a computable functional and C is a closed set in 2ω, then Ψ−1(C) is
also a closed set.

Proof. Fix a tree T such that C = [T]. Fix an index e such that ΨY = ϕYe . Since Ψ is a
computable functional, ϕYe (x) converges for all x and all Y . Therefore, for each σ, there is a
unique natural number nσ such that nσ is the greatest number ≤ |σ| such that ϕσe converges
on 0, . . . , nσ − 1. We define a tree S by

σ ∈ S ⇔ ϕσe |nσ ∈ T.

S is closed downwards since τ ⊂ σ implies nτ ≤ nσ and ϕτe |nτ ⊂ ϕσe |nσ. Therefore, S is a
tree.

It remains to verify that [S] = Ψ−1([T]). Notice that

Y ∈ Ψ−1([T]) ⇔ ϕYe ∈ [T] ⇔ ∀m(ϕYe |m ∈ T)

and that
Y ∈ [S] ⇔ ∀m(Y |m ∈ S) ⇔ ∀m(ϕY |m

e |nY |m ∈ T).

However, by definition, ϕ
Y |m
e |nY |m = ϕYe |nY |m ∈ T . Furthermore, since ϕXe is total for all X,

as m→∞, nY |m →∞. Therefore, ∀m(ϕYe |m ∈ T) if and only if ∀m(ϕ
Y |m
e |nY |m).

Having seen that computable functionals define continuous maps, we can ask whether they
also define continuous functions if we restrict our attention to effectively closed sets. We prove
that Π0

1 classes of sets are closed under taking inverse images of computable functionals.

Lemma 10.4. Let P = [T] be a Π0
1 class of sets and let Ψ be a computable functional. Then

Ψ−1(P) is a Π0
1 class of sets.

23

Proof. Fix an index e such that ΨY = ϕYe . By definition, we have

Y ∈ Ψ−1(P) ⇔ ϕYe ∈ P ⇔ ∀n(ϕYe |n ∈ T).

Since T is a computable tree and ϕYe is total for all Y , the predicate R(n, Y) defined by
ϕYe |n ∈ T is computable. Therefore, by Proposition 9.5, Y ∈ Ψ−1 defined a Π0

1 class of
sets.

Projection is another common geometric operation on topological spaces. We next show
that Π0

1 classes are closed under projections by Π0
1 relations. We use this fact to show that

they are also closed under taking images by computable functions.

Lemma 10.5. Let R(k,X, Y) be a Π0
1 predicate. The predicate S(k,X) = ∃Y (R(k,X, Y)

defines a Π0
1 class of sets.

Proof. By the Normal Form Theorem for Π0
1 predicates, we can write R(k,X, Y) as

∀nR∗(k,X|n, Y |n) where R∗(k, σ, τ) is a computable (even primitive recursive) relation.
Therefore, S(k,X) holds if and only if ∃Y ∀nR∗(k,X|n, Y |n). Applying König’s Lemma,
this statement is equivalent to ∀n∃τ∀m ≤ n(|τ | = n ∧ R∗(k,X|m, τ). Because ∃τ(|τ | = n) is
a bounded quantifier, this statement defines a Π0

1 class of sets.

Lemma 10.6. Let P be a Π0
1 class of sets and let Ψ be a partial computable functional defined

at least on all members of P . Then, Ψ(P) is a Π0
1 class of sets.

Proof. Fix an index e for Ψ. X ∈ Ψ(P) if and only if ∃Y (Y ∈ P ∧ ∀n(ϕYe (n) = X(n)). By
definition, Y ∈ P is Π0

1. Since ϕYe (n) is total for all Y ∈ P , we have that ϕYe (n) = X(n) is a
computable check for Y ∈ P . Therefore, by Lemma 10.5, Ψ(P) is a Π0

1 class.

In order to establish some measure theoretic results later, we will use yet another charac-
terization of the topology on 2ω.

Lemma 10.7. The topology we have defined on 2ω is equivalent to the product topology on
{0, 1}ω where the set {0, 1} is given the discrete topology.

Proof. In the product topology, the basic open sets are given by specifying fixed nonempty
open sets in a finite number of of coordinates and letting the other coordinates range over
{0, 1}. Without loss of generality, we can assume that for any coordinate for which we have
fixed an open set, we have fixed either {0} or {1}. Thus, we have just specified a finite number
of the coordinates for the elements X in the basic open set. Thus, for every string σ, the set
of paths through σ is a basic open set in the product topology. So, our topology is contained
in the product topology.

To see the other containment, suppose we have specified finite sets U and V such that our
basic open set in the product topology consists of all X such that X(n) = 1 for n ∈ U and
X(n) = 0 for n ∈ V . Let m be the maximum of U ∪ V and let σ0, . . . , σk be the set of all
strings of length m+ 1 such that σi(n) = 1 if n ∈ U and σi(n) = 0 if n ∈ V . Then, the basic
open set from the product topology is equal to the finite union of [2<ω(σi)]. (That is, the set
of all sets X such that σi ⊂ X for some i ≤ k.) Thus, the product topology is contained in
our topology.

24

From this description of the topology on 2ω, it is natural to assign the product measure
of the “fair coin flip” measure on {0, 1} to 2ω. That is, we assign measure 1/2 to each of
the subsets {0} and {1} in {0, 1} and then use the product measure on {0, 1}ω. Under this
measure, the basic open set Oσ has measure 2−n where n = |σ|. We denote this measure by
µ.

We conclude this section with the construction of a Π0
1 class of sets M that is complete

in a sense made specific below. Recall that we have an indexing system for Π0
1 classes using

primitive recursive trees, Pe = [Te]. M is complete in the sense that for any X ∈ [M] and
any e such that Pe 6= ∅, Xe ∈ Pe, where Xe denotes the eth column of X.

Definition 10.8. Let P and Q be nonempty Π0
1 classes of sets. We P is Medvedev re-

ducible to Q if there is a computable functional Ψ that maps elements of Q to elements of
P . We say that Q is Medvedev complete if P is Medvedev reducible to Q for all nonempty
Π0

1 classes of sets P .

Lemma 10.9. There exists a nonempty Π0
1 class of sets M which is Medvedev complete.

Proof. Since the list of primitive recursive trees Te is uniform, there is a computable predicate
U(e, σ) which holds if and only if σ ∈ Te. Therefore, X ∈ [Te] if and only if ∀n(U(e,X|n)).
We abuse notation slightly be writing U(e,X) in place of ∀n(U(n,X|n)). Define the predicate
U∗(e,X) by

∀n∀σwith |σ| = n

(
[∀m ≤ n(U(e, σ|m))] → U(e,X|n)

)
.

Fix any e such that Pe is nonempty. We claim that U∗(e,X) ⇔ U(e,X). To see the (⇐)
direction, fix X such that U(e,X) holds. For any n, U(e,X|n) holds, so U∗(e,X) holds. To
see the (⇒) direction, fix X such that U(e,X) does not hold. X 6∈ Pe implies that there is an
n such that X|n 6∈ Te. However, since Pe is not empty, there is a σ ∈ Te with |σ| = n. This
n and σ are witnesses that U∗(e,X) does not hold.

Consider any e such that Pe is empty. If Te = ∅, the U∗(e,X) holds for everyX. Otherwise,
let σ ∈ Te be such that σ ∗ 0 6∈ Te and σ ∗ 1 6∈ Te. Then, U∗(e,X) holds for any X which
extends σ. Therefore, U∗(e,X) is nonempty for every e.

We define M by
M = {Y | ∀eU∗(e, Ye) }.

(Here, we are again using Ye to denote the eth column of Y .) M is nonempty because for
each e, U∗(e,X) is nonempty. M is a Π0

1 class because the defining predicate is Π0
1. M is

Medvedev complete because for each nonempty Pe, the computable functional that sends Y
to Ye computes an element in Pe from M .

11 Degrees of members of Π0
1 classes

In this section, we examine the Turing degrees of members of Π0
1 classes of sets. We start with

positive results which say that every Π0
1 class of sets has a member with some degree-theoretic

property. (Such results are frequently referred to as “Basis Theorems”.)

25

Definition 11.1. A node σ in a tree T is called extendible if there is a path f ∈ [T] which
extends σ. The set of extendible nodes of T is denoted Ext(T).

Recall König’s Theorem for infinite finitely branching trees.

Theorem 11.2. Every infinite finitely branching tree has a path.

We are now ready for our first Basis Theorem.

Theorem 11.3. Every nonempty Π0
1 class of sets contains a member which is computable

from 0′.

Proof. Let P = [T] be a nonempty Π0
1 class of sets. By König’s Theorem, the extendible

nodes of T are given by

Ext(T) = {σ ∈ T | ∀n ≥ |σ|∃τ(|τ | = n ∧ σ ⊂ τ ∧ τ ∈ T) }.

The quantifier ∃τ(|τ | = n) is a bounded quantifier, so the definition of the extendible nodes is
Π0

1 and therefore, the extendible nodes are computable from 0′. We can define the “leftmost
path” in [T] as follows. Set f(0) = 0 if 〈0〉 is extendible and f(0) = 1 otherwise. Notice
that 〈f(0)〉 is extendible in either case since [T] is nonempty. Assume that f(0), . . . , f(n) are
defined such that 〈f(0), · · · , f(n)〉 is extendible. Define f(n + 1) = 0 if 〈f(0), · · · , f(n), 0〉
is extendible and f(n + 1) = 1 otherwise. Notice that the induction hypothesis is satisfied.
Furthermore, since the extendible nodes are computable from 0′, the leftmost path satisfies
f ≤T 0′.

This proof actually shows something more, which we state as our second Basis Theorem.

Theorem 11.4. Every nonempty Π0
1 class of sets contains a member of c.e. degree.

Proof. Fix a nonempty Π0
1 class of sets [T] and let L be the leftmost path as defined in the

proof of Theorem 11.3. Let N be the set of nodes which lie either on L or to the left of some
initial segment of L. We claim that N is an c.e. set. To see the basic idea of why this is so,
notice that we can start by enumerating 〈0〉 in L (assuming that it is in T). Only if we later
discover that the tree above this node is finite will we we enumerate 〈1〉 into L. Enumerating
this node at a late stage into L is not a problem since our only claim is that L is enumerable.
The precise details are left to the reader.

Once we know that N is c.e., it only remains to show that L ≡T N . Clearly, N is
computable from L. For the other direction, σ ⊂ L if and only if σ is the rightmost node of
length |σ| which is in N .

The next two Basis Theorems use a construction which relies on Examples 9.8 and 9.12.
This method of proof is called “forcing with Π0

1 classes”. The first of these theorem is com-
monly referred to as the Low Basis Theorem.

Theorem 11.5. Every nonempty Π0
1 class of sets has a member of low degree.

26

Proof. Let P = [T] be a nonempty Π0
1 class of sets and let Qe be defined as in Example 9.8.

We define a descending sequence of Π0
1 classes of sets [Si] contained in P . The sequence of

computable binary branching trees Si will be uniform in 0′. Set S0 = T . Assume that Se has
been defined. Ask 0′ whether Se ∩Qe is finite. That is, ask if

∃n∀σ(|σ| = n→ σ 6∈ Se ∩Qe).

Because the quantifier ∀σ(|σ| = n) is a bounded quantifier, this question is Σ0
1 and can be

answered by 0′. If the answer is yes, then set Se+1 = Se. If the answer is no, then set
Se+1 = Se ∩Qe.

Notice that we have forced whether or not e ∈ X ′ for all X in [Se+1]. That is, e ∈ X ′ if
and only if ϕXe (e) ↓. By the definition of Qe, this is equivalent to X 6∈ [Qe]. Therefore, if we
defined Se+1 = Se ∩ Qe, then X ∈ [Se+1] implies X ∈ [Qe] and therefore, e 6∈ X ′. However,
if we defined Se+1 = Se, then Se ∩Qe is finite, so [Se] ∩ [Qe] is empty. Therefore, X ∈ [Se+1]
implies X 6∈ [Qe] and hence e ∈ X ′.

It is clear that Se+1 ⊂ Se for all e and hence the sequence of Π0
1 classes of sets [Se] is

decreasing and contained in P . Furthermore, each [Se] is a closed subset of 2ω and therefore,
∩e∈ω[Se] is nonempty. (Notice that although each [Se] is a Π0

1 class of sets, the intersection is
not a Π0

1 class of sets because the sequence Se is not computable; it is only computable in 0′.)
It remains to show that every member of this intersection has low degree. At the eth stage of
the construction, we forced whether or not e ∈ X ′. Since the construction is computable in
0′, we can determine if e ∈ X ′ computablely in 0′.

