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Partial computable functions

ϕ0, ϕ1, . . . denote partial computable functions

(computer programs with no time or memory

constraints)

Partial means domain(ϕe) ⊆ ω

ϕe(n) may or may not halt.

A is computable ⇔ ∃e∀n(A(n) = ϕe(n))

To show A is not computable meet require-

ments Re that A 6= ϕe for all e ∈ ω.

A is computably enumerable (c.e.) ⇔
∃e(A = domain(ϕe))

Halt = {e |ϕe(e) halts} is c.e. but not com-

putable.
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Working with oracles

ϕXe allows ϕe to ask “Is n ∈ X?”

(ϕe has X on a hard drive)

A ≤T B ⇔ ∃e∀n(A(n) = ϕBe (n))

A ≡T B ⇔ A ≤T B and B ≤T A

≡T is equivalence relation on P(ω)

(P(ω)/ ≡T ,≤T ) is Turing degrees

deg(A) = {B |B ≡T A} will be our measure of

the computational complexity of A.
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Turing degrees

Least degree 0 consists of computable sets

deg(Halt) = 0′ satisfies 0 <T 0′

Uncountable but with countable predecessor

property

Degrees form an upper semi-lattice

A⊕B = {2n |n ∈ A} ∪ {2n+ 1 |n ∈ B}
deg(A⊕B) = deg(A) ∨ deg(B)

Meets do not have to exist!
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Turing jump operator

Jump operator: A′ = {e |ϕAe (e) halts}

deg(A) <T deg(A′)

Iterating the jump gives the following picture:

5



Jump operator is not one-to-one!

A is low ⇔ A′ ≡T 0′.

A is low means A is almost, but not quite com-

putable.
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A is low2 ⇔ A′′ ≡T 0′′

A is low2 means A is almost computable but

not quite as close to being computable as a

low set.
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Set up for computable algebra

Let L be a computable language.

(Intuition: L is finite.)

By Gödel numering, formulas in L can be

viewed as numbers.

All structures in this tutorial are countable.

For any A, we have |A| ⊆ ω.

(Never hurts to assume |A| = ω.)

Important to think not only of isomorphism

type of A but the actual copy (or coding or

presentation) of A.
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Assigning a degree to a structure

Fix a particular L structure A.

Let LA be expansion with constants for each

element of |A|.

Atomic diagram of A ⊆ ω.

The degree of A is the Turing degree of the

atomic diagram of A.

If L is finite, then the degree of A is

deg(|A|) ∨
k∨
i=1

deg(fAi ) ∨
l∨

i=1

deg(RAi )

A is computable ⇔ all functions and relations

in A are (uniformly) computable.
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Degree spectrum

Because we assign deg(A) to a particular copy

A, we can have B ∼= A, deg(B) 6= deg(A).

We let the degree spectrum of A be the set

of degrees for all isomorphic copies of A

DegSp(A) = {d | ∃B ∼= A(d = deg(B))}

Question: What can we say about

DegSp(A)?

Theorem. (Knight) Under very weak condi-

tions, DegSp(A) is closed upwards.
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Example. Let A is linear order with |A| =

a0, a1, . . . and B be a set with deg(A) ≤T B.

Build C ∼= A with deg(C) ≡T B.

Domain of C is c0, c1, . . .

Define bijection f : |C| → |A| and let

x ≤C y ⇔ f(x) ≤A f(y)
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If n ∈ B ⇒, we make c2n <C c2n+1

If n 6∈ B ⇒, we make c2n+1 <C c2n

Claim: deg(C) ≡T B.

From B, compute A and then f (gives C)

From C, compute n ∈ B ⇔ c2n <C c2n+1.
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Degrees for linear orders

Which linear orders have a computable copy?

When is 0 ∈ DegSp(L)?

No reasonable known answer.

2ω many countable linear orders but ω many

computable linear orders.

Several positive results of the form:

Theorem. (Downey, Knight) L has a ∆0
2

copy ⇔ (Q+2+Q) ·L has a computable copy.

0′ ∈ DegSp(L) ⇔ 0 ∈ DegSp((Q + 2 + Q) · L)

(Q + 2+ Q) ·L means replace each element of

L by Q + 2 + Q
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Theorem. (Feiner) There is a linear order

L with deg(L) ≤T 0′ such that L has no com-

putable copy.

Code information in algebraic invariant of L.

x1 <L · · · <L xn form n block if

Block(L) = {n |L has an n block}

Block(L) is Σ0
3 definable in L.

L ∼= L̂⇒ Block(L) = Block(L̂)
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Claim: For any Σ0
3 set V , there is computable

L with Block(L) = V .

It suffices to prove the claim.

Relativize claim by one jump

For any Σ0
4 set V̂ , there is L̂ with Deg(L̂) ≤T 0′

and Block(L̂) = V̂ .

Let V̂ be Σ0
4 complete.

∃ computable L ∼= L̂⇒ Block(L) = Block(L̂).

