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1 Partitions and infinite variable words

The goal of these notes is to give a proof of the Dual Ramsey Theorem. This theorem was
first proved in “A Dual Form of Ramsey’s Theorem” by Tim Carlson and Steve Simpson,
Advances in Mathematics, 1984. The proof presented here is the same proof given in the
paper and follows much of the same notation and terminology. The main change is that
we will explicitly use the notion of “infinite variable words” as used by Simpson in later
discussions of this theorem. (For example, Simpson uses this language in his discussion of
reverse mathematics and the Dual Ramsey Theorem in the Proceedings Volume from the
Boulder conference.)

Before stating the Dual Ramsey Theorem, we need to introduce some notation and ter-
minology. We let ω = {0, 1, . . .} and A be a finite (possibly empty) alphabet which is disjoint
from ω.

Definition 1.1. An A-partition is a collection of pairwise disjoint nonempty subsets of A∪ω
(called blocks) whose union is A ∪ ω and such that each block contains at most one element
of A. A block which is disjoint from A is called free.

Example 1.2. For many of the examples, we will work with the alphabet A = {a, b, c}. The
A-partition P given by

{a, 0, 2, 4, 6, . . .}, {b, 1, 3, 5, . . .}, {c}

has no free blocks, while the A-partition Q given by

{a, 0, 6, 12, 18, . . .}, {b, 2, 8, 14, 20, . . .}, {c, 4, 10, 16, 22, . . .}, {1, 3}, {5, 7}, {9, 11}, . . .

has infinitely many free blocks. We think of the free blocks of Q as indexed by elements of ω,
with the ordering determined by the least element of each block. That is, the 0-th free block
of Q is {1, 3}, the 1-st free block of Q is {5, 7} the 2-nd free block is {9, 11} and so on.

We let (ω)ω
A denote the set of all A-partitions containing infinitely many free blocks and

we let (ω)k
A denote the set of all A-partitions containing exactly k many free blocks. Thus,

in Example 1.2, P ∈ (ω)0
A and Q ∈ (ω)ω

A. If X is an A-partition, then we refer to the blocks
of X as X-blocks. Note that if A = ∅, then an A-partition is just an ordinary partition of ω.
In this case, we require that k ≥ 1 (since k = 0 does not make sense if A = ∅), and we write
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(ω)ω and (ω)k in place of (ω)ω
∅ and (ω)k

∅. Thus, (ω)ω denotes the set of all partitions of ω into
infinitely many blocks and (ω)k (for k ≥ 1) denotes the set of all partitions of ω into k many
blocks.

Definition 1.3. If X and Y are A-partitions, then Y is coarser than X if each X-block is
contained in a Y -block. That is, we can obtain Y from X by collapsing X-blocks.

When we deal with coarsening in these notes, we always work within the collection of
A-partitions. Thus, if X is an A-partition then we cannot collapse distinct nonfree blocks
together because this would violate the condition that each block contains at most one element
of A. For example, the only coarsening of the partition P in Example 1.2 is P because it has
no free blocks. More generally, any element of (ω)0

A cannot be properly coarsened.

Example 1.4. Let Q be as in Example 1.2. The A-partition R given by

{a, 0, 6, 12, 18, . . .}, {b, 2, 8, 14, 20, . . .}, {c, 4, 10, 16, 22, . . .}, {1, 3, 9, 11},
{5, 7, 13, 15}, {17, 19, 25, 27}, {21, 23, 29, 31}, . . .

is coarser than Q. We think of R as formed by collapsing the 0-th and 2-nd free blocks of Q,
collapsing the 1-st and 3-rd free blocks of Q, collapsing the 4-th and 6-th free blocks of Q,
collapsing the 5-th and 7-th free blocks of Q, and so on. Note that although no free blocks
were collapsed into nonfree blocks in this example, that is also allowed by the definition of
coarsening.