For the next Basis Theorem, we need to recall a definition from classical recursion theory.

Definition 11.6. A set A is hyperimmune-free if for every total function f ≤T A, there is
a computable function g such that f(n) ≤ g(n) for all n. In other words, every total function
computable in A is majorized by a computable function.

Theorem 11.7. Every nonempty Π0
1 class of sets contains a member of hyperimmune-free

degree.

Proof. Let P = [T] be a nonempty Π0
1 class of sets. We need to find a set A ∈ P such that for

all e, if ϕAe is total, then ϕAe is majorized by a computable function. We force with a slightly
different set of Π0

1 classes. For each e and i, let Qi
e be as in Example 9.8. Recall that [Qi

e] is
the set of all X for which ϕXe (i) ↑.

As in the proof of the Low Basis Theorem, we define a decreasing sequence of computable
binary branching trees Se contained in T . As above, the intersection ∩[Se] will be nonempty
and each set A in this intersection will be hyperimmune-free. For this proof, we do not need
to worry about the complexity of defining the decreasing sequence of Π0

1 classes.
Set S0 = T . Assume that Se has been defined. Ask if Se ∩Qi

e is finite for all i. If so, then
set Se+1 = Se. If not, then pick an i such that Se ∩Qi

e is infinite and set Se+1 = Se ∩Qi
e.

Notice that we have again forced our desired result for index e at stage e + 1. If Se+1 =
Se ∩Qi

e, then ϕAe is not total for any A ∈ [Se+1] since ϕAe (i) ↑. If Se+1 = Se, then we know ϕAe
is total for all A ∈ [Se+1]. To define the majorizing function f(x), search for a level n such
that ϕσe (x) ↓ for all σ ∈ Se+1 with |σ| = n. (If there were no such level, then every level would

27

contain a string σ for which ϕσe (x) ↑. But, then the set of such nodes would form an infinite
Π0

1 subtree of Se = Se+1 which would be contained in Qi
e, contrary to the definition of Se+1.)

Set f(x) equal to the maximum of ϕσe (x) for σ ∈ Se+1 with |σ| = n. The function f is the
desired majorizing function.

Theorem 11.8. Let P be a nonempty Π0
1 class of sets and let C be any noncomputable set.

There is an X ∈ P for which C 6≤T X.

Proof. Let P = [S0] and we define a decreasing sequence of infinite trees Se+1 ⊂ Se as in the
last two theorems. We want to make sure that for all X ∈ [Se+1], ϕ

X
e 6= C. Assume that we

have defined Se. There are several cases to consider for the definition of Se+1. (Once again,
we do not need to worry about the complexity of the questions we ask when defining Se+1,
since in each case we define Se+1 from Se plus a finite amount of information.)

First, we ask if
∀n∃i∀X ∈ [Se](ϕ

X
e (n) = i).

If the answer is yes, then for all paths X ∈ [Se], ϕ
X
e is the same function. Furthermore, this

function is computable. To compute ϕXe (n), look for a level in Se such that for every σ ∈ Se
at this level, ϕσe (n) converges and gives the same answer. We know such a level exists, since
if not, there would be infinitely many σ ∈ Se for which ϕσe (n) either does not converge or
converges to a different value. By König’s Lemma, there would be a path X which contradicts
the answer to our question above. Since C is not computable and every X ∈ [Se] satisfies ϕXe
is computable, we can set Se+1 = Se.

Second, assume that the answer to the question above is no. We next ask if there is an n
such that Qn

e ∩ Se is infinite. If so, then we set Se+1 = Qn
e ∩ Se. As in the last theorem, we

have forced that every X ∈ [Se+1] satisfies ϕXe is not total (and therefore cannot equal C).
Third, if the answer to this second question is also no, then as in the last theorem, we

know that for all X ∈ [Se], ϕ
X
e is total. However, since the answer to our first question was

no, we know that there are X1, X2 ∈ [Se] and n ∈ ω such that ϕX1
e (n) 6= ϕX2

e (n). One of these
values must differ from C(n). Without loss of generality, assume that ϕX1

e (n) 6= C(n). Let σ
be an initial segment of X1 such that ϕσe (n) converges. Let Se+1 be the set of all nodes in Se
which are comparable to σ. We know [Se+1] is not empty since X1 ∈ [Se+1] and we know for
all Y ∈ [Se+1], ϕ

Y
e (n) = ϕX1

e (n) 6= C(n). So, again we are done.
As in the previous two theorems, ∩Se is nonempty. For eachX in this intersection, ϕXe 6= C

because of our forcing when we define Se+1.

Consider for a moment the special case of a countable Π0
1 class P = [T] of sets. If each

σ ∈ Ext(T) had two incompatible extension in Ext(T), then T would have 2ℵ0 many paths.
Therefore, there must be a node σ ∈ Ext(T) such that there is a unique node τ ∈ Ext(T) at
each level above σ. That is, there is a unique path f in T passing through σ. Or, in other
words, there is an isolated path in T . Since any isolated path is computable, we have shown
the following lemma.

Lemma 11.9. Every countable Π0
1 class of sets contains a computable member.

It is not the case that every Π0
1 class of sets contains a computable member.

28

Theorem 11.10. There is a nonempty Π0
1 class P of sets which contains no computable

member.

Proof. Let P be the Π0
1 class of DNR2 functions from Example 9.10. By the diagonal nature

of its definition, this class cannot contain a computable set. For this theorem, it would suffice
to take Sep(A,B) for any pair of computablely inseparable c.e. sets A and B.

If [T] contains no isolated paths, then [T] is called perfect. In this case, any σ ∈ Ext(T)
has incomparable extensions τ0, τ1 ∈ Ext(T), and therefore [T] has size 2ℵ0 . Combining
this observation with Lemma 11.9, we see that any Π0

1 class of sets that does not have a
computable member must have size 2ℵ0 . We can say much more about the degrees that occur
in such a class. Before we get to this statement, we prove a lemma which is reminiscent of
the computation lemmas in the construction of a minimal Turing degree.

Definition 11.11. Let T be a binary branching tree. A node σ ∈ Ext(T) is said to e-split
if there are extensions τ1 and τ2 of σ in Ext(T) such that ϕτ1e (x) ↓6= ϕτ2e (x) ↓ for some x. The
tree T is said to be e-splitting if every σ ∈ Ext(T) e-splits.

If T is a binary branching tree and σ ∈ T , then we let T (σ) denote the subtree of T which
consists of the nodes in T that are comparable with σ. That is, T (σ) consists of the initial
segment σ followed by all nodes in T that sit above σ.

Lemma 11.12. Let T be an infinite computable binary branching tree and let e be any index.
One of the following three situations must occur:

1. T is e-splitting; or

2. there is an x for which Qx
e ∩T is infinite; (recall the definition of Qx

e from Example 9.8)
or

3. there is a σ ∈ Ext(T) such that for every f ∈ [T (σ)], ϕfe is total and computable.

Proof. Assume that both (1) and (2) fail. Since (1) fails, we can fix a σ ∈ Ext(T) such that
for any extensions τ1, τ2 ∈ Ext(T) of σ and any x, if both ϕτ1e (x) and ϕτ2e (x) converge, then
they are equal. Since (2) fails, for each x there are only finitely many τ ∈ T for which ϕτe(x)
does not converge. We show there is a computable function g such that for all f ∈ [T (σ)], ϕfe
is total and ϕfe = g.

Fix any value x and we define g(x). Since there are only finitely many τ ∈ T for which
ϕτe(x) fails to converge, there is a levelm such that for all τ ∈ T with |τ | = m, ϕτe(x) converges.
By searching with dovetailed computations, we can find the value of m. Furthermore, any
pair of extendible nodes at this level must agree on the value of their computation. Therefore,
we can search for a level n ≥ m at which all nodes τ ∈ T with |τ | = n agree on the value
of ϕτe . Once we find such a level, we set g(x) equal to the value of ϕτe for any τ ∈ T with
|τ | = n.

Lemma 11.13. If T is an infinite computable binary branching tree such that [T] has no
computable member, then for every infinite computable subtree S ⊂ T , [S] is perfect and
therefore |[S]| = 2ℵ0.

29

Proof. If [S] is not perfect, then [S] has an isolated member which is computable, which
contradicts the fact that [T] has no computable member.

Definition 11.14. A rooted tree is a pair 〈σ, T 〉 such that T = T (σ). That is, T restricted
to level |σ| is the linear segment σ. The rooted tree 〈σ1, T1〉 extends 〈σ0, T0〉 if σ0 ⊂ σ1 and
T1 ⊂ T0. 〈σ0, T0〉 and 〈σ1, T1〉 are incomparable if σ0 and σ1 are incomparable. A binary
function f is a path in 〈σ, T 〉 if f is a path in T .

We write 〈σ0, T0〉 ⊂ 〈σ1, T1〉 to denote that 〈σ1, T1〉 extends 〈σ0, T0〉.

Theorem 11.15. Let P = [T] be a Π0
1 class of sets without a computable member and let

{ai|i ∈ ω} be any countable sequence of noncomputable degrees. P has 2ℵ0 members f which
are mutually Turing incomparable and which are incomparable with each ai.

Proof. Fix sets Ai with degree ai. We define a sequence Re, e ∈ ω, such that each Re is a
collection of 2e pairwise incomparable infinite computable rooted trees contained in T and
such that each rooted tree in Re has exactly two extensions in Re+1. We set R0 to be the
singleton set {〈λ, T 〉}. The sets Re will satisfy the following requirements.

1. If f belongs to one of the rooted trees in Re+1, then for all pairs 〈i, j〉 ≤ e, ϕfi 6= Aj.

2. If f and g belong to different rooted trees of Re+1, then for every i ≤ e, ϕfi 6= g.

Notice that since each rooted tree in Rn is an infinite computable subtree of T , each such
tree has no isolated paths by Lemma 11.13. Therefore, for any σ which is an extendible node
in one of there trees, there are incomparable extensions of σ which are themselves extendible.

First we show that these requirements are enough to prove the theorem. Let C be the
set of all paths f in [T] such that for every n, f is in some rooted tree in Rn. Notice that
C has size 2ℵ0 since each rooted tree in Rn has two incomparable extensions in Rn+1. By
requirement (1), no element of C can compute any Ai. By requirement (2), if f 6= g ∈ C,
then ϕfe 6= g for any e. Finally, let D ⊂ C be the collection of functions in C which are not
computable from any set Ai. Since C and D differ by a countable set, |D| = 2ℵ0 . Therefore,
D is the required set of paths in [T].

It remains to show how to satisfy the requirements. We define R0 = {〈λ, T 〉}. Assume
that Re has been defined. For each rooted tree 〈σ,R〉 in Re, we will define extensions 〈τi, Ri〉
and 〈δi, Si〉 for 0 ≤ i ≤ 2 such that

〈τ0, R0〉 ⊂ 〈τ1, R1〉 ⊂ 〈τ2, R2〉
〈δ0, S0〉 ⊂ 〈δ1, S1〉 ⊂ 〈δ2, S2〉.

The extensions indexed with 0 will be chosen to make sure that these τ0 and δ0 are incompara-
ble. The extensions indexed with a 1 will be chosen to satisfy requirement (1). The extensions
indexed with 2 will be chosen to satisfy requirement (2) and they will be the extensions that
are put into Re+1.

Let 〈σ,R〉 be an arbitrary rooted tree in Re and assume that e = 〈i, j〉. We choose
incomparable extensions τ0 and δ0 of σ which are extendible in R. We set R0 = R(τ0) and
S0 = R(δ0).

30

To satisfy requirement (1) for τ0, we apply Lemma 11.12 to R0 with index i. Our goal is
to define an extension 〈τ1, R1〉 of 〈τ0, R0〉 which will serve as our second approximation to the
extension we will put into Re+1.

If condition (1) from Lemma 11.12 holds, then there must be an x and extensions γ0

and γ1 of τ0 such that ϕγ0i (x) ↓6= ϕγ1i (x) ↓. One of these computations must disagree with
Aj(x). Without loss of generality, assume ϕγ0i (x) 6= Aj(x). In this case, we set τ1 = γ0 and

R1 = R0(γ0). Notice that for any path f in 〈τ1, R1〉, ϕfi (x) 6= Aj(x) as required.
If condition (2) from Lemma 11.12 holds, then fix an x such that Qx

i ∩ R0 is infinite. Set
τ1 = τ0 and R1 = Qx

i ∩ R0. Notice that for any path f in 〈τ1, R1〉, ϕfi (x) does not converge,
and therefore cannot be equal to Aj(x).