Block(L) is Σ0
3 and Block(L̂) is Σ0

4 complete.

Contradiction!
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Claim: For any Σ0
3 set V , there is computable

L with Block(L) = V .

V = {y | ∃x ∀u ∃sR(y, x, u, s)}

Build L in stages as Ls.

Stage 0: L0 = Z + Z + · · ·+ Z + · · ·

xth copy of Z: ω∗ + (1) + (2) + · · ·+ (y) + · · ·

Use (y) in xth copy of Z to code

∀u ∃sR(y, x, u, s).
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Add two types of points: z points and w points

At each stage add two z points around (y) on

the outside.

By themselves, z points make (y) into Z.
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When think ∀u∃sR(y, x, u, s) is true, add two w

points around (y) on inside.

Infinitely many w points ⇒ (y) becomes y block

Finitely many w points ⇒ (y) becomes Z
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(y) becomes y block in xth copy of Z
⇔ add infinitely many w points

⇔ ∀u ∃sR(y, x, u, s)

How do we measure when ∀u ∃sR(y, x, u, s)

looks true at stage s?

If u ≤ s and ∀u′≤u ∃s′≤sR(y, x, u′, s′), then have

at least u many pairs of w points at stage s.
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Theorem. (Jockusch and Soare) For any

noncomputable c.e. degree d, there is a linear

order Ld such that Ld has a copy of degree d

but does not have a computable copy.

There is a low L which has no computable

copy.

Recall: d is low ⇔ d′ ≡T 0′
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Suppose L has copies of every noncomputable

degree. Must L has a computable copy?

Can DegSp(L) = {d |d 6= 0}?

Theorem. (Slaman, Wehner) There is a

(graph) structure A such that

DegSp(A) = {d |d 6= 0}

Theorem. (R. Miller) There is a linear order

L such that L has copies in every degree ≤T 0′

except 0.

Open Question. Is there a linear order L with

DegSp(L) = {d|d 6= 0}?
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Degrees of isomorphism types

Suppose DegSp(A)

has a least element a.

Then a is the degree of the isomorphism

type of A.

In general, DegSp(A) need not have least ele-

ment.

For any degree a, there is a countable Aa such

that

DegSp(Aa) = {d|a ≤T d}
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Theorem. (Richter) For any linear order L,

if DegSp(L) has a least degree, it is 0.

Richter constructed copies L0 and L1 such that

deg(L0) and deg(L1) form a minimal pair.

deg(L0) ∨ deg(L1) = 0

Any linear order without computable copy has

no simplest presentation.

Most general possible behavior with respect to

degree spectra does not occur within linear or-

ders.
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Maybe problem is that coding requires several
quantifiers.

Richter’s Theorem says that we cannot code
a noncomputable set into the atomic diagram
of the isomorphism type of a linear order.

Instead of looking at deg(L), look at deg(L)′

and ask

If 0′ ≤T a, is there L such that

{deg(L̂)′ | L̂ ∼= L} = {d | a ≤T d}?

If so, we say a is the jump degree of L.
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Theorem. (Knight) If a linear order has a

jump degree, then it is 0′.

Ask similar questions for larger number of

jump.

The nth jump degree of A is the least element

of {deg(B)(n)|B ∼= A} if it exists.

Theorem. (Ash, Downey, Jockusch,

Knight) For n ≥ 2 and any d ≥T 0(n), there is

linear order with proper n degree d.

Given two jumps, can code any degree.
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Boolean algebras

Theorem. (Feiner) There is a boolean alge-

bra with ∆0
2 copy but no computable copy.

Theorem. (Downey and Jockush) Every

low boolean algebra has a computable copy.

If DegSp(B) contains all noncomputable de-

grees, then it contains 0.

Most general behavior for degree spectra is not

possible in boolean algebras.
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Theorem. (Thurber; Knight and Stob)

Every low4 boolean algebra has a computable

copy.

Theorem. (Remmel, Vaught) Let B be a

boolean algebra with infinitely many atoms. If

B̂ is formed from B by splitting each atom

finitely many times, then B̂ ∼= B.

Open question. Is every lown boolean algebra

isomorphic to a computable one?

Theorem. (Richter) If DegSp(B) has a least

degree, it is 0.

Jump degree results also known for boolean

algebras.
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Rank 1 torsion free abelian groups

Torsion free means for any g ∈ G

g 6= 0G ⇒ ng 6= 0g

Rank 1 means G embeds into (Q,+).

Divisible closure of G is 1 dimensional vector

space over Q.

In general, DegSp(G) may not have least ele-

ment.

Theorem. (Downey) For every degree a,

there is rank 1 torsion free abelian group Ga

such that

DegSp(Ga) = {d | a ≤T d}
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Let G be subgroup of (Q,+) and fix g 6= 0G.

Let p0, p1, . . . denote primes. Type of G is

χ(G) = 〈i0, i1, . . . , ik, . . .〉 where

ik = greatest m such that pmk divides g

ik = ∞ if pmk divides g for all m.