For X ∈ (ω)ω
A, we write

(X)ω
A = {Y ∈ (ω)ω

A | Y is coarser than X}
(X)k

A = {Y ∈ (ω)k
A | Y is coarser than X}

Thus, in Example 1.4, R ∈ (Q)ω
A since R is coarser than Q but still has infinitely many free

blocks. As above, if A = ∅, the we drop the subscript A and write (X)ω and (X)k.
There are natural topologies on (ω)k and (ω)k

A which will be defined later and which give
rise to the collection of Borel subsets of these spaces. We can now state the Dual Ramsey
Theorem and the Generalized Dual Ramsey Theorem.

Theorem 1.5 (Dual Ramsey Theorem). For all k, l ≥ 1, if (ω)k = C0∪C1∪· · ·∪Cl−1, where
each Ci is Borel, then there exists an X ∈ (ω)ω such that (X)k ⊆ Ci for some i < l.

Theorem 1.6 (Generalized Dual Ramsey Theorem). Let A be a finite (possibly empty) al-
phabet, l ≥ 1 and k ≥ 0 (if A is nonempty, otherwise k ≥ 1). If (ω)k

A = C0 ∪C1 ∪ · · · ∪Cl−1,
where each Ci is Borel, then there exists an X ∈ (ω)ω

A such that (X)k
A ⊆ Ci for some i < l.

The Dual Ramsey Theorem is the special case of the Generalized Dual Ramsey Theorem
when A = ∅. The advantage of allowing nonempty alphabets comes in simplifying the induc-
tion in the proof. Our goal is to prove the Generalized Dual Ramsey Theorem. This proof
breaks into two pieces. We will first cover what Carlson calls “the combinatorial core” of the
proof which is a Ramsey-style statement about infinite variable words. Next we will give the
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topological half of the proof. Finally, I will explain why we cannot cross out the word “Borel”
from the statement of the theorem.

For the remainder of this section and for the next section, we assume that A is a nonempty
finite alphabet. We fix a countable collection of variables {xi | i ∈ ω} disjoint from A and ω.

Definition 1.7. An infinite variable word (over A) is a function

X : ω → A ∪ {xi | i ∈ ω}

such that

• for every variable xj, there is an i such that X(i) = xj and

• if j0 < j1, i0 is the least such that X(i0) = xj0 and i1 is the least such that X(i1) = xj1 ,
then i0 < i1.

That is, an infinite variable word is an ω-sequence in which each variable appears and the
first occurrence of xj comes before the first occurrence of xj+1. (Note that xj can appear after
xj+1 as well.)

Example 1.8. For the purposes of examples, I will work with A = {a, b, c}. The word

bbx0cx0x1ax0ccbx2x3x0ca · · ·

is the beginning of an infinite variable word, while the word

x0aabx2cx1c · · ·

is not.

If X is an infinite variable word, then X can be thought of as an element of (ω)ω
A by

associating the partition whose blocks are

Ba = {a} ∪ {n ∈ ω | X(n) = a} for each a ∈ A

Fj = {n ∈ ω | X(n) = xj} for each variable xj

That is, the Ba blocks are the nonfree blocks and Fj is the j-th free block. As above, we count
the free blocks starting with the 0-th free block and we order the free blocks by their least
element. Thus, the restriction that the first occurrence of xi comes before the first occurrence
of xi+1 guarantees that the least element in Fi is less than the least element of Fi+1.

Example 1.9. For the infinite variable word starting

aabx0cx0x1ax0x1x2 · · ·

we have that the blocks containing elements of A are {a, 0, 1, 7, . . .}, {b, 2, . . .} and {c, 4, . . .},
and there are free blocks {3, 5, 8, . . .}, {6, 9, . . .} and {10, . . .}.
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Similarly, given an A-partition P ∈ (ω)ω
A, there is an associated infinite variable word X

given by X(n) = a if n is in the same block as a ∈ A and X(n) = xj if n is in the j-th free
block.