If condition (3) from Lemma 11.12 holds, then set τ1 = σ and R1 = R0(σ), where σ is
as in condition (3) of Lemma 11.12. For any path f in 〈τ1, R1〉, ϕfi is computable and hence
cannot be equal to Aj, which is noncomputable.

We perform the same actions for δ0 and S0 to get a second approximation 〈δ1, S1〉 to
its rooted tree which satisfies requirement (1). Assume that we have defined these second
approximations for all the rooted trees in Re. We need to satisfy requirement (2) between
these trees.

To satisfy requirement (2) between the trees 〈τ1, R1〉 and 〈δ1, S1〉, fix an index k ≤ e.
Apply Lemma 11.12 to R1 with index k. If case (1) of Lemma 11.12 applies, then fix an x and
extensions γ0 and γ1 of τ which are extendible such that ϕγ0k (x) ↓6= ϕγ1k (x) ↓. If necessary,
extend δ1 to a node in δ′1 ∈ S1 which has length > x. Without loss of generality, assume that
ϕγ0k (x) 6= δ′1(x). Extend 〈τ1, R1〉 to 〈γ0, R1(γ0)〉 and 〈δ1, S1〉 to 〈δ′1, S1(δ

′
1)〉. These extended

rooted trees satisfy requirement (2) for the index k.
If condition (2) of Lemma 11.12 applies, then pick an x such that Qx

e ∩R1 is infinite and
extend 〈τ1, R1〉 to 〈τ1, Qx

e ∩R1〉. Since ϕfk(x) does not converge for any path in this extended
rooted tree, it satisfies requirement (2) with 〈δ1, S1〉 for index k.

If condition (3) of Lemma 11.12 applies, then fix σ from that condition. Extend 〈τ1, R1〉
to 〈σ,R1(σ)〉. Since ϕfk is computable for any path in this extended rooted tree and since
〈δ1, S1〉 does not contain any computable paths (remember that it is a subtree of the original
tree T), we have again satisfied requirement (2) with the index k.

Notice that we are far from through with requirement (2). For each pair of second level
approximations and each index k ≤ e, we need to perform the above extensions. Once 〈τ1, R1〉
has been compared to every other second level approximation with each index k ≤ e, we let
〈τ2, R2〉 be the result and we put this rooted tree into Re+1.

This theorem shows that if P is a Π0
1 class of sets without a computable member, then the

set of degrees which occur among the members of P cannot be easily described. For example,
it cannot be a cone of degrees or even a countable union of cones of degrees.

Corollary 11.16. For any Π0
1 class of sets P with at least two members and any X ∈ P ,

there is a Y ∈ P such that deg(X) ∧ deg(Y) = 0.

Proof. If P has a computable member, then let Y be a computable set in P . Otherwise, apply
Theorem 11.15 with the noncomputable degrees ≤T deg(X). This produces a Y that is not

31

above any noncomputable degree below X. Therefore, any set computable from both X and
Y must be computable.

12 Applications

We have already seen the following theorems.

Theorem 12.1. For any c.e. Boolean algebra B there is a computable binary branching tree
TB and a Turing degree preserving bijection between the ultrafilters in B and the members of
[TB].

Theorem 12.2. For any consistent computable theory T , there is a computable binary branch-
ing tree ST and a Turing degree preserving bijection between the complete consistent extensions
of T and the members in [ST].

Most of the results from the last section have the form “Every Π0
1 class has a member

with some specified property”. We can combine these results with Theorems 12.1 and 12.2 to
conclude facts about ultrafilters in c.e. Boolean algebra and complete consistent extensions
of computable theories.

Theorem 12.3. Let B be an infinite c.e. Boolean algebra.

1. B has an ultrafilter computable from 0′.

2. B has an ultrafilter of c.e. degree.

3. B has an ultrafilter of low degree.

4. B has an ultrafilter of hyperimmune-free degree.

5. For every noncomputable set C, B has an ultrafilter which does not compute C.

6. If B has only countably many ultrafilters, then B has a computable ultrafilter.

7. If B does not have a computable ultrafilter, then for any computable sequence of degrees
ai, i ∈ ω, B has 2ℵ0 many ultrafilters which are pairwise Turing incomparable and which
are all incomparable with each ai.

8. For any ultrafilter U1 on B, there is an ultrafilter U2 on B such that deg(U1)∧deg(U2) =
0.

Proof. These are all direct consequences of the theorems from the previous section. (1) follows
from Theorem 11.3, (2) follows from Theorem 11.4, (3) follows from Theorem 11.5, (4) follows
from Theorem 11.7, (5) follows from Theorem 11.8, (6) follows from Lemma 11.9, and (7)
follows from Theorem 11.15. Because B is an infinite algebra, B has at least two ultrafilters
and therefore (8) follows from Corollary 11.16.

Theorem 12.4. Let T be a computable consistent theory.

32

1. T has a complete consistent extension computable from 0′.

2. T has a complete consistent extension of c.e. degree.

3. T has a complete consistent extension of low degree.

4. T has a complete consistent extension of hyperimmune-free degree.

5. For any noncomputable set C, T has a complete consistent extension which does not
compute C.

6. If T has only countably many complete consistent extensions, then B has a computable
complete consistent extension.

7. If T does not have a computable complete consistent extension, then for any computable
sequence of degrees ai, i ∈ ω, T has 2ℵ0 many complete consistent extensions which are
pairwise Turing incomparable and which are all incomparable with each ai.

8. If T has at least two complete consistent extensions, then for any complete consistent
extension T1 of T , there is a complete consistent extension T2 of T such that deg(T1) ∧
deg(T2) = 0.

There are lots of common theories to which this theorem applies. For example, you can
apply to both PA and ZFC.

Notice that we did not apply Theorem 11.10 to either c.e. Boolean algebras or consistent
computable theories. Theorem 11.10 has the form “There is a Π0

1 class of sets with some
particular property”. In order to apply such a result, we need our representation theorems for
c.e. Boolean algebras and consistent computable theories to go the other direction. That is,
we need to show that for each nonempty Π0

1 class of sets P , there is an c.e. Boolean algebra
B and a consistent computable theory T such that the ultrafilters of B and the complete
consistent extensions of T are in Turing degree preserving bijective correspondence with the
elements of P .

In general, there are a number of ways to consider representing Π0
1 classes, and we will

start with the strongest possible interpretation of this idea. Assume that we have some
combinatorial or algebraic problem, such as finding a complete consistent extension of a
consistent computable theory or finding an ultrafilter in an c.e. Boolean algebra. We say that
this problem strongly represents all Π0

1 classes of sets if for every Π0
1 class of sets there is an

instance of problem such that the class of solutions to the particular instance of the problem
is in a bijective Turing degree preserving correspondence with the members of the Π0

1 class.

Theorem 12.5. For every nonempty Π0
1 class of sets P , there is a consistent computable

theory ΓP such that the set of complete consistent extensions of ΓP is in a bijective Turing
degree preserving correspondence with the members of P . In other words, the sets of complete
consistent extensions of computable theories can strongly represent all Π0

1 classes.

33

Proof. Let An be a countable list of propositional variables, which we use as our computable
propositional language L. We let A1

n denote An and A0
n denote ¬An. We can define a complete

consistent extension CX from any set X by setting A
X(n)
n ∈ CX for all n. We can close CX

under propositional logical consequence in a computable way (using truth tables), so this
correspondence preserves Turing degree. We define a computable theory ΓP such that for any
set X, CX is a complete consistent extension of ΓP if and only if X ∈ P .

Let P = [T] where T is a computable binary branching tree. For any string σ of length

n, we let Pσ denote the propositional formula A
σ(0)
0 ∧ · · · ∧ Aσ(n−1)

n−1 . We define ΓP by

Pσ → A1−i
n ⇔ σ ∈ T ∧ |σ| = n ∧ σ ∗ i 6∈ T.

To understand what this axiom says, recall that σ ∈ T means that we currently think Pσ
should be contained in some complete consistent extension. If σ ∗ i 6∈ T , then we think that
any extension of Pσ should not be an extension of Pσ∗i. Therefore, we want to make Pσ∗i
inconsistent (relative to TP) with any extension that contains Pσ. We can accomplish this
by specifying that any extension containing Pσ must contain A1−i

n . This is exactly what the
axiom above says.

We need to verify that X ∈ [T] if and only if CX is a complete consistent extension of
ΓP . Since CX is both complete and consistent, we only need to show that it is a model of
ΓP if and only if X ∈ [T]. First, suppose that X 6∈ [T] and fix n such that X|n ∈ T but

X|(n + 1) 6∈ T . Then PX|n → A
1−X(n)
n is an axiom in ΓP . Since PX|n, A

X(n)
n are in CX , it is

clear that CX is not a model of ΓP .
Second, assume that X ∈ [T]. We need to show that CX is a model of ΓP . Consider an

axiom Pσ → A1−i
n of ΓP where |σ| = n. If σ 6= X|n, then CX is not a model for Pσ, and hence

CX satisfies Pσ → A1−i
n . If σ = X|n, then CX is a model for Pσ. Because σ ∗ i 6∈ T , we know

that any path in [T] through σ must pass through σ ∗ (1− i). Therefore X(n) = 1− i, which
implies CX is a model for A1−i

n and also for Pσ → A1−i
n .

There is nothing special about using a propositional theory here. We could also have done
the coding by a predicate theory with a single binary relation.

Next we use the Lindenbaum algebras of the theories just constructed to prove that spaces
of ultrafilters on c.e. Boolean algebras can represent any Π0

1 class.

Corollary 12.6. For any Π0
1 class of sets P , there is an c.e. Boolean algebra BP such that the

space of ultrafilters on BP is in a bijective Turing degree preserving correspondence with the
members of P . In other words, the space of ultrafilters on c.e. Boolean algebras can strongly
represent any Π0

1 class of sets.

Proof. Let TP be the theory from Theorem 12.5 and let BP be the Lindenbaum algebra of
this theory. We have already seen that BP is an c.e. Boolean algebra such that the ultrafilters
of BP are in bijective Turing degree preserving correspondence with the complete consistent
extensions of TP . Therefore, by Theorem 12.5, the ultrafilters are in bijective Turing degree
preserving correspondence with the members of P .

Unfortunately, we cannot relax the complexity requirement on the Boolean algebras in
Corollary 12.6 from c.e. to computable.

34

Lemma 12.7. There is a Π0
1 class of sets P such that there is no computable Boolean algebra

B for which the ultrafilters on B are in bijective Turing degree preserving correspondence with
the members of P .

Proof. From Theorem 11.10, we know that there are Π0
1 classes of sets with no computable

members. However, we also know that every computable Boolean algebra has a computable
ultrafilter. Therefore, no computable Boolean algebra can strongly represent the members of
a Π0

1 class of sets with no computable members.

13 Exotic Π0
1 classes

In this section, we give more examples of theorems like Theorem 11.10 which state the ex-
istence of Π0

1 classes with particular properties. In each case, we state the corollaries which
follows immediately from Theorem 12.5 and Corollary 12.6.

Theorem 13.1. There is a nonempty Π0
1 class of sets P such that for any X ∈ P and any

c.e. set C, if X ≤T C, then C ≡T 0′.

Proof. Let P be the class of DNR2 sets from Example 9.10. Fix any X ∈ P and any c.e. set
C such that X ≤T C. The Arslanov Completeness Criterion says that C ≡T 0′ if there
is a function f ≤T C for which We 6= Wf(e) for all e. (We is the standard enumeration of
the c.e. sets by We = dom(ϕe).) Therefore, since X ≤T C, it suffices to show that we can
construct such an f computable in X.

First, we define a partial computable function g(e, x) such that g(e, x) = 1 if there is an
s such that ϕe,s(1) converges and ϕe,s(0) does not converge; g(e, x) = 0 if there is an s such
that ϕe,s(0) converges and ϕe,s(1) does not; and g(e, x) is undefined otherwise. Informally,
g(e, x) runs the computations ϕe(0) and ϕe(1) simultaneously and outputs 0 or 1 depending
on which converges first. If neither converges, then g(e, x) does not halt. Notice that g(e, x)
only depends on e and is constant with respect to x.