χ(G) =∗ χ(H) ⇔ sequences differ in finitely

many places and never when ∞.

Theorem. (Baer) G ∼= H ⇔ χ(G) =∗ χ(H).

Approximate χ(G) by S(G) = all 〈m, k〉 with

m ≤ ik. S(G) is c.e. in G.
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Theorem. (Downey) For every degree a,

there is rank 1 torsion free abelian group Ga

such that

DegSp(Ga) = {d | a ≤T d}

Fix A ∈ a.

A⊕A = {2n |n ∈ A} ∪ {2n+ 1 |n ∈ A}

A⊕A is c.e. in X ⇒ A ≤T X.

Let G have ik = 1 if k ∈ A⊕A and

ik = 0 if k 6∈ A⊕A.

G has copy computable in A.

If H ∼= G, then S(G) (and hence A⊕A) is c.e. in

H. Therefore, A ≤T H
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What about n degrees for rank 1 torsion free

abelian groups?

G has finite type if ik <∞ for all k.

Theorem. (Coles, Downey and Slaman)

Every rank 1 torsion free abelian group G has

2 degree. If G has finite type then G has 1

degree.

(Soskov has given alternate proof using enu-

meration degrees.)

Theorem. (Downey and Jockusch) For ev-

ery d ≥T 0′′, there is rank 1 torsion free abelian

group with proper 2 degree d.
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Continuous functions on computable Pol-

ish spaces

J. Miller introduced the continuous degrees.

• sit between Turing and enumeration de-

grees

• every continuous function has a continuous

degree

• every continuous degree is the degree of

some continuous function

• if the continuous degree is not a Tur-

ing degree, then the continuous functions

with that degree do not have least de-

gree among their Turning degree represen-

tations.
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Summary

deg(A) = Turing degree of atomic diagram

DegSp(A) = {d | ∃B ∼= A(d = deg(B)}

DegSp(A) closed upwards

Sometimes DegSp(A) has least element

∀a∃Aa (DegSp(Aa) = {d | a ≤T d}

Occurs in rank 1 torsion free abelian groups,

but not in linear orders or boolean algebras

Most general behavior with respect to de-

gree spectra does not occur in linear orders

or boolean algebras.
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If A has a copy which is close to computable,

must it have a computable copy? No.

There is low linear order with no computable

copy.

∃A (DegSp(A) = {d | 0 <T d}

Does not occur in boolean algebras because if

B has low copy then B has computable copy.

Given some finite number of jumps, can we do

more coding?

If n ≥ 1 and 0(n) ≤T a, is there A with proper

nth jump degree a?

For linear orders, yes if n ≥ 2.

For rank 1 torsion free abelian groups, only if

n ≤ 2.
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Relations on computable structures

Focus on computable structures.

Consider a computable linear order L.

The adjacency relation on L is

adj(L) = {〈x, y〉 |x immediately precedes y}

Can have computable L̂ ∼= L such that

deg(adj(L)) 6= deg(adj(L̂))

Is there always computable L̂ ∼= L with adj(L̂)
computable?

Is there an upper bound on adj(L̂) for com-
putable L̂ ∼= L?

What are the possible sets of degrees for
adj(L̂) when L̂ varies over all computable L̂ ∼=
L?
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Fix class of algebraic structures and fix alge-
braic object associated with this class.

• adjacency relation on linear orders

• atom relation on boolean algebras

• center of a group

• basis for vector space

• order on torsion free abelian group

Is there a computable structure in class for
which object is not computable?

If so, how badly not computable is the object?

What are the possible degrees of the object?
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Adjacency relation on linear order

Is adjacency computable for computable L?

Theorem. There is a computable linear order

in which the adjacency relation is not com-

putable.

Domain of L is ω and ≤L defined in stages.

To determine if n ≤L m, run construction until

both n and m placed in L.

Requirement Re: ϕe does not compute adja-

cency relation.

Stage 0: Place all even numbers into L:

2 <L 4 <L 6 <L 8 <L 10 <L 12 <L · · ·
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Stage 0:

2 <L 4 <L 6 <L 8 <L 10 <L 12 <L · · ·

Stage s: For each e ≤ s, run ϕe(ae, be) for s

steps.

Take least undefeated e with ϕe(ae, be) = 1.

(ϕe thinks ae and be are adjacent.)

Put least unused odd number between ae and

be in L. Declare ϕe defeated.

Note: (L,≤L) ∼= (ω,≤)!
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What are the possible degrees for adjacency

relation on a computable copy of (ω,≤)?

Since adjacency is definable by Π0
1 formula, it

must have c.e. Turing degree.

The degree spectrum of relation R on com-

putable A is

DegSp(A, R) = {d| ∃ compB ∼= A(RB ≡T d)}

DegSp((ω,≤),Adj) ⊆ {d|d is c.e.}

How badly noncomputable can the adjacency

relation be on a computable copy of (ω,≤)?