Example 1.10. The infinite variable word associated with the A-partition Q from Example
1.2 is

ax0bx0cx1ax1bx2cx2ax3bx3cx4ax4 · · ·

In this example, we have the special property that all the occurrences of xi come before the
first occurrence of xi+1. This property is not required, but it will turn out to be useful to us
later.

Because we can move back and forth between A-partitions and infinite variable words, we
can work with either formalism. For the next couple of sections, we will work mainly with
infinite variable words, but when we return to the Generalized Dual Ramsey Theorem later,
it will be helpful to switch between perspectives.

Because of this connection, we use (ω)ω
A to denote the set of infinite variable words as well

as the set of A-partitions. If X and Y are infinite variable words, we say Y is coarser than
X, if the A-partition corresponding to Y is coarser than the A-partition corresponding to X.
Therefore, the notation (X)ω

A extends to infinite variable words as well.

Example 1.11. We can think of the process of coarsening on an infinite variable word in
terms of substituting elements of A and variables in for other variables. For example, suppose

X = bbx0ax0x1x0bcbax2x3x4bx0x2bb · · ·

To coarsen X, we first decide whether the free block containing 2 (i.e. the block represented by
the variable x0) will be collapsed into one of the nonfree blocks or whether it will remain free.
Suppose we decide to collapse it into the block containing a. This corresponds to substituting
a in for x0 to get

bbaaax1abcbax2x3x4bax2bb · · ·

We next decide what to do with the free block containing 5 (i.e. the block represented by x1).
We could again collapse this into a nonfree block or we could choose for it to remain free.
Suppose we decide to keep this block free. In that case, since it is now the 0-th free block, we
replace x1 by x0 to get

bbaaax0abcbax2x3x4bax2bb · · ·

Next, we decide what to do with the block represented by x2. Now, we have three options. We
can collapse this block into a nonfree block (which corresponds to substituting an element of
A in for x2), or we can collapse it into the 0-th free block (which corresponds to substituting
x0 in for x2), or we can let it remain free and disjoint from the 0-th free block. In the last
case, since it is now the 1-st free block, we substitute x1 in for x2. Continuing in this manner,
we can coarsen the original infinite variable word X. As long as all the variable occur at the
end of this (potentially infinite) process, we will have coarsened X to another infinite variable
word.
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Of course, the formalism of words also works for A-partitions with k many free blocks.
The only change is that we think of our variable words as being over A ∪ {xi | i < k}. That
is, rather than using infinitely many variables, we only use k many variables. In this context,
the A-partitions with no free blocks correspond to element of Aω.

We will also be interested in finite initial segments of these infinite variable words, or in the
context of A-partitions, A-partitions of initial segments of ω. An A-segment is a finite word
s over A∪ {xj | j ∈ ω} which is an initial segment of some element of (ω)ω

A. If n = length(s),
then s can be thought of as an A-partition of A ∪ {0, 1, . . . , n − 1}, and conversely, any A-
partition of A∪{0, 1, . . . , n−1} corresponds to an A-segment. We write #(s) for the number
of variables appearing in s (or equivalently, the number of free blocks in the corresponding
partition). If s and t are A-segments and X ∈ (ω)ω

A, then we write s � t (or s ≺ X) if s is an
initial segment of t (or X respectively).

We write s ≤ t to means that s and t have the same length and that the A-partition
corresponding to s is coarser than the A-partition corresponding to t. That is, we can ob-
tain the A-partition corresponding to s by collapsing some of the blocks in the A-partition
corresponding to t. As finite variable words, this means that we can obtain the word s from
the word t by doing a finite number of substitutions of either elements of A for variables or
variables for other variables, being careful to renumber the variables according to the order
in which they appear.