By the s-m-n-Theorem, there is a total computable function h(e) such that ϕh(e)(x) =
g(e, x) for all e and x. Therefore, if ϕe(0) halts first, then ϕh(e)(x) = 0 for all x; if ϕe(1) halts
first, then ϕh(e)(x) = 1 for all x; and if neither computation halts, then ϕh(e) is the constantly
undefined function.

Notice that if 1 ∈ We and 0 6∈ We, then ϕh(e)(h(e)) = 1. Because X is a DNR2 set, this
implies that h(e) 6∈ X. Similarly, if 0 ∈ We and 1 6∈ We, then ϕh(e)(h(e)) = 0 and so h(e) ∈ X.

We can now define our function f from X. If h(e) ∈ X, then we let f(e) be an index for
an c.e. set such that Wf(e) = {1}. If h(e) 6∈ X, then we let f(e) be an index for an c.e. set
such that Wf(e) = {0}.

To check that these definitions give We 6= Wf(e) for all e, notice that Wf(e) is always
either the singleton {0} or the singleton {1}. Therefore, unless We is one of these sets, we
have succeeded trivially. Suppose We = {0}. Then 0 ∈ We and 1 6∈ We, so h(e) ∈ X and
Wf(e) = {1} 6= We. Similarly, if We = {1}, then 1 ∈ We and 0 6∈ We, so h(e) 6∈ X and
Wf(e) = {0} 6= We.

35

Corollary 13.2. There is an infinite c.e. Boolean algebra B and a complete consistent theory
T such that for every ultrafilter U on B of c.e. degree and every complete consistent extension
S of T of c.e. degree satisfies U ≡T S ≡T 0′.

We also get the following interesting, purely computability theoretic, corallary. This corol-
lary follows from the fact that the set X in the proof of Theorem 13.1 can be chosen to be
low.

Corollary 13.3. There is a low degree d such that the only c.e. degree above d is 0′.

Theorem 13.4. There is an infinite Π0
1 class of sets P such that for all X 6= Y ∈ P , X and

Y are Turing incomparable.

Proof. We define P via a computable sequence of computable functions ψs from 2<ω into 2<ω.
For each ψs we require that

1. ψs(σ ∗ 0) and ψs(σ ∗ 1) are incompatible extensions of ψs(σ) for all σ,

2. range(ψs+1) ⊂ range(ψs), and

3. limsψs(x) = ψ(x) exists for all x.

By (1), we can define a computable tree Ts as the downward closure of range(ψs). That is,
τ ∈ Ts if and only if ∃σ(τ ⊂ ψs(σ)). Since ψs is total, |[Ts]| = 2ℵ0 . By (2), we have that
Ts+1 ⊂ Ts, so we can define a nonempty Π0

1 class of sets P = [T] where T = ∩Ts. By (3),
|[T]| = 2ℵ0 .

To guarantee that any pair of distinct sets in [T] are Turing incomparable, we meet the
requirements

Re : ∀X ∈ [T]

(
(ϕXe total ∧ ϕXe 6= X) → ϕXe 6∈ [T]

)
.

We split Re into subrequirments labeled by binary strings σ of length e+ 1. For each such σ,
Rσ
e is the requirement

∀X ∈ [T (ψ(σ))]

(
(ϕXe total ∧ ϕXe 6= X) → ϕXe 6∈ [T]

)
.

The requirement Rσ
e may change the values of ψs(τ) for |τ | > e, but it will never change the

values for strings of length ≤ e. Therefore, our action for Re cannot injure any Ri with i < e.
The construction will be finite injury, which will guarantee property (3).

If ϕσe (y) converges for all y ≤ x, then we say ϕσe (0, . . . , x) is defined and we let ϕσe (0, . . . , x)
denote the string 〈ϕσe (0), . . . , ϕσe (x)〉. We say that Rσ

e is satisfied at stage s if there is an x

such that ϕ
ψs(σ)
e,s (0, . . . , x) is defined and 6∈ Ts. If Rσ

e is satisfied at stage s and ψs(σ) = ψ(σ),
then Rσ

e is satisfied at every stage t > s and hence in [T]. Therefore, once the requirements
Rτ
i with i < e have stopped acting, Rσ

e will act at most once.
We say that Rσ

e requires attention at stage s + 1 if Rσ
e is not satisfied at stage s + 1 and

there exists a σ′ extending σ (with |σ′| ≤ s) and an x ≤ s such that ϕ
ψs(σ′)
e,s (0, . . . , x) is defined

and incompatible with ψs(σ
′), and ϕ

ψ(σ′)
e extends ψs(ρ ∗ i) for some |ρ| = e+ 1 and i ∈ {0, 1}.

36

We can now describe the construction. At stage 0, set ψ0(σ) = σ for all σ. At stage s+ 1,
check if any requirement Rσ

e with e ≤ s requires attention. If there are no such requirements,
let ψs+1 = ψs. Otherwise, let Rσ

e be the highest priority requirement that requires attention.
(We order the requirements first by e and then by some fixed computable listing of the strings
σ.)

Assume Rσ
e requires attention and σ′, ρ and i are as above. If ρ 6= σ, then let ψs+1(µ) =

ψs(σ
′ ∗ µ′) if µ = σ ∗ µ′, ψs+1(µ) = ψs(ρ ∗ (1 − i) ∗ µ′) if µ = ρ ∗ µ′, and ψs+1(µ) = ψs(µ)

otherwise. Notice that, as claimed above, for all µ with |µ| ≤ e, ψs+1(µ) = ψs(µ).

Consider what the action of the last paragraph does. We know that ϕ
ψs(σ′)
e (0, . . . , x)

extends ψs(ρ ∗ i). However, ψs(ρ ∗ i) is incompatible with ψs+1(ρ) = ψs(ρ ∗ (1 − i)), and

therefore, ϕ
ψs(σ′)
e (0, . . . , x) 6∈ Ts+1. R

σ
e is thus satisfied at stage s+ 1 after this action.

If ρ = σ, then define ψs+1(µ) = ψs(σ
′ ∗ µ′) if µ = σ ∗ µ′ and ψs+1(µ) = ψs(µ) otherwise.

Again, as claimed above, for all µ with |µ| ≤ e, ψs+1(µ) = ψs(µ). This ends the construction
at stage s+ 1.

Consider what this last action accomplishes. We know ϕ
ψs(σ′)
e (0, . . . , x) is incompatible

with ψs(σ
′) and ϕ

ψs(σ′)
e (0, . . . , x) extends ψs(σ). Therefore, there is an n ≤ x such that

|ψs(σ)| ≤ n < |ψs(σ′)| and ϕ
ψs(σ′)
e (n) 6= ψs(σ

′). However, in Ts+1, there are no nodes which

branch off of the linear segment between ψs(σ) and ψs(σ
′). Therefore, ϕ

ψs(σ′)
e (0, . . . , x) 6∈ Ts+1.

Hence, Rσ
e is satisfied at the end of stage s+ 1.

This construction uses only finite injury, since only the action of Rτ
i with i < e can injure

Rσ
e , and Rσ

e acts at most once between times it is injured. To see that each Re is satisfied,
suppose for a contradiction that some Re is not satisfied. Let X ∈ [T] be such that ϕXe is
total, ϕXe 6= X and ϕXe ∈ [T]. Fix σ of length e + 1 such that ψ(σ) ⊂ X and fix n such that
ϕXe (n) 6= X(n). Let s be a stage such that ψs(τ) has reached its limit for all |τ | = e+1 and all
requirements of higher priority that Rσ

e have finished acting. There must be some t > s and σ′

with |σ′| > n such that ψt(σ
′) is an initial segment of X extending ψ(σ) and ϕ

ψt(σ′)
e (0, . . . ,m)

is defined where m is the maximum of n and the length of ψ(τ) with |τ | = e + 1. Rσ
e acts

at stage t, and since it is not injured by any higher priority requirements, remains satisfied
forever. This contradicts our choice of X as a witness to the failure of Re.

Corollary 13.5. There is an c.e. Boolean algebra B such that B has 2ℵ0 many ultrafilters
and any two distinct ultrafilters on B are Turing incomparable.

Corollary 13.6. There is a computable theory T such that T has 2ℵ0 many complete consis-
tent extensions and any two distinct complete consistent extensions are Turing incomparable.

One of our first examples of a Π0
1 class of sets was the class of separating sets for a fixed

pair of disjoint c.e. sets. There cannot be such a Π0
1 class that satisfies Theorem 13.4 since we

can always alter a separating set on finitely many elements to obtain a different separating
set. However, it turns out that this is the only restriction on proving a version of Theorem
13.4 for Π0

1 classes of separating sets.

Theorem 13.7. There exists disjoint c.e. sets A and B such that A∪B is coinfinite and for
any two sets C,D ∈ Sep(A,B), either |C 4D| < ω or C and D are Turing incomparable.

37

Proof. We define a {0, 1}-valued partial computable function ψ in stages by ψs and set A =
{n|ψ(n) = 1} and B = {n|ψ(n) = 0}. As usual, we have the stage s approximations to all of
these objects. We use movable markers xs(i) to denote the ith element of As ∪Bs at stage s.
Because each xs(i) will reach a limit x(i), the complement of A ∪B will be infinite.

In the constructions we have seen so far, we always used strings whose domain was an
initial segment of ω. Here, we sometimes use partial functions whose domain is finite but not
necessarily an initial segment of ω. In particular, ψs is such a function.

At each stage, we let Ts be the computable tree of all σ ∈ 2<ω such that σ is compatible
with ψs. By compatible, we mean that for every n ∈ dom(ψs), if n < |σ|, then σ(n) = ψs(n).
The Π0

1 class [T] where T = ∩Ts is exactly Sep(A,B).
In addition to making sure that each marker xs(i) reaches a limit (which is a simple

consequence of the fact that this argument is finite injury), we need to satisfy the requirements

Re : ∀X, Y ∈ [T](|X 4 Y | = ω → ϕXe 6= Y).

We guarantee that Re respects the requirements Ri with i < e using the set De,s = {xs(i)|i <
e}. For each subset D ⊂ De,s we consider the subrequirement RD

e which only works with sets
X for which X(x) = 1 for all x ∈ D and X(x) = 0 for all x ∈ De,s −D. Notice that the sets
De,s change with time, but they will all reach a limit at some finite stage, after which we have
the final list of subrequirements RD

e .
We define a finite partial function w associated to each RD

e at each stage s. (This partial
function w should really be subscripted by D and De,s, but for simplicity of notation we leave
these subscripts off.) For RD

e at stage s, w is defined with domain De,s by w(xs(i)) = 1 if
xs(i) ∈ D and w(xs(i)) = 0 if xs(i) ∈ De,s −D. It is undefined for all other values. RD

e will
only look at strings which extend w, and hence it will never cause any of the markers xs(i)
for i < e to move. Thus, it respects the requirements of higher priority.

We say that RD
e requires attention at stage s+ 1 if it is not currently satisfied (this term

is defined during the construction) and there is a string µ ∈ Ts extending w (with length
≤ s) and an m with e ≤ m ≤ s such that ϕµe,s(xs(m)) converges but it is not the case that
ϕµe,s(xs(m)) = µ(xs(m)). There are three ways this could happen: xs(m) is not in the domain
of µ, ϕµe (xs(m)) converges to a number other than 0 or 1, or ϕµe (xs(m)) = 1− µ(xs(m)).

We can now describe the construction. At stage 0, set ψ0 = ∅ and x0(i) = i for all i.
Declare all requirements currently unsatisfied. At stage s+1, check if there is any requirement
that requires attention. If not, set ψs+1 = ψs and xs+1(i) = xs(i) for all i. If there is a
requirement that requires attention, then let RD

e be the least such requirement. (We order
the requirements first by e and then by a fixed computable ordering of all finite sets D.)

The action of RD
e depends on the three possibilities listed above. First, if xs(m) ≥ |µ|,

then extend ψs to ψs+1 by setting ψs+1(x) = µ(x) for all x < |µ| which are not in dom(w),
ψs+1(xs(m)) = 1 − ϕµe (xs(m)), and ψs+1(x) = ψs(x) for all other x ∈ dom(ψs). Since µ is
compatible with ψs, this definition gives ψs+1 ⊃ ψs and no element of De,s has been added
to dom(ψs+1). We define the new markers by setting xs+1(i) equal to the ith element of the
complement of As+1∪Bs+1. Since no element of De,s was added to dom(ψs+1), this leaves the
markers xs+1(i) = xs(i) for i < e.