At worst, it can have degree 0′.
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Theorem. For any c.e. set C, there is a

computable copy (L,≤L) of (ω,≤) such that

Adj(L) ≡T C.

2 <L 4 <L 6 <L 8 <L 10 <L 12 <L · · ·

At stage s, if n enters C then place next unused

odd number between an and bn.

n ∈ C ⇔ an and bn are not adjacent.

Let C be the halting problem: adjacency on

computable copy of (ω,≤) can be 0′ (as bad

as possible).
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Corollary. There is computable linear order L

such that

DegSp(L,Adj) = {d|d is c.e.}

Does every computable linear order L have a

computable copy L̂ such that adjacency in L̂ is

computable?

Theorem. (Downey, Moses) There is

a computable linear order L such that

DegSp(L,Adj) = {0′}.

Theorem. (Downey) There is a computable

linear order L such that DegSp(L,Adj) = all

noncomputable c.e. degrees.
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One extreme situation:

Theorem. (Downey, Moses) There is com-

putable L with DegSp(L,Adj) = {0′}.

Opposite extreme: If DegSp(A, R) = {0}, then

we say R is intrinsically computable.

When is a computable relation R intrinsically

computable for linear order L?

Theorem. (Hirschfeldt, Moses) A com-

putable relation on a computable linear order

is intrinsically computable ⇔ it is definable by

a quantifier free formula with constants from

L.

Furthermore, if R is not intrinsically com-

putable, then DegSp(L,R) is infinite.
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This is different from the general situation for

computable structures.

Theorem. (Hirschfeldt) For any two c.e. de-

grees a and b, there is a computable A and

a relation R on A such that DegSp(A, R) =

{a,b}.

Most general situation with respect to degree

spectra of relations cannot occur in linear or-

ders.
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Atoms in a boolean algebra

There are computable boolean algebras B̂ ∼= B

with

deg(atom(B̂)) 6= deg(atom(B))

Theorem. (Goncharov) There is a com-
putable boolean algebra for which the atoms
are not computable in any computable copy.

Theorem. (Downey) For every computable
boolean algebra B, there is a computable B̂ ∼=
B such that the set of atoms in B̂ is <T 0′.

Cannot have DegSp(B,Atom) = {0′}!

Let B be computable boolean algebra.

There is computable linear order L such that
B ∼= IntAlg(L).

Atoms of B correspond to adjacencies in L.
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Theorem. (Downey, Goncharov,

Hirschfeldt) A computable relation R

on a computable boolean algebra is intrin-

sically computable ⇔ it is definable by a

quantifier free formula with constants from B.

Furthermore, if R is not intrinsically com-

putable, then DegSp(B,R) is infinite.

Most general behavior with respect to degree

spectra of relations does not occur in boolean

algebras.
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Basis for torsion free abelian groups

Let G be torsion free abelian group.

{g1, . . . , gk} are linearly independent if for any

n1, . . . , nk ∈ Z

Σnigi = 0G ⇒ ∀i(ni = 0)

A basis for G is maximal independent set and

the rank of G is the size of a basis.

If G is divisible, then G is vector space over

Q. These terms have same meaning as vector

space terms in this context.

There is a computable torsion free abelian

group G with no computable basis.
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Unlike adjacency or atom relation:

Theorem. (Dobritsa) Every computable tor-

sion free abelian group G has a computable

copy with a computable basis.

Some copies of G may not have computable

basis, but if the copy is chosen carefully, there

will be a computable basis.

Proof sketch. Assume G has infinite rank.

Build H and isomorphism f : H → G in stages

H0 ⊆ H1 ⊆ · · · ⊆ Hs ⊆ · · ·

and fs : Hs → G such that H = ∪Hs and f =

lims fs.
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Define basis {b0, b1, b2, . . .} for H during con-

struction.

Stage s+1: Have {b0, . . . , bs} and need to de-

fine bs+1.

Suppose fs(bi) = csi ∈ G.

Want: lims csi = ci and c0, c1, . . . is basis for G.

Problem: Discover new relations between the

csi elements, so must redefine fs preserving ad-

dition facts defined so far.
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Each h ∈ Hs has dependence relation

αh = α0b0 + · · ·+ αsbs

with |α|, |αi| ≤ s.

For t ≥ s, need

αft(h) = α0ft(b0) + · · ·+ αsft(bs)

When redefining fs+1(bi), make sure

αx = α0fs+1(b0) + · · ·+ αsfs+1(bs)

has a solution.

We set ft(h) to be this solution.
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Defining fs+1(b0), . . . , fs+1(bs+1):

Set css+1 = 0G and look at

cs0, cs1, . . . , c
s
s, css+1

Let I be least such that cs0, . . . , c
s
I is s+ 1 de-

pendent.

Let c′I , . . . , c
′
s+1 be such that

cs0, c
s
1, . . . , c

s
I−1, c

′
I , . . . , c

′
s+1

is s+ 1 independent.

Set cs+1
i = csi for i < I.