Example 1.12. Let s = abbx0bcx0x0bx1 and t = ax0bx1x0cx2x1x0x3. Then s corresponds to
the partition of A ∪ {0, . . . , 9}

{a, 0}, {b, 1, 2, 4, 8}, {c, 5}, {3, 6, 7}, {9}

and t corresponds to the partition

{a, 0}, {b, 2}, {c, 5}, {1, 4, 8}, {3, 7}, {6}, {9}

By collapsing {b, 2} with {1, 4, 8} and collapsing {3, 7} with {6}, we can get from the t
partition to the s partition. Therefore, s ≤ t. Alternately, we start with t

ax0bx1x0cx2x1x0x3

substitute b for x0 (since the 0-th free block is collapsed into the nonfree block containing b)
to get

abbx1bcx2x1bx3

substitute x0 for x1 (since the 1-st free block in t remains free and hence is now the 0-th free
block) to get

abbx0bcx2x0bx3

substitute x0 for x2 (since the 2-nd free block in t remains free but is collapsed into what is
now the 0-th free block) to get

abbx0bcx0x0bx3
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and finally substitute x1 for x3 (since the last free block in t remains free and is not collapsed
into another free block, and hence becomes the 1-st free block) to get

abbx0bcx0x0bx1

which is exactly s.

Similarly, we write s ≤ X if s ≤ X[length(s)] where X[n] denotes the initial segment of
X of length n (i.e. the word X(0)X(1) · · ·X(n− 1)).

We extend our notations about coarsening from infinite variable words to A-segments as
follows. Let (n)k

A denote the set of all A-segments (finite words) s such that length(s) = n
and #(s) = k. That is, (n)k

A is the set of all A-segments (finite words) of length n in which
only the variables x0, . . . , xk−1 appear. (Alternately, (n)k

A is the set of all A-partitions of
A ∪ {0, 1, . . . , n} which have exactly k many free blocks.) If t ∈ (n)k

A and l < k, then

(t)l
A = {s ∈ (n)l

A | s ≤ t}

That is, (t)l
A is the set of all A-segments which can be obtained from t by a finite series of

substitutions (and renumbering of variables) as above and which contain exactly the variables
x0, . . . , xl−1. In particular, (t)0

A is the set of all substitution instances of t (i.e. elements of An

which can be obtained by substituting an element of A for each variable in t). Also, (t)1
A is

the set of all A-segments obtained by first substituting elements of A in for some (but not
all) of the variables in t and then replacing the remaining variables by x0.

Example 1.13. Let A = {a, b} and t = x0ax1x0b. (We use a smaller alphabet to keep the
number of substitution instances smaller.) We obtain the elements of (t)0

A by running through
each possible combination of plugging in a and b for x0 and x1. That is, we plug in a for both
x0 and x1, we plug in a for x0 and b for x1, and so on, to obtain

(t)0
A = {aaaab, aabab, baabb, babbb}

We obtain (t)1
A in a similar fashion except we have to leave one variable free (or one block

free). Thus, we can plug in x0 for x1 (i.e. collapse the two free blocks into one), we can leave
x0 as a variable (i.e. leave its block free) and plug in an element of A for x1 (i.e. collapse its
free block into a nonfree block), or plug in an element of A for x0 (i.e. collapse its free block
into a nonfree block) and plug in x0 for x1 (i.e. leave its block free, but renumber it as the
0-th free block) to obtain

(t)1
A = {x0ax0x0b, x0aax0b, x0abx0b, aax0ab, bax0bb}

We need one last notion before stating our Ramsey-style result. If s is an A-segment
(viewed as a word), then s∗ = sx#(s). That is, we take s and attached the first variable not
appearing in s on the end. When viewing s as an A-partition of A∪{0, 1, . . . , length(s)− 1},
this amounts to defining s∗ as the partition of A∪{0, 1, . . . , length(s)} by taking the s-blocks
and adding a new free block {length(s)} (i.e. the new free block contains only the number
length(s)). In other words, s∗ is the unique word such that length(s∗) = length(s) + 1, s � s∗

and #(s∗) = #(s) + 1.
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Example 1.14. Consider the A-segment t from Example 1.13. As a finite word, t∗ =
x0ax1x0bx2. As a finite A-partition, t partitions {a, b} ∪ {0, 1, 2, 3, 4} into the blocks