Notice that in this case, if X is any extension of w which is in [Ts+1], then X extends

38

µ. Furthermore, ϕXe (xs(m)) = ϕµe (xs(m)). However, for any Y in [Ts+1], Y (xs(m)) = 1 −
ϕµe (xs(m)). Therefore, we have satisfied RD

e and we declare it currently satisfied.
Second, if ϕµe (xs(m)) = 1 − µ(xs(m)), then we extend ψs to ψs+1 as follows. For all

x < |µ| which are not in dom(w), set ψs+1(x) = µ(x), and for all other x ∈ dom(ψs), set
ψs+1(x) = ψs(x). As above, we have ψs ⊂ ψs+1 and we have not put any element of De,s into
dom(ψs+1). We define xs+1(i) as above.

Consider any extension X of w in [Ts+1] and any other set Y ∈ [Ts+1]. Since X is an
extension of w on Ts+1, it must be an extension of µ. Therefore,

ϕXe (xs(m)) = 1− µ(xs(m)) = 1− ψs+1(xs(m)) 6= ψs+1(xs(m)) = Y (xs(m)).

So, we have won RD
e and declare this requirement currently satisfied.

Third, if ϕµe (xs(m)) does not have the value 0 or 1, then we extend ψs to ψs+1 as follows.
For all x < |µ| which are not in dom(w), let ψs+1(x) = µ(x), and for all other x ∈ dom(ψs),
let ψs+1(x) = ψs(x). We define xs(i) as before.

Consider any X ∈ [Ts+1] extending w. As above, X must extend µ, and therefore,
ϕXe (xs(m)) converges to a value other than 0 or 1. Therefore, ϕXe does not compute a set.
Again, we declare the requirement RD

e currently satisfied.
Once we have performed the appropriate action for RD

e , we declare all requirements of
the form RD

i with i > e currently not satisfied. (These requirements have been injured in
the sense that Di,s+1 may not be equal to Di,s, so the list of subrequirements RD

i may have
changed.) This ends the action at stage s.

It remains to verify that the construction works. Because of the finite nature of the injury,
it is clear that each marker xs(i) reaches a limit x(i), and hence each set De,s reaches a limit
De.

Let X, Y ∈ [T] be sets such that |X 4 Y | = ω and assume for a contradiction that
ϕXe = Y . Since the symmetric difference is infinite, for all n, there is an m > n such that
X(x(m)) 6= Y (x(m)). Pick a stage s and an m > e such that xs(m) = x(m), De,s = De,
and X(x(m)) 6= Y (x(m)). Fix the subset D ⊂ De and the corresponding partial function w

such that X extends w. Fix a stage t > s such that there is an n < t for which ϕ
X|n
e,t (x(m))

converges and no requirement of higher priority acts after stage t.
Consider the action of RD

e as stage t + 1. Because no requirement of higher priority
acts, RD

e is free to act if it wants to. Let µ = X|n. At this stage, RD
e sees the convergent

computation ϕµe (x(m)). The only thing that would prevent RD
e from acting at this stage (and

hence being satisfied forever since no higher priority requirement injures it after this stage) is
if ϕµe (x(m)) = µ(x(m)). However, in this case,

ϕXe (x(m)) = X(x(m)) 6= Y (x(m)),

which is a contradiction to the assumption that ϕXe = Y .

Another exotic type of Π0
1 class is a thin class. Π0

1 class of sets P is called thin if for
every Π0

1 class of sets Q ⊂ P , there is a clopen set U such that Q = P ∩ U . If P = [T],
this is equivalent to saying that there is a finite set of nodes σ0, . . . , σn ∈ T such that Q =
[T (σ0)] ∪ · · · ∪ [T (σn)].

39

Theorem 13.8. There exists a perfect thin Π0
1 class of sets P with no computable member.

Proof. Let Pe = [Te] be our standard enumeration of Π0
1 classes of sets with primitive recursive

trees Te. As in Theorem 13.4, we define P via a computable sequence of computable functions
ψs from 2<ω into 2<ω. For each ψs we require that

1. ψs(σ ∗ 0) and ψs(σ ∗ 1) are incompatible extends of ψs(σ) for all σ,

2. range(ψs+1) ⊂ range(ψs), and

3. limsψs(x) = ψ(x) exists for all x.

Just as in Theorem 13.4, we define the computable trees Ts as the downward closure of
range(ψs) and let P = [T] where T = ∩Ts. Therefore, P will be a perfect Π0

1 class of sets.
To guarantee that P has no computable member, we meet the requirements

Re : ϕe total ⇒ ∀σwith |σ| = 2e+ 1(ψ(σ) is incompatible withϕe).

As in the previous two theorems, we break Re into subrequirements Rσ
e for each |σ| = 2e+ 1.

Rσ
e tries to define ψs(σ) such that ψs(σ) is incompatible with ϕe. Obviously, if we meet Rσ

e

for each σ, then we will have met Re.
To insure the P is thin, we meet the requirements

Se : ∀σwith |σ| = 2e+ 2

(
ψ(σ) ∈ Te ⇒ ∀τ ⊃ σ(ψ(τ) ∈ Te)

)
.

To see why the requirements Se suffice, assume that [Te] ⊂ P and let U be the clopen set
generated by the set of ψ(σ) for which |σ| = 2e + 2 and ψ(σ) ∈ Te. Then [Te] = P ∩ U . We
also break Se into subrequirements Sσe for each |σ| = 2e+ 2.

At stage 0, we define ψ0(σ) = σ for all σ. At stage 2s + 1 we attempt to meet the Re

requirements. We say that Rσ
e requires attention if there is a τ ⊃ σ and an n such that

ϕe,2s+1(0, . . . , n) is defined, is an extension of ψ2s(σ) and is incompatible with ψ2s(τ). If no
Rσ
e requires attention, then ψ2s+1 = ψ2s. Otherwise, let Rσ

e be the highest priority requirement
requiring attention and let τ be as above. Define ψ2s+1(µ) = ψ2s(τ ∗ µ′) if µ = σ ∗ µ′ and
ψ2s+1(µ) = ψ2s(µ).

Notice that as in the previous theorems, ψ2s+1 only differs from ψ2s on nodes µ ⊃ σ.
Therefore, Rσ

e does not interfere with any requirement Rν
i or Sνi for i < e.

At stage 2s + 2, we attempt to meet the Se requirements. We say that Sσe requires
attention if ψ2s+1(σ) ∈ Te and there is a τ ⊃ σ such that ψ2s+1(τ) 6∈ Te. If there is no Sσe
requiring attention, then ψ2s+2 = ψ2s+1. Otherwise, let Sσe be the highest priority requirement
requiring attention and let τ be as above. Define ψ2s+2(µ) = ψ2s+1(τ ∗ µ′) if µ = σ ∗ µ′ and
ψ2s+2(µ) = ψ2s+1(µ) otherwise.

Notice that the action of Sσe does not interfere with the action of requirements Rν
i with

i ≤ e or Sνi with i < e. Therefore, this construction is also finite injury. It is an easy exercise
to verify that the construction succeeds.

In order to apply Theorem 13.8 to theories and Boolean algebras, we need to examine
what being thin means in these contexts.

40

Definition 13.9. Let Γ be a theory and let Γ′ ⊃ Γ. Γ′ is finitely generated over Γ if there
are a finite number of sentence ψ0, . . . , ψk such that the closed theory generated by Γ′ is equal
to the closed theory generated by Γ ∪ {ψ0, . . . , ψk}.

Lemma 13.10. Let P be a thin Π0
1 class of sets and let Γ be the corresponding theory as in

Theorem 12.5. If Γ′ is any computable extension of Γ, then Γ′ is finitely generated over Γ.

Proof. For any computable extension Γ′ ⊃ Γ, the corresponding Π0
1 class of sets P ′ is a

subclass of P . Therefore, since P is thin, P ′ must be equal to P ∩ U where U is a finite
union of basic opens sets. Denote these basic open sets by Oσ0 , . . . ,Oσk

, and as above, let
Pσ0 , . . . , Pσk

denote the corresponding sentences as in the proof of Theorem 12.5.
CX is a complete consistent extension of Γ′ if and only if X ∈ P ′, which is true if and only

if X ∈ P ∩ U . However, X ∈ P ∩ U if and only if CX is a complete consistent extension of
Γ ∪ {Pσ0 , . . . , Pσk

}. Therefore, CX is a complete consistent extension of Γ′ if and only if it is
a complete consistent extension of Γ ∪ {Pσ0 , . . . , Pσk

}.
By the completeness theorem, for any theory ∆ and any sentence ψ, ∆ ` ψ if and only

if ψ is true in all complete consistent extensions of ∆. Therefore, by the equivalences above,
Γ′ ` ψ if and only if Γ ∪ {Pσ0 , . . . , Pσk

} ` ψ. In other words the closed theory generated by
Γ is the same as the closed theory generated by Γ ∪ {Pσ0 , . . . , Pσk

}. Therefore, Γ′ is finitely
generated over Γ.

Definition 13.11. A theory Γ is called essentially undecidable if Γ does not have any
computable complete consistent extensions.

Definition 13.12. A computable essentially undecidable theory for which every computable
extension is finitely generated is call a Martin-Pour-El theory.

Theorem 13.13. There exists a Martin-Pour-El theory.

Proof. Let P be the Π0
1 class of sets in Theorem 13.8 and let ΓP be the corresponding theory.

Since P has no computable member, ΓP is essentially undecidable. Since P is thin, every
computable extension of ΓP is finitely generated. Therefore, ΓP is a Martin-Pour-El theory.

Finally, we show that the construction of a thin class and the construction of a class of
separating sets can be combined. Notice that this theorem points out a small error in Theorem
2.30 of [5].

Theorem 13.14. There are disjoint computably enumerable sets A and B such that A ∪ B
is coinfinite and Sep(A,B) is thin.

Proof. We construct a {0, 1}–valued partial computable function ψ in stages and set A =
{n|ψ(n) = 1} and B = {n|ψ(n) = 0}. To make sure that A ∪ B is coinfinite, the domain of
ψ is coinfinite. We let ψs denote the portion of ψ constructed at stage s, we guarantee that
ψs ⊂ ψs+1 and we set ψ = ∪sψs. We define As = {n|ψs(n) = 1} and Bs = {n|ψs(n) = 0}, and
we let Vs denote the set of all finite binary strings which are compatible with ψs. That is,

Vs = {σ ∈ 2<ω | ∀n < |σ| (ψs(n) ↓→ ψs(n) = σ(n)) }.

41

Notice that [Vs] = Sep(As, Bs). Therefore, in terms of Π0
1 classes, we construct an effective

sequence of computable trees Vs such that

V0 ⊃ V1 ⊃ V2 ⊃ · · ·

and we set V = ∩sVs. V is a Π0
1 tree such that [V] = Sep(A,B).

In order to make the domain of ψ coinfinite, we use markers δs(i) to denote the ith element
of the complement of As ∪Bs at stage s. Formally, δs(i) is defined so that

δs(0) < δs(1) < δs(2) < · · ·

and As ∪Bs = {δs(i)|i ∈ ω}. We require that limsδs(i) = δ(i) exists for all i. This requirement
clearly makes A ∪B coinfinite.

To make Sep(A,B) = [V] thin, we fix a standard enumeration of all the primitive recursive
trees Te and let Pe = [Te] be the eth Π0

1 class. We meet the requirements

Re : [Te] ⊂ [V] ⇒ ∃U(U is clopen ∧ [Te] = [V ∩ U]).

We break this requirement up into subrequirements Rσ
e for each σ ∈ V such that |σ| = δ(e).

At stage s of the construction, we approximate these requirements by working with Rσ
e for

each σ ∈ Vs such that |σ| = δs(e). Once δs(e) reaches its limit δ(e), we arrive at a final list of
subrequirements.

Rσ
e : σ ∈ Te ⇒ ∀τ ⊆ σ (τ ∈ V → τ ∈ Te)

Why does this make [V] thin? Suppose [Te] ⊆ [V] and let σ0, . . . , σk be the strings such that
σi ∈ V ∩ Te and |σi| = δ(e). Then, [V [σi]] ⊂ [Te] for 0 ≤ i ≤ k, and for all other µ ∈ V with
|µ| = δ(e), µ 6∈ Te. Therefore, [Te] ⊂ [V] implies

[V [σ0] ∪ V [σ1] ∪ · · · ∪ V [σk]] = [Te]

as required.
At stage 0, we set ψ0 to be undefined everywhere. Assume we are at stage s + 1 of the

construction. If σ ∈ Vs with |σ| = δs(e) and σ ∈ Te, then we say Rσ
e needs attention if

∃τ ⊃ σ (τ ∈ Vs ∧ τ 6∈ Te).