Set cs+1
j = s!c′j + csj for j ≥ I.
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If h ∈ Hs assigned dependence relation

αh = α0b0 + · · ·+ αsbs

(with |α|, |αi| ≤ s), then

αx = α0c
s
0 + · · ·+ αsc

s
s

has a solution and so does

αx = α0c
s+1
0 + · · ·+ αsc

s+1
s

since this is the same as

αx = α0c
s
0 + · · ·+ αsc

s
s + s!(αIc

′
I + · · ·αsc′s)

and |α| ≤ s.

Once fs+1(bi) defined, we extend definition by

solving equations.

Make sure f is onto.
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Orders on torsion free abelian groups

(G,≤) is an ordered group if G is group and for

all g, h, k ∈ G

g ≤ h⇒ gk ≤ hk ∧ kg ≤ kh

Abelian G is orderable ⇔ G is torsion free.

Theorem. (Downey and Kurtz) There is a

computable torsion free abelian group G with

no computable order.

In their proof, G ∼=
⊕
ω Z under complicated

coding. This does have computable copy with

computable order.
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Corollary to Dobritsa’s Theorem. Every

computable torsion free abelian group G has

a computable copy with a computable order.

Take a computable copy H of G which has a

computable basis and use this basis to define

an order on H.

For adjacency and atom: no computable copy

with computable relation

For basis and order: always computable copy

with computable relation

Is difference due to fact that basis and order

are not unique?
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Archimedean classes in ordered groups

Let G be ordered abelian group.

a� b⇔ ∀n(|na| < |b|)

a ≡ b⇔ ∃n(|a| ≤ |nb| ∧ |b| ≤ |na|)

A ⊆ G is set of archimedean representatives

if

∀a, b ∈ A (a 6= b→ a 6≡ b)

∀g ∈ G∃a ∈ A (g ≡ a)
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Sets of archimedean representatives behave

like adjacency and atoms.

Theorem. (Solomon) There is a computable

ordered abelian group G such that no com-

putable copy of G has a computable set of

archimedean representatives.

Code Feiner’s linear order L which has ∆0
2 copy

but no computable copy into the archimedean

classes so that a copy of L is computable from

any set of archimedean representatives.
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Question. Does every computable ordered

abelian group (G,≤G) have a computable copy

with a computable basis?

G is torsion free, so Dobritsa’s Theorem says

there is computable H ∼= G such that H has

computable basis.

Is there a computable ≤H on H such that

(H,≤H) ∼= (G,≤G)?

Theorem. (Goncharov, Lempp, Solomon)

If (G,≤G) is a computable ordered abelian

group with finitely many archimedean classes,

then (G,≤G) has a computable copy with a

computable basis.

Open question: What happens if (G,≤G) has

infinitely many archimedean classes?
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Computable dimension

∃ computable copies L0 and L1 of (ω,≤)

• adjacency in L0 is computable

• adjacency in L1 is not computable

L0 and L1 are not computably isomorphic.

The computable dimension of a computable

structure A is the number of computable

copies of A up to computable isomorphism.

Notice: CompDim(A) ∈ ω.

Intuition: If CompDim(A) = 1, then computa-

tional properties do not depend on which com-

putable copy of A you consider.
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A is computably categorical (c.c.) ⇔
CompDim(A) = 1 ⇔
∀ computable B ∼= A, there is computable iso-

morphism from A to B

If a linear order is computably categorical, then

the adjacency relation has the same degree in

every computable copy.

Goal: Classify which structures are computably

categorical within various classes of structures.
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Classifying computable categoricity

Linear order is c.c. ⇔ finite number of adja-

cencies

Boolean algebra is c.c. ⇔ finite number of

atoms

Algebraically closed field is c.c. ⇔ finite tran-

scendence degree

Torsion free abelian group is c.c. ⇔ finite rank

Ordered abelian group is c.c. ⇔ finite rank

Conditions also known for abelian p-groups and

trees.

Open question: What about fields?
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Possible computable dimensions

The following classes of structures admit only
computable dimension 1 or ω:

Linear orders, boolean algebras, algebraically
closed fields, real closed fields, abelian p-
groups, torsion free abelian groups, ordered
abelian groups, trees

(Dzgoev, Goncharov, Larouche, Lempp, Mc-
Coy, Metakides, R. Miller, Nerode, Nurtazin,
Remmel, Smith, Solomon)

This is not the most general possible situation.

Theorem. (Goncharov) For each 1 < n <

ω, there is a computable structure An with
CompDim(An) = n.

Which classes of structures admit finite com-
putable dimensions other than 1?
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Finite computable dimension

Theorem. (Goncharov, Molokov, Ro-

manovskii) For each 1 < n < ω, there

is a computable nilpotent group Gn with

CompDim(Gn) = n.

Furthermore, Gn can be chosen to be torsion

free.

Similar results for partially ordered sets, graphs

and lattices.