{a, 1}, {b, 4}, {0, 3}, {2}

Therefore, t∗ partitions {a, b} ∪ {0, 1, 2, 3, 4, 5} into the blocks

{a, 1}, {b, 4}, {0, 3}, {2}, {5}

If X ∈ (ω)ω
A, then (X)∗A is the set of all A-segments s such that #(s) = 0 and s∗ ≤ X.

In other words, s ∈ (X)∗A if and only if there is an A-segment t such that t ≺ X, the next
element after the initial segment t in the infinite variable word X is the variable x#(t) (i.e. the
first variable not appearing in t) and s ∈ (t)0

A. To give one more description, a string s ∈ A<ω

is in (X)∗A if and only if s is formed by cutting off X just before the first occurrence of a
variable and substituting all the variables in this initial segment by elements of A.

Example 1.15. Suppose that A = {a, b} and X = abx0bx1x0x2 · · · . We form (X)∗A as
follows. First, we can cut off X just before the first occurrence of x0 to get ab. Since there
are no variables to substitute, we have ab ∈ (X)∗A. Next, we can cut off X just before the first
occurrence of x1 to get abx0b. Plugging in a and b for x0 gives us the strings abab, abbb ∈ (X)∗A.
Next, we can cut off X just before the first occurrence of x2 to get abx0bx1x0. Plugging in
all combinations of a and b for x0 and x1 gives us the strings ababaa, ababba, abbbab, abbbbb ∈
(X)∗A. Continuing in this manner, we have

(X)∗A = {ab, abab, abbb, ababaa, ababba, abbbab, abbbbb, . . .}

One particular case of note is (ω)∗A. Here we regard ω as the partition {0}, {1}, . . ., or
equivalently, the word x0x1x2 · · · . It follows directly from the definitions that (ω)∗A = A<ω.

We can now state the first version of the combinatorial core theorem.

Theorem 1.16. Let A be a finite nonempty alphabet. If (ω)∗A = C0 ∪ · · · ∪ Cl−1, then there
exists an X ∈ (ω)ω

A such that (X)∗A ⊆ Ci for some i < l.

Before proving this theorem, we state a corollary which is the real statement we will need
later in the proof of the Generalized Dual Ramsey Theorem.

Corollary 1.17. Let A be a finite nonempty alphabet. If Y ∈ (ω)ω
A and (Y )∗A = C ′0∪· · ·∪C ′l−1,

then there exists Z ∈ (Y )ω
A such that (Z)∗A ⊆ C ′i for some i < l.

Proof. Fix Y ∈ (ω)ω
A. There is a canonical bijection from (ω)ω

A onto (Y )ω
A. To see why, it is

easiest to think in terms of A-partitions, viewing ω as the A-partition

{a0}, . . . , {an}, {0}, {1}, . . .

where A = {a0, . . . , an}. That is, both ω and Y consist of a single block for each a ∈ A and
then infinitely many free blocks which we can think of as ordered by comparing their least
elements. An element W ∈ (ω)ω

A is a coarsening of the A-partition ω which still contains
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infinitely many free blocks. That is, we form W by performing a sequence of choices about
collapsing the free blocks. First, we decide whether to collapse the 0-th free block with a
nonfree block or allow it to remain free. Second, we decide whether to collapse the 1-st free
block with a nonfree block, collapse it with the 0-th free block (if it remained free after the
first choice) or do not collapse it with a previous block. Continuing in this manner (assuming
we retain infinitely many free blocks in the end) yields W . The image of W under the bijection
just performs the same sequence of choices on the corresponding free blocks in Y .