Of course, to make this condition effective to check at this stage, we only check for Rσ
e with

e ≤ s and only for τ with |τ | ≤ s. Determine the requirement that gets to act by choosing Rσ
e

to be the requirement that requires attention with the least value for e and (if more than one
requirement with subscript e requires attention) the least value for σ under the lexicographic
ordering. (If no requirement needs attention, let ψs+1 = ψs.) Assume Rσ

e gets to act at stage
s+ 1 and fix the corresponding τ . Define ψs+1 as follows: for all i such that |σ| ≤ i < |τ |, let
ψs+1(i) = τ(i), and for all other j ∈ dom(ψs), let ψs+1(j) = ψs(j). Proceed to the next stage.
This completes the description of the construction.

Notice what the action of Rσ
e accomplishes. All the numbers i such that |σ| ≤ i < |τ |

are now in dom(ψs+1). Therefore, δs+1(e) ≥ |τ | and there is a string τ ′ ⊇ τ which is the
unique extension of σ in Vs+1 with length δs+1(e). Hence, the requirement Rσ

e has “become”

42

the requirement Rτ ′
e . But, τ ′ ∈ Vs+1 and τ ′ 6∈ Te (since τ 6∈ Te and τ ⊆ τ ′), so Rτ ′

e is satisfied.
We have made progress towards meeting the larger requirement Re.

To see that the construction succeeds, we need to verify a few simple facts. First, the new
function ψs+1 is consistent with ψs in the sense that ψs ⊂ ψs+1. This follows because for our
chosen τ we have τ ∈ Vs and hence τ was compatible with ψs. Therefore, if |σ| ≤ i < |τ | and
ψs(i) ↓, we have ψs(i) = τ(i) and so we have not changed the value of ψs+1(i) at stage s+ 1.

Second, the action of Rσ
e may change the values of δs+1(i) for i ≥ e, but for all i < e,

δs+1(i) = δs(i). Therefore, if the functions δs(i) for i < e have reached their limits, they are
not effected by the action of Rσ

e .
Third, we need to see that the action of Rσ

e does not injury other requirements of the form
Rµ
e . Recall that we say Rµ

e is satisfied if µ 6∈ Te. Suppose that Rσ
e acts at stage s + 1. As

described above, this action causes δs(e) < δs+1(e). However, for any string µ ∈ Vs such that
|µ| = δs(e), there is a unique string µ′ ∈ Vs+1 such that |µ′| = δs+1(e) and µ ⊂ µ′. Therefore,
the requirement Rµ

e becomes Rµ′
e and the number of these requirements does not increase.

Furthermore, if Rµ
e was satisfied at stage s (by the fact that µ 6∈ Te), then Rµ′

e is satisfied
at stage s + 1 since µ ⊂ µ′ and so µ′ 6∈ Te. Therefore, the action of Rσ

e only renames the
other requirements of the form Rµ

e and it does not increase the number of such requirements
or injure any such requirement which was already satisfied.

14 Retraceable sets and countable thin classes

We will use the notion of a retraceable set to construct a countable thin Π0
1 class of sets which

has rank 1.

Definition 14.1. A set A = {a0 < a1 < · · · } is retraceable if there is a partial computable
function f such that f(a0) = a0 and for all n > 0, f(an) = an−1. The function f is called a
retracing function for A.

A retraceable set A has the interesting computational property that it is computable from
any infinite set B ⊂ A. There are also 2ℵ0 many such sets. To see this, consider the tree
2<ω and the function l : 2<ω → ω which assigns each string its position in the lexicographic
order. For any set X, consider the set AX = {l(X|n)|n ∈ ω}. The set AX is retraceable,
since from any element l(X|n), we can decode the string X|n and then find X|(n − 1) and
compute l(X|(n− 1)). (If you draw the labeled tree, the proof becomes clear.)

We will be concerned with Π0
1 sets A which are retraceable. For these sets, we can always

assume that the retracing function is total.

Lemma 14.2. Every Π0
1 retraceable set has a computable retracing function.

Proof. Fix a Π0
1 retraceable set A and let f be a retracing function for A. The issue here is

that f may not be defined on every input. To define g(n), we simultaneously start computing
f(n) and enumerating the c.e. set A. Since A is contained in the domain of f , one of these
two things must occur. If we see f(n) halt first, then set g(n) = f(n). If n is enumerated
into A first, then set g(n) = 0. It is clear that g is total and computable. Also, for all n ∈ A,
g(n) = f(n), therefore g is a retracing function for A.

43

We give two alternate descriptions of Π0
1 retraceable sets which we then apply in the

construction of a thin countable Π0
1 class of sets.

Lemma 14.3. A Π0
1 set A = {a0 < a1 < · · · } is retraceable if and only if there is a computable

function g such that for all n, g(an) = n.

Proof. To see the forward direction, let A be a Π0
1 retraceable set and let f be a computable

retracing function for A. To define g(n), we first check if n = a0. If so, we set g(n) = 0.
Otherwise, we start computing f(n), f2(n) = f(f(n)), . . . , fm(n), . . . until we see an m such
that fm(n) = a0 or fm(n) = 0 (assuming that a0 6= 0) or fm(n) ≥ fm−1(n). In the first case,
we set g(n) = m, since if n ∈ A, then n = am. In the second and third cases, we set g(n) = 0,
since we know n 6∈ A.

To see the backward direction, assume that g has the property that g(an) = n and we
define a partial computable retracing function f for A. We nonuniformly fix f(a0) = a0 For
any a 6= a0 (which may or may not be in A), we calculate g(a). If g(a) = 0, then set f(a) = 0.
Otherwise, g(a) = n+1 for some n. We enumerate A (which is computably enumerable) until
we see a − (n + 1) many elements in A which are < a. Let the remaining elements < a be
listed in increasing order as

b0 < b1 < · · · < bn.

Set f(a) = bn. If a = an+1, then ai = bi for i ≤ n, so we have in fact set f(an+1) = an.
(Notice that f may not be total since if a 6∈ A, then g(a) may be equal to a number larger
than the number of elements below a. Of course, we could modify the procedure above to
make f total, but all that is necessary for the proof is that f is defined on A, which it is.)

Lemma 14.4. If an infinite set A = {a0 < a1 < · · · } is defined recursively by a Π0
1 relation

Q(x, y) such that for all n and x, x = an if and only if Q(x, 〈a0, . . . , an−1〉), then A is Π0
1 and

retraceable.

Proof. Since Q is a Π0
1 relation, we can fix an approximation Qs(x, y) to Q(x, y) such that

Qs+1(x, y) → Qs(x, y). (To fix this approximation, think of starting with Q0(x, y) holding of
all pairs of numbers and then removing pairs as we see the Π0

1 definition of Q fail.) We also
make sure that our approximation guarantees that Q(x, y) holds if and only if ∀sQs(x, y). We
define the relations Rs(n, x) (uniformly in n) by

Rs(n, x) ⇔ ∃x0, . . . , xn−1

(
x0 < x1 < · · · < xn−1 < x∧Qs(x, 〈x0, . . . , xn−1〉)∧∀i < n(Rs(i, xi))

)
.

We claim that for all n, x = an if and only if ∀s(Rs(n, x)). We prove this claim by
induction on n. Assume that n = 0. In this case, Rs(0, x) holds if and only if Qs(0, λ) holds.
Universally quantifying over s gives the first of the following equivalences.

∀s(Rs(0, x)) ⇔ ∀s(Qs(x, λ)) ⇔ Q(x, λ) ⇔ x = a0

The second equivalence follows from the definition of our approximation to Q by Qs, and the
third equivalence follows from the fact that Q defines the sequence of elements ai.

Next assume that this equivalence holds for i < n and we prove it for n. To show the
(⇒) direction, let xi = ai for i < n. We know by induction that ∀sRs(i, ai) and by the

44

definition of Q that Q(an, 〈a0, . . . , an−1〉), so ∀sQs(an, 〈a0, . . . , an−1〉). Therefore, the ai give
the appropriate witnesses for ∀sRs(n, an).

To show the (⇐) direction, chose s large enough that

∀i < n ∀y < x
(
Rs(i, y) ↔ y = ai

)
.

That is, by induction, for all i < n and all y < x, if y 6= ai, there is a stage u at which we
see ¬Ru(i, y). We take the maximum over the appropriate stages to get the stage s desired
above. For any t > s, the only witness xi such that Rt(i, xi) holds is xi = ai. Therefore,
Rt(n, x) holds if and only if Qt(x, 〈a0, . . . , an1〉). By the definition of Q, we know that the
unique x such that ∀t > sQt(x, 〈a0, . . . , an−1〉) is x = an, as required.

Now that both directions of our claim have been established, we show that A is both Π0
1

and retraceable. A is Π0
1 since

a ∈ A ⇔ ∃n ≤ a∀sRs(n, a).

To see that f is retraceable, we define a computable g such that g(an) = n. Given any a, we
know that there is at most one n ≤ a such that a = an. In other words, there is at most on
n ≤ a such that ∀sRs(n, a). Calculate Rs(n, a) for each n ≤ a and for increasing values of s
until there is only one value n left such that Rs(n, a). Set g(a) = n for this n.

Definition 14.5. For any set A = {a0 < a1 < · · · }, let P (A) be the set of all initial segments
of A (as subsets of ω):

P (A) = {X |X = A ∨X = ∅ ∨ ∃n (X = {a0, . . . , an}) }.

The proof of the next lemma follows directly from the appropriate definitions.

Lemma 14.6. For any set A, there is a tree TA ⊂ 2<ω such that TA ≤T A and [TA] = P (A).

Theorem 14.7. If A is a Π0
1 retraceable set, then P (A) is a Π0

1 class of sets.

Proof. For any sequence σ ∈ 2<ω, let b0 < b1 < · · · < bk < |σ| be all the numbers such that
σ(bi) = 1. We define σ∗ to be the sequence 〈b0, . . . , bk〉. Since A is Π0

1, we assume we have an
approximation As to A such that

ω = A0 ⊃ A1 ⊃ A2 ⊃ · · ·

with A = ∩As. Fix a computable retracing function f for A.
We define a computable tree T such that P (A) = [T]. Let σ be a string such that |σ| = s

and σ∗ = 〈b0, . . . , bk〉. Let

σ ∈ T ⇔ ∀i ≤ k
(
b0 = a0 ∧ bi ∈ As ∧ (i > 0 → f(bi) = bi−1)

)
.

If {b0, . . . , bk} ∈ P (A), then for all τ such that τ ∗ = σ∗, τ ∈ T . Therefore, the set
{b0, . . . , bk} ∈ [T] as required. (We leave it for the reader to check that both ∅ and A are in
[T].)

If σ∗ is not an initial segment of A, then we must have one of the following two situations.

45

• Some bi 6∈ A. In this case, for large enough s, bi 6∈ As. Hence, for all τ with |τ | > s and
τ ∗ = σ∗, τ 6∈ T . Therefore, σ is not the initial segment of a set in [T].

• {b0, . . . , bk} ⊂ A but is not an initial segment of A. Then either b0 6= a0 or, by the
properties of a retracing function, there is some bi+1 such that f(bi+1) 6= bi. In either
case, σ 6∈ T .

We now arrive at the main theorem of this section.

Theorem 14.8. There is a countable thin Π0
1 class.

Proof. We build a Π0
1 retraceable set A such that P (A) is a thin Π0

1 class. We first motivate
the requirements. Suppose A = {a0 < a1 < · · · } and let An = {ai|i < n} for each n. We let
Te be our fixed enumeration of all primitive recursive trees. To make P (A) thin, we meet

Re : A ∈ [Te] ⇒ ∀n ≥ e(An ∈ [Te]).

To see why this makes P (A) thin, assume [Te] ⊂ P (A) and split into two cases.
First, if A 6∈ [Te], then |[Te]| = |[Te] ∩ P (A)| < ω since A is the only nonisolated point in

P (A). Therefore, [Te] consists of a finite number of isolated points and for the appropriate
choice of a clopen U , [Te] = P (A) ∩ U .

Second, if A ∈ [Te], then by Re,(
{A} ∪ {An|n ≥ e}

)
⊆ [Te].