Which classes of structures admit the most

general possible behavior with respect to all

of the notions from computable algebra men-

tioned so far?
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Strong Coding

A class C of algebraic structures admits strong

coding if for any countable graph G, there is

a structure AG from C such that

• DegSp(G) = DegSp(AG)

• CompDimd(G) = CompDimd(AG) for any

degree d

• For any R ⊆ G, there is U ⊆ |A| such that

DegSp(G,R) = DegSp(AG, U)

If C admits strong coding, then the most gen-

eral computable model theoretic behavior is re-

alized inside C.
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Not strong Strong

boolean algebras lattices
linear orders partial orders

trees graphs

ACF0 rings
RCF0 integral domains

abelian p-groups nilpotent groups

torsion free torsion free
abelian groups nilpotent groups

ordered abelian groups

(Hirschfeldt, Khoussainov, Shore and Slinko

building on coding techniques of Rabin)

Open Question: What about fields?
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If C admits strong coding, then the algebraic

behavior within C does not interfere with the

computational properties.

If not, then the algebraic behavior within C
interacts non-trivially with the computational

properties.
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Summary

Relation R on computable A

DegSp(A, R) = {d | ∃comp.B ∼= A (d = deg(RB)}

For adjacency in linear orders, atom in boolean

algebras and archimedean equivalence in or-

dered abelian groups, there are structures in

which they are noncomputable in all com-

putable copies.

For basis or order in torsion free abelian group,

there is always computable copy in which rela-

tion is computable.
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Computable dimension and computable cate-

goricity

Which computable dimensions are possible?

In which classes of structures do they occur?

Classify the computably categorical structures

in various classes.

Strong coding

Isolate classes of structures in which the most

general possible computational behavior oc-

curs.
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Relative computable categoricity

A computable structure A is

computably categorical (c.c.) if for every

computable B ∼= A, there is a computable

isomorphism from A to B.

relatively computably categorical if for ev-

ery B ∼= A, there is an isomorphism from A to

B which is computable in Deg(B).

Relative c.c. ⇒ c.c.

In many examples, these notions are the same.

For linear orders

c.c. ⇔ relatively c.c. ⇔
finite number of adjacencies.
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In general, computable categoricity does not

imply relative computable categoricity.

Theorem. (Goncharov) There is a com-

putable A which is computably categorical but

not relatively so.

Theorem. (Goncharov) If A is 2 decid-

able (the ∀∃ diagram is decidable), then A is

computably categorical ⇔ it is relatively com-

putably categorical.

Theorem. (Kudinov) There is a 1 decidable

A which is computably categorical but not rel-

atively so.

Why work with relative computable categoric-

ity?
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Scott families

A Scott family for A is a set of formulas Φ

(using a fixed finite set of parameters from A)

such that

• ∀a ∈ A∃ϕ ∈ Φ(A |= ϕ(a))

• ∀a, b ∈ A[∃ϕ ∈ Φ(A |= ϕ(a) ∧ ϕ(b))
→ (A, a) ∼= (A, b)]

A countable ⇒ A has Scott family Φ in Lω1,ω.

A Scott family Φ is formally Σ0
1 if each formula

in Φ is finitary ∃ formula and the set (of Gödel

numbers for formulas in) Φ is c.e.
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Characterization of relative c.c.

Theorem. (Ash, Knight, Mannasse, Sla-

man and Chisholm) A computable A is rel-

atively computably categorical ⇔ it has a for-

mally Σ0
1 Scott family.

Using back and forth relations, there is a sim-

pler condition describing the existence of Scott

families of finitary Σ0
1 formulas.

Using this definition, the relation A is relatively

computably categorical becomes Σ0
3.
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Intrinsically c.e. relations

Let R be a relation on computable A.

R is intrinsically c.e. if for every computable

B ∼= A, RB is c.e.

R is relatively intrinsically c.e. if for every

B ∼= A, RB is c.e. relative to deg(B).

A set X is c.e. relative to Y if there is an index

e such that

X = {n |ϕYe (n) halts }

There is procedure which enumerates X when

given oracle Y .
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Characterizing intrinsically c.e. relations

A formula ϕ is computable Σ1 if it is a c.e. in-

finitary disjunction
∨
ψi in which each ψi is a

finitary Σ0
1 formula.

Theorem. (Ash, Nerode) Under some effec-

tiveness hypotheses, R is intrinsically c.e. ⇔ R

is definable by a computable Σ1 formula (with

finitely many parameters).

Theorem. (Ash, Knight, Mannasse, Sla-

man and Chisholm) R is relatively intrinsi-

cally c.e. ⇔ R is definable by a computable

Σ1 formula (with finitely many parameters).
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Application of relative c.c.

The definition of computable categoricity gives

a Π1
1 condition for determining if A is c.c.

When classifying which structures in given

class are c.c., we want a condition that is sim-

pler than Π1
1.

For linear order, L is c.c. ⇔ L has finite num-

ber of adjacencies.

There is n such that for all choices of more

than n many pairs of elements of L, at least

one pair of these elements is not adjacent.