How does this work at the level of words? Suppose we want to find the image of the
following element of (ω)ω

A where A = {a, b, c}.

abx0x1x0cax1x0x2 · · ·

We can think of this word as being obtained by the following sequence of substitutions: a 7→ x0

(i.e. substitute a in for x0), b 7→ x1, x0 7→ x2, x1 7→ x3, x0 7→ x4 and so on. Perform the same
sequence of substitutions on Y to obtain the image of this word in (Y )ω

A.
The same idea works at the level of (ω)∗A and (Y )∗A. That is, an element of (ω)∗A is formed

by chopping off the infinite word x0x1 · · · just before a new variable and substituting all
the variables by elements of A in this initial segment. We map this element of (ω)∗A to the
element of (Y )∗A formed by chopping off Y just before the same variable and performing the
same substitutions. This gives a bijection from (ω)∗A onto (Y )∗A.

Fix the coloring (Y )∗A. Color (ω)∗A = C0 ∪ · · · ∪ Cl−1 by assigning each s ∈ (ω)∗A the color
Ci if its image in (Y )∗A is colored C ′i. Applying Theorem 1.16, there is an X ∈ (ω)ω

A and an
i < l such that (X)∗A ⊆ Ci. Let Z ∈ (Y )ω

A be the image of X under the first bijection. It
follows that (Z)∗A ⊆ C ′i as required.

We make one more simplification (actually strengthening) of Theorem 1.16 before giving
the proof.

Definition 1.18. An infinite variable word X ∈ (ω)ω
A is an ordered infinite variable word if

for all i ∈ ω, every occurrence of xi comes before the first occurrence of xi+1. (Note that in
particular, each variable occurs only finitely often,)

We let 〈ω〉ωA denote the set of all ordered infinite variable words. Some of our other notation
will be recast in terms of ordered words as follows.

• For X ∈ 〈ω〉ωA, we let 〈X〉ωA denote the set of all Y ∈ 〈ω〉ωA which are coarser than X.
That is, 〈X〉ωA = (X)ω

A ∩ 〈ω〉ωA.

• An ordered A-segment is an A-segment s such that s ≺ X for some X ∈ 〈ω〉ωA. That is,
s satisfies the same ordering restriction of its variables.

Example 1.19. Consider the A-partitions Q and R from Example 1.4. The infinite variable
word version of Q is

Q = ax0bx0cx1ax1bx2cx2ax3bx3cx4ax4 · · ·
which is an element of 〈ω〉ωA. The infinite variable word version of R is

R = ax0bx0cx1ax1bx0cx0ax1bx1cx2ax2bx3cx3ax2bx2cx3ax3 · · ·
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which is not an element of 〈ω〉ωA. (That is, to get R, we collapsed the 0-th and 2-nd free
blocks of Q and the 1-st and 3-rd free blocks of Q, and thus creating an instance of x0 after
an instance of x1.) Thus, despite the fact that R ∈ (Q)ω

A, we do not have R ∈ 〈Q〉ωA. On the
other hand, the infinite variable word S given by

S = ax0bx0cx0ax0bx1cx1ax1bx1cx2ax2bx2cx2 · · ·

which corresponds to the A-partition

{a, 0, 6, 12, 18, . . .}, {b, 2, 8, 14, 20, . . .}, {c, 4, 10, 16, 22, . . .}, {1, 3, 5, 7},
{9, 11, 13, 15}, {17, 19, 21, 23} . . .

is an element of 〈Q〉ωA. Note that S is formed by collapsing the 0-th and 1-st free blocks of Q,
collapsing the 2-nd and 3-rd free blocks of Q, collapsing the 4-th and 5-th blocks of Q and so
on.

Because of the nature of the proofs to come, it is more convenient to change some of the
notation in the ordered case. This is unfortunate, but I will follow the notation in the Carlson
and Simpson paper.

• For m ∈ ω, we let 〈ω〉mA