Therefore, |P (A) \ [Te]| < ω. Let σ ⊂ A be such that σ∗ = Ae. Then, (P (A)∩ [σ]) ⊆ [Te] and
there are only finitely many paths in [Te] which are not in P (A) ∩ [σ]. If V is a clopen set
covering these paths, then (P (A)∩(V ∪[σ])) = [Te]. This completes the proof that meeting the
requirements is sufficient to make P (A) thin. Therefore, it suffices to build a Π0

1 retraceable
set which meets requirements Re.

We define A using Lemma 14.4. To define an, assume that we have already determined
a0, . . . , an−1. Let Q∗(a, 〈a0, . . . , an−1〉) be the relation which holds if and only if the following
two properties hold for all m < n:

• am < a and

• either the unique string σ with |σ| = a and σ∗ = {a0, . . . , an−1} is not in Tm, or for all
y ≥ a, the unique string τ with |τ | = y and τ ∗ = {a0, . . . , an−1} is in Tm.

It is clear that Q∗ is a Π0
1 relation. We let an be the least a such that Q∗(a, 〈a0, . . . , an−1〉)

holds. More formally, let Q(a, 〈a0, . . . , an−1〉) hold if and only if Q∗ holds on these numbers
and for all x < a, either x ≤ an−1 or there is an m < n such that the unique string σ
with |σ| = x and σ∗ = {a0, . . . , an−1} is in Tm and the unique string τ with |τ | = a and
τ ∗ = {a0, . . . , an−1} is not in Tm. We then set an = a if and only if Q(a, 〈a0, . . . , an−1〉).

It remains to check the required properties. A is Π0
1 and retraceable by Lemma 14.4. To

see that P (A) satisfies Re, suppose A ∈ [Te] and fix n ≥ e. We show that An ∈ [Te]. Let σ be

46

the unique string such that |σ| = an and σ∗ = {a0, . . . , an−1}. The fact that A ∈ [Te] implies
that σ ∈ Te. But, by the definition of Q, we could only have set an to be this particular value
if for all x ≥ an, the unique string τ with |τ | = x and τ ∗ = {a0, . . . , an−1} is in Te. This
statement exactly says that An ∈ [Te] as required.

Notice that the proof of Theorem 14.8 does more than just construct a countable thin Π0
1

class P . It also forces P to have a unique nonisolated path, which is exactly the set A. It is
not hard to modify the proof above to make A ≡T 0′. To do this, we add another requirement

Se : e ∈ 0′ ⇔ e ∈ 0′ae
.

To meet these requirements, we add the following clause to the definition of
Q∗(a, 〈a0, . . . , an−1〉): n ∈ 0′ → n ∈ 0′a. Writing this clause without the implication gives
n 6∈ 0′ ∨ n ∈ 0′a, which is clearly Π0

1. We therefore arrive at the following corollary.

Corollary 14.9. There is a computable theory T such that T has countably many complete
consistent extensions, all of which are computable except one which is ≡T 0′. Furthermore,
every computable extension is finitely generated over T .

We end this section with a result which states that every Π0
1 retraceable set A can be

realized as the unique nonisolated path through a computable tree in which there are no
deadends. Recall that the Cantor-Bendixson derivative CB([T]) of a binary branching tree T
is the set of all nonisolated paths in [T].

Lemma 14.10. For any Π0
1 retraceable set A, there is a computable binary branching tree T

for which Ext(T) = T and CB([T]) = {A}.

Proof. Fix a computable approximation As to A such that As+1 ⊂ As and A = ∩As. (Since
A is a Π0

1 set, we think of starting with A0 = ω and eliminating elements from As+1 if they
are enumerated into the c.e. set A.) Let f be a computable retracing function for A and let
a0 denote the least element of A.

To any string σ ∈ 2<ω, we associate the finite set {n < |σ| |σ(n) = 1} and we let σ∗ be
this set listed as an increasing sequence 〈b0, . . . , bk〉. The idea of this proof is to put σ into T
if it looks like σ∗ is an initial segment of A. To guarantee that every node is extendible to a
path, for every node σ ∈ T , we put σ ∗ 0 into T .

We define T in stages. At stage s, we define Ts which consists of all strings of length
≤ s which will be in T . Let σ be the unique sequence of length a0 + 1 which contains all
zeros except for the last entry which is a 1. Therefore, σ∗ = 〈a0〉, which we know is an initial
segment of A. We define Ta0+1 = {σ} and continue to build T at higher levels by induction.

Assume that Ts has been defined for s > a0. We assume two induction hypotheses.

1. For each σ ∈ Ts of length s, if σ∗ = 〈b0, . . . , bk〉, then each bi ∈ Abk , b0 = a0 and
f(bi) = bi−1 for i > 0.

2. If |σ| ≤ s, σ 6∈ Ts, and σ∗ = 〈b0, . . . , bk〉, then either b0 6= a0 or f(bi) 6= bi−1 for some
i > 0, or at stage |σ| we saw that some bi 6∈ A.

47

By condition (1), each σ∗ looks like a possible initial segment of A. By condition (2), we have
only eliminated strings σ such that σ∗ is definitely not an initial segment of A.

We define Ts+1 in a sequence of steps.

1. Put σ ∗ 0 into Ts+1 for all σ ∈ Ts of length s.

2. Check if s ∈ As. If not, then end the definition of Ts+1 here.

3. Otherwise, calculate f(s). Check if there is any σ ∈ Ts of length s such that f(s) is
equal to the largest number in σ∗. If there is no such string, then end the definition of
Ts+1 here.

4. If there is such a string, then by the first induction hypothesis, there is a unique such
string. Let σ denote this string and let τ = σ ∗ 1. Assume τ = 〈b0, . . . , bk, s〉. τ is the
lone remaining candidate for entry into Ts+1. Check if each bi ∈ As. If not, then do not
put τ into Ts+1 and end the definition of Ts+1 here.

5. Otherwise, for each string δ ∈ Ts of length s, check if |δ∗| > k+1 and δ∗|(k+1) = τ ∗|k+1.
That is, check if δ∗ = 〈b0, . . . , bk, ck+1, . . . , cl〉. For each such δ, we know that it is not
the case that both δ∗ and τ ∗ are initial segments of A. In particular, either s 6∈ A or
ck+1 6∈ A. Enumerate A until we discover which element is not in A. If s 6∈ A, then do
not put τ into Ts+1 and end the definition of Ts+1. Otherwise, compare τ with the next
string that meets the criteria for δ.

6. If we have compared τ with all δ meeting these criteria and we still believe that s ∈ A,
then put τ into Ts+1.

This ends the definition of Ts+1. We need to check that the induction hypotheses are
satisfied. For each string of the form σ∗0 in Ts+1 of length s+1, the first induction hypothesis
is met trivially since σ ∗ 0∗ = σ∗. If the unique string τ was enumerated into Ts+1, then it
also meets the first induction hypothesis because of the checks in steps (2) and (3).

For the second induction hypothesis, fix any string γ of length s+ 1 which is not in Ts+1

and let γ′ be the predecessor of γ. If γ′ is not in Ts, then we meet the second induction
hypothesis for γ because γ′ met the second induction hypothesis at stage s. If γ′ ∈ Ts, then
γ = γ′ ∗ 1. If γ 6= τ , then we know f(s) is not equal to the largest element of γ′∗ and hence
we meet the second hypothesis. If γ = τ , then we must have seen that s 6∈ A or else we would
have put γ into Ts+1. Therefore, both induction hypotheses are met.

It remains check that T has the required properties. Since σ ∈ T implies σ ∗ 0 ∈ T , T has
no terminal nodes.

We show next that A ∈ [T] and A ∈ CB([T]). Fix n > 0 and let σn be the unique string of
length an + 1 such that σ∗

n = A|n. We show by induction on n that σn ∈ T . At stage a0 + 1,
we put σ1 into T . Assume that the result holds for numbers ≤ n. Since σn ∈ Tan+1, at stage
an+1 + 1, there is a unique node γ of length an+1 which is the extension of σn by all zeros.
Since an+1 ∈ A and f(an+1) = an, we set τ = γ ∗ 1 = σn+1 at stage an+1 + 1. Because every
element of σ∗

n+1 ∈ A, we do not terminate the definition of Ts+1 until we put σn+1 into Ts+1.

48

Therefore, each string A|n is in T . This fact immediately implies that A ∈ [T] and that for
every m, A|n ∗ 0m ∈ T . Therefore, A is not isolated in [T], so A ∈ CB([T]).

Finally, suppose that X 6= A and X ∈ [T]. We need to show that X is isolated in T .
There are two cases to consider. If there is an n ∈ X \A, then let s > n be such that n 6∈ As.
Let σ = X|s. Since n ∈ σ∗ and n 6∈ As, for every extension τ of σ in T , τ(x) = 0 for all x ≥ s.
Therefore, X is isolated by the open set Oσ.

Otherwise, X ⊂ A, but there is a least an 6∈ A. However, the only element of a ∈ A for
which f(a) = an−1 is a = an. Therefore, A = {a0, . . . , an−1}. Let σ be the node of length
an + 1 which extends σ by all zeros. At stage an + 1, we put σn into T . We claim that
the only extensions of σ that enter T after this stage are extensions by zeros. Suppose for a
contradiction that at some later stage s+ 1 the designated τ node is an extension of σ. Then
τ(s) = an−1. Since s 6= an, we will compare τ with an extension of σn and wait for either s
or an to be enumerated into A. Since an ∈ A, we must see s ∈ A and hence we do not put τ
into T . Therefore, the only extensions of σ in T are extensions by zeros, so X is isolated by
Oσ.

15 Measure and category

In this section, we discuss several of the basic results on measure and category as they relate
to naturally defined subsets of 2ω in recursion theory. We begin with the category results,
since these are typically simpler.

Definition 15.1. A class of sets P ⊂ 2ω is dense in the basic open set Oσ if for every
string τ , P ∩ Oσ∗τ 6= ∅. P is dense if it is dense in Oλ. P is nowhere dense if it is not
dense in any basic open set. P is meager (or of first category) if it is a countable union
of nowhere dense sets. P is nonmeager (or of second category) if it is not meager and is
comeager if its complement is meager.

The intuition is that a meager set denotes a set which is some sense “small”. The simplest
example of a nowhere dense set P is a singleton P = {A}. Since any countable set is the
countable union of singleton sets, any countable set is meager. Furthermore, it is easy to
check that any finite or countable union of meager sets is meager and that any subset of a
meager set is meager. The following lemma presents the standard example of a nonmeager
set.

Lemma 15.2. No basic open set Oσ is meager.

Proof. Assume that Oσ is meager and is equal to ∪n∈ωAn where each An is nowhere dense.
To derive a contradiction, we produce a set Y such that Y ∈ Oσ, but Y 6∈ An for all n.

We define a sequence of strings τn such that

(A0 ∪ · · · ∪ An) ∩ Oσ∗τ0∗τ1∗···∗τn = ∅.

We let Y be the limit of the sequence σ, σ ∗ τ0, σ ∗ τ0 ∗ τ1, and so on. Then Y ∈ Oσ because
σ ⊂ Y and Y 6∈ An because of the intersection property above.

49

To define τ0, we use the property that A0 is nowhere dense. In particular, A0 is not dense
in Oσ, so there is a string τ0 such that A0 ∩ Oσ∗τ0 = ∅. We proceed by induction. Assume
that τn has been defined with the intersection property above. Since An+1 is nowhere dense,
it is not dense in Oσ∗τ0∗···∗τn . Therefore, there is a τn+1 such that An+1 ∩ Oσ∗τ0∗···∗τn+1 = ∅.
Combining this equality with the intersection property above yields the desired induction
hypothesis.

Theorem 15.3. The following statements all hold and are each referred to as the Baire
Category Theorem.

• No nonempty open set is meager.

• The complement of a meager set is dense.

• The intersection of countably many dense open sets is dense.

Proof. To see (1), recall that any open set contains a basic open set. Therefore, (1) follows
from Lemma 15.2 and the fact that any subset of a meager set is meager . To see (2), assume
that P is meager. Since any subset of a meager set is meager, we know by Lemma 15.2 that
Oσ 6⊂ P for all σ. Hence, Oσ ∩ P 6= ∅ for all σ. Therefore, P is dense.

To see (3), let Pn be dense open sets and P be the intersection of these sets. Fix any n
and any σ. Since Pn is dense, Pn ∩Oσ 6= ∅. Since Pn is open, this intersection is also open, so
it must contain a basic open set. Therefore, there is a τ ⊃ σ with Oτ ⊂ Pn. In other words,
for all σ, there is a τ ⊃ σ such that Pn ∩Oτ = ∅. Therefore, each Pn is nowhere dense. Since
P is the complement of ∪Pn, (3) follows from (2).