At worst, computable categoricity for L is Σ0
3.
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Computably categoricity for trees

Theorem. (R. Miller) Every computable in-

finite height tree has computable dimension ω.

Theorem. (Lempp, McCoy, R. Miller,

Solomon) The following hold for computable

finite height tree T .

• T has computable dimension 1 or ω.

• T is c.c. ⇔ T has finite type.

• T is c.c. ⇔ T is relatively c.c.
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Let (T,≤) be a finite height tree and x ∈ T have

immediate successors {xi | i ∈ I}. Let T [xi] =

{y ∈ T |xi ≤ y}. We say that x is of strongly

finite type if

• ∃ only finitely many isomorphism types in

{T [xi] | i ∈ I}, each of which is of strongly

finite type; and

• ∀j, k ∈ I, if T [xj] ↪→ T [xk], then ei-

ther T [xj]
∼= T [xk] or the isomorphism

type of T [xk] appears only finitely often in

{T [xi] | i ∈ I}.

T is of strongly finite type if the root node

is of strongly finite type.
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Using the same notation, we say that x is of

finite type if

• ∃ only finitely many isomorphism types in
{T [xi] | i ∈ I}, each of which is of finite
type; and

• Every isomorphism type which appears in-
finitely often in {T [xi] | i ∈ I} is of strongly
finite type; and

• ∀j, k ∈ I, if T [xj] ↪→ T [xk], then ei-
ther T [xj]

∼= T [xk] or the isomorphism
type of T [xj] appears only finitely of-
ten in {T [xi] | i ∈ I}, or the isomorphism
type of T [xk] appears only finitely often in
{T [xi] | i ∈ I}.

T itself is of finite type if every node in T is
of finite type.
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A finite height tree T is c.c. ⇔ T has finite

type.

Definition of finite type is analytic, so does not

seem to be a reasonable classification.

T is c.c. ⇔ T is relatively c.c.

Now we have Σ0
3 condition to determine c.c.

for finite height trees.

Sketch a proof of

Theorem. (Goncharov) There is a com-

putable A which is computably categorical but

not relatively so.

79



Enumerations of families of sets

Let S ⊆ P(ω) be countable family of sets.

An enumeration of S is a set µ ⊆ ω × ω such

that

S = {µ(i) | i ∈ ω}

where µ(i) = {x | 〈i, x〉 ∈ µ}.

µ is computable if it is computable as a set

of ordered pairs.

µ is 1-to-1 if ∀i 6= j (µ(i) 6= µ(j)).
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If µ and ν are computable enumerations of S,

then

ν ≤ µ ⇔ ∃ comp. f ( ν(i) = µ(f(i)) )

ν ≡ µ ⇔ ν ≤ µ andµ ≤ ν

If ν ≡ µ, we say ν and µ are the same up to

computable equivalence.

Let S have a unique 1-to-1 computable enu-

meration up to computable equivalence.

For computable 1-to-1 ν and µ, ∃ computable

permutation f of ω with µ(i) = ν(f(i)).
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Computability part of proof

S ⊆ P(ω) is discrete if for each A ∈ S there is

a finite string σ ∈ 2<ω such that for all B ∈ S

σ ⊂ B ⇔ B = A

S is effectively discrete if there is a c.e. set

E of finite strings such that

∀A ∈ S ∃σ ∈ E (σ ⊂ A)

∀σ ∈ E ∀A,B ∈ S (σ ⊂ A,B → A = B)

Theorem. (Selivanov) There is S ⊆ P(ω)

which has unique 1-to-1 computable enumera-

tion and is discrete but not effectively discrete.
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Coding part of proof

Code S into directed rigid graph G(S).

Place infinitely many coding locations c with

c→ c.
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Use coding location to code a set A from S

with each set coded exactly once.

n ∈ A ⇒ add cycle of length2n

n 6∈ A ⇒ add cycle of length2n+ 1
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If H is computable copy of G(S), then there is

associated computable 1-to-1 enumeration µH
of S.

If µ is computable 1-to-1 enumeration of S,

then there is associated computable copy Gµ

of G(S).

If µ ≡ ν, then Gµ and Gν are computably iso-

morphic.

If H,K are computably isomorphic copies of

G(S), then µH ≡ µK.
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CompDim(G(S)) = number of 1-to-1 com-

putable enumerations of S.

If S has unique computable 1-to-1 enumera-

tion, then G(S) is computably categorical.

Theorem. (Goncharov) There is a com-

putable A which is computably categorical but

not relatively so.

Theorem. (Selivanov) There is S ⊆ P(ω)

which has unique 1-to-1 computable enumera-

tion and is discrete but not effectively discrete.

G(S) is computably categorical.
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Let S have unique 1-to-1 computable enumer-

ation and be discrete but not effectively dis-

crete.

Then S does not have a formally Σ0
1 Scott

family.