We can now prove our first result concerning category.

Theorem 15.4. For any noncomputable set X, UX = {Y |X ≤T Y } is meager.

Proof. Let Ue = {Y |X = ϕYe }. Assume for a contradiction that U is not meager. Since U is
the countable union of the Ue sets, one of these sets must not be nowhere dense. Fix e and σ
such that Ue is dense in Oσ. We derive a contradiction by giving a computable procedure to
compute X. We claim that

X(m) = n⇔ ∃τ ⊃ σ∃s(ϕτe,s(m) = n).

We can search for appropriate τ and s, taking the first pair that we come across. Since the
characteristic function of X is total, we know that we will find such a pair. Hence, once we
verify this equivalence, we will have the desired contradiction.

To see the ⇒ direction, we use the denseness assumption. Ue is dense in Oσ, so there is
a Y ∈ Ue with σ ⊂ Y . Taking an appropriate extension σ ⊂ τ ⊂ Y and stage s, we get the
desired computation.

To see the ⇐ direction, fix τ and s. For a contradiction, assume that ϕτe,s(m) 6= X(m).
Then for any Y ∈ Oτ , ϕ

Y
e 6= X. Hence, Ue ∩ Oτ = ∅. Since σ ⊂ τ , this contradicts the

assumption that Ue is dense in Oσ.

50

We mention one application of this theorem to classical recursion theory which utilizes
the Baire Category Theorem.

Corollary 15.5. For any noncomputable X, there are uncountably many Y such that X and
Y are Turing incomparable.

Proof. Let QX be the class of all sets which are Turing incomparable with X and let P be
the class of sets which are computable from X. Since P is countable, it is meager. Since the
union of meager sets is meager, P ∪ UX (where UX is as in Theorem 15.4) is meager. Since
QX = P ∪ UX , QX is comeager. The Baire Category Theorem says that any comeager set is
dense, and hence it is not meager. Therefore, QX is not meager. In particular, this means
that QX is not countable.

Corollary 15.6. For any noncomputable set X, QX is dense.

Proof. In the previous corollary, we shown that for any noncomputable setX, QX is comeager.
By the Baire Category Theorem, any comeager set is dense.

We can alter the proof of Theorem 15.4 very slightly to obtain a similar result for Π0
1

classes of sets.

Theorem 15.7. Let P be a Π0
1 class of sets with no computable member and let UP be the

class of all sets which can compute some member of P . Then UP is meager.

Proof. Let Ue denote the class of sets Y such that ϕYe ∈ P . Assume that UP is not meager.
As above, we can fix e and σ such that Ue is dense in Oσ. This means that any string τ ⊂ σ
can be extended to a set in Ue.

Fix a computable tree T such that P = [T]. To derive a contradiction, we construct a
computable set X ∈ P . First, notice that if τ extends σ and ϕτe(0), . . . , ϕ

τ
e(n) converge, then

the string 〈ϕτe(0), . . . , ϕσe (n)〉 must be in T . If it were not in T , then τ could not be extended
to a set Y ∈ Ue. Second, notice that there also must be an extension τ ′ ⊃ τ such that
ϕτ

′
e (n + 1) converges. Otherwise, τ could not be extended to a set Y such that ϕYe is total

(much less equal to X).
To construct the computable set X, look for strings τn such that σ ⊂ τ0 ⊂ τ1 ⊂ · · · and

for all n, ϕτne (n) converges. By the comments above, such strings can be found by searching
and 〈ϕτ0e (0), . . . , ϕτne (n)〉 ∈ T for all n. Set

X|(n+ 1) = ϕτ0e (0), . . . , ϕτne (n)〉.

Then X is a computable set on P , yielding the desired contradiction.

We now turn to some basic measure theoretic results. Recall that we assign the product
measure µ of the “fair coin flip” measure on {0, 1} to 2ω. That is, we assign measure 1/2 to
each of the subsets {0} and {1} in {0, 1} and then use the product measure on {0, 1}ω. Under
this measure, the set [2<ω(σ)] has measure 2−n where n = |σ|.

We will only use a few facts about this measure from general measure theory, and we
present them here as a reminder. Any facts which we use that are specific to this measure
(for example Lemma 15.8), we will prove.

51

• µ is defined on all Borel sets in 2ω.

• µ is countably additive.

• For any measurable set X and any ε > 0, there is an open set A such that X ⊂ A and
µ(A) < µ(X) + ε.

The next lemma says that the measure of any open set G can be approximated to any
specified degree by the measure of a finite union of basic open sets contained in G.

Lemma 15.8. Let G be any open set in 2ω and let ε > 0 be arbitrary. There are basic open
sets defined by σ0, . . . , σk which are each contained in G and such that

µ(G) < 2−|σ0| + · · ·+ 2−|σk| + ε.

Proof. Since G is an open set in 2ω, G is a closed set which can be represented by [T] for
some binary branching tree T . Since we are not concerned with recursion theoretic issues
here, we can assume that T has not nonextendible nodes. Recall that Oσ is the basic open
set consisting of all sets extending σ. G is equal to the countable union of all Oσ such that
σ 6∈ T . Pictorially, we can think of G as represented by a countable union of cones with bases
σ 6∈ T . We thin this set of cones out by removing the cones which lie above other cones.
Let σ0, σ1, . . . be the strings such that Oσi

⊂ G and ∀τ (σi(Oτ 6⊂ G. These cones give a
countable cover of G by disjoint basic open sets.

If this sequence of cones is finite, then G is equal to a finite union of disjoint basic open
sets and we are done. Otherwise, by countable additivity,

µ(G) = Σi∈ω2
−|σi|.

Since this sum converges, it can be approximated by finite initial segments to any specified
degree of accuracy. If k is such that Σi>k2

−|σi| < ε, then σ0, . . . , σk are the required basic
open sets.

Theorem 15.9. For any noncomputable set X, the set UX = {Y |X ≤T Y } has measure zero.

Proof. The set UX is the countable union of Ue,X for e ∈ ω where Ue,X = {Y |X = ϕYe }.
Because µ is countably additive, it suffices to show µ(Ue,X) = 0 for all e.

First, we show that each Ue,X is Borel and hence measurable. Let Ue,n,X denote the set
of all Y such that ∃s(ϕYe,s(n) = X(n)). Ue,n,X is the complement of the Π0

1 class of all sets Z
such that ∀s(ϕZe,s(n) 6= X(n)). Therefore, not only is Ue,n,X an open set, it is an effectively
open set. (Formally, it is a Σ0

1 class, being the complement of a Π0
1 class.) Since

Y ∈ Ue,X ⇔ ∀n∃s(ϕe,s(n) = X(n)),

Ue,X is the intersection of Ue,n,X for all n. Therefore, Ue,X is a Gδ set and hence Borel.
Now that we know Ue,X is measurable, we fix e and assume for a contradiction that

µ(Ue,X) = 4m > 0. We show that this assumption implies thatX is computable, contradicting
the hypothesis of the theorem.

52

Since Ue,X is measurable, so is Ue,X . Let G be an open set containing Ue,X such that
µ(G) < µ(Ue,X) + m. Notice that G ⊂ Ue,X and µ(G) > 3m. By Lemma 15.8, we can
approximate G by basic open sets defined by σ0, . . . , σk within measure m. Therefore, if B
is the union of these basic open sets, then B ⊂ G and µ(G) < µ(B) +m. Notice that since
Ue,X ⊂ G, we have

µ(B ∩ Ue,X) < µ(B ∩G) < m.

Let Si,n be the set of all Z ∈ B such that ϕZe (n) = i. By the arguments similar to those
given above, each Si,n is Borel and hence measurable. If i = X(n), then G ⊂ Si,n and so
µ(Si,n) ≥ 3m. On the other hand, if i 6= X(n), then Si,n ⊂ B ∩ Ue,X and hence µ(Si,n) ≤ m.

To arrive at our contradiction, we give a computable procedure for computing X. Since
the list of strings σ0, . . . , σk defining the open set B is finite, we can assume that we are given
those strings.

Fix n and we show how to compute X(n). For any string τ we can check if ϕτe,|τ |(n)

converges. If so, then let i be such that for all Z ∈ Oτ , ϕ
Z
e (n) = i. Since both Oτ and B are

finite unions of basic open sets and we know the strings defining those basic open sets, we
can effectively determine a finite sequence of strings which define pairwise disjoint basic open
sets whose finite union is equal to Oτ −B.

Let Dτ = Oτ − B. Because we have a finite description of Dτ as a union of pairwise
disjoint basic open sets, we can effectively determine µ(Dτ). Since Dτ ⊂ B and for all
Z ∈ Dτ , ϕ

Z
e (n) = i, we have that Dτ ⊂ Si,n. Therefore, we know that µ(Si,n) ≥ µ(Dτ).

By considering the strings τ in 2<ω in lexicographic order, we can determine more and
more sets Dτ . These sets give us better and better approximations to µ(Si,n). Since SX(n),n

is the only set of the form Si,n with measure > m, we continue to determine sets Dτ until we
find some Si,n with µ(Si,n) ≥ 2m. At this point, we know that X(n) = i. Therefore, X is
computable which contradicts the hypothesis of the theorem.

Theorem 15.10. Let A and B be disjoint computablely inseparable c.e. sets and let U =
{X|∃Y ∈ Sep(A,B)(Y ≤T X)}. Then, µ(U) = 0.

16 Comments on references

I would like to make a small, completely inadequate, number of comments on the references
for this material. The general presentation in Sections 1, 2 and 4 is very similar to that of [1]
and [2]. For a similar (and much more in depth) presentation of the material from Sections
5 and 6, see [6] and [7]. The coding in Sections 7 and 12 as well as the equivalence of the
definitions in Section 9 can be found in [5] and [3]. These articles also contain many more
applications of Π0

1 classes to effective mathematics. Several of the lemmas in Section 10 come
from [16] and this paper contains many nice results on applications of Π0

1 classes that are
beyond the scope of this course (unfortunately). The results of Sections 11 and 13 come from
the seminal papers [11] and [12]. These papers contain quite a number of other similar results
as well as nice applcations of these results to theories. The material for Section 14 comes from
[4] which, as with many of the articles cited above, goes into far more detail about countable

53

Π0
1 classes than we have time for in this course. The work in Section 15 can be found either

in [11], [12] or [14].

References

[1] J.L. Bell & M. Machover, A Course in Mathematical Logic, North-Holland, Amsterdam
1977.

[2] J.L. Bell & A.B. Slomson, Models and Ultraproducts: An Introduction, North-Holland,
Amsterdam 1969.

[3] D. Cenzer, Π0
1 classes, in [10], 37-85.

[4] D. Cenzer, R.G. Downey, C.G. Jockusch Jr. & R.A. Shore, Countable thin Π0
1 classes,

Annals of Pure and Applied Logic 59 (1993), 79-139.

[5] D. Cenzer & J.B. Remmel, Π0
1 classes in mathematics, in volume 2 of [8], 623-821.

[6] R.G. Downey, On presentations of algebraic structures, in Complexity, Logic and Recur-
sion Theory (ed. Sorbi), Lecture Notes in Pure and Applied Mathematics 187 (1997)
157-205.

[7] R.G. Downey, Computability theory and linear orderings, in [8], 823-976.

[8] Y.L. Ershov, S.S. Goncharov, A. Nerode & J.B. Remmel (ed.), Handbook of Recursive
Mathematics (2 Volumes), Elsevier, Amsterdam, 1998.

[9] S.S. Goncharov, Countable Boolean Algebras and Decidability, Kluwer New York 1997.

[10] E.R. Griffor, Handbook of Recursion Theory, Elsevier, Amsterdam 1999.

[11] C.G. Jockusch Jr. & R.I. Soare, Degrees of members of Π0
1 classes, Pacific Journal of

Mathematics 40 (1972), 605-616.

[12] C.G. Jockusch Jr. & R.I. Soare, Π0
1 classes and degrees of theories, Transactions of the

American Mathematical Society 173 (1972), 33-56.

[13] H. Rogers Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill,
New York 1967.

[14] G.E. Sacks, Degrees of Unsolvability, Princeton University Press, Princeton, NJ 1993.

[15] S.G. Simpson, Subsystems of Second Order Arithmetic, Springer-Verlag, Berlin 1999.

[16] S.G. Simpson, Π0
1 sets and models of WKL0, to appear in Reverse Mathematics 2001.

[17] R.I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin 1987.

54