Can translate a formally Σ0
1 Scott family into

an effectively discrete set for S by consider-

ing coding locations and the formulas defining

them in the Scott family.
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Theorem. (Goncharov) There is a com-

putable A which is computably categorical but

not relatively so.

Proof: Take family S from Selivanov’s Theo-

rem and consider G(S).

G(S) is computably categorical since S has

unique 1-to-1 computable enumeration.

G(S) has no formally Σ0
1 Scott family since S

is discrete but not effectively discrete.
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Lifting Goncharov’s Theorem

Let α be a computable ordinal.

α is a countable ordinal which has a com-

putable copy.

There is a computable linear order L such that

L ∼= α.

Really work with ordinal notations.
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X ≤T 0′ ⇔ X is∆0
2

X ≤T 0′′ ⇔ X is∆0
3

For finite n, X ≤T 0(n) ⇔ X is ∆0
n+1.

Using ordinal notations, we can extend this

analysis to computable ordinals and work with

sets which are ∆0
α.

A computable structure A is

∆0
α categorical if every computable B ∼= A is

isomorphic to A by a ∆0
α map.

relatively ∆0
α categorical if every B ∼= A is

isomorphic to A by a map which is ∆0
α(deg(B))
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Characterizing relative ∆0
α categoricity

Theorem. (Ash, Knight, Mannasse, Sla-

man and Chisholm) Computable A is rela-

tively ∆0
α categorical ⇔ A has a formally Σ0

α

Scott family.

A formally Σ0
α Scott family is a Scott family

Φ in which the set Φ is Σ0
α and each formula

ϕ ∈ Φ is a computable Σα formula.

To define computable Σα formulas, work in

Lω1,ω but only allow c.e. conjunctions and dis-

junctions.
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Theorem. (Goncharov, Harizanov, Knight,

McCoy, Miller, Solomon) For each com-

putable successor ordinal, there is a com-

putable A which is ∆0
α categorical but not rel-

atively so.

There is computable A with a relation R which

is intrinsically Σ0
α but not relatively so.

For each finite n, there is computable A with

∆0
α dimension n.

There is computable A such that

DegSp(A) = {d |∆0
α(d) 6= ∆0

α}

Open question: What happens at limit ordi-

nals?
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Idea of proof

Relativize Selivanov’s Theorem to ∆0
α and

code family into ∆0
α graph G such that

G has unique ∆0
α copy up to ∆0

α isomorphism

G has no Σ0
α Scott family of finitary existential

formulas

We want computable G∗ such that

G∗ has one computable copy up to ∆0
α isomor-

phism

G∗ has no Σ0
α Scott family of computable Σ0

α

families.
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Computable categoricity and Scott families

A computable A is relatively computably cate-

gorical ⇔ A has a formally Σ0
1 Scott family.

Formally Σ0
1 Scott family is set of formulas Φ

each φ ∈ Φ is a finitary Σ0
1 formula

(restrict complexity of formulas in family)

and the set Φ is c.e.

(restrict complexity of set of formulas)

A has a formally Σ0
1 Scott family

⇒ A is relatively computably categorical

⇒ A is computably categorical.
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How complex is Scott family for c.c. A?

If A is 2 decidable, then A is c.c. ⇔
A is relatively c.c. ⇔
A has a formally Σ0

1 Scott family.

What is A is not 2 decidable?

Can we place bounds on complexity of formu-

las in Scott family and on the complexity of

set of formulas?

Does A have a Scott family of finitary formu-

las?
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Computable stability

A computable A is computably stable ⇔ for

every computable B ∼= A, every isomorphism

between A and B is computable.

Example. If A is computably categorical and

rigid, then A is computably stable.

Example. If A is finite dimensional vector

space over Q then A is computably stable.

Does every computably stable A have a Scott

family of finitary formulas? No.

Open question: How complex is the index set

of computably categorical structures? Is it as

bad as Π1
1 complete?
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Theorem. (Cholak, Shore, Solomon)

There is a computably stable A such that A
has no Scott family of finitary formulas.

The proof uses the same coding idea but a

different enumeration theorem.

There is a partial computable function ψ and a

family of c.e. sets A such that ψ gives a 1-to-1

enumeration of A as

{Ai | i ∈ ω}

(n ∈ Ai if and only if 〈n, i〉 ∈ domain(ψ))

with the following properties
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1. A has a single 1-to-1 c.e. enumeration

2. ∃∞d∃∞s∃m 6= d(Ad,s ⊆ Am,s+1). For each

such d

(a) Ad is infinite.

(b) ∀k, there is stage sk such that ∀t > sk
and all indices m 6= d, if Ad,t ⊆ Am,t+1,

then Am,t contains no numbers ≤ k.

(c) ∀ indices z, there is stage sz such that

for all stages t > sz and all indices m 6=
d, if Ad,t ⊆ Am,t+1, then m > z.

(d) ∀m 6= d, if there is stage s such that

we enumerate the elements of Ad,s into

Am,s+1 to cause Ad,s ⊆ Am,s+1, then

Am,s+1 = Am.
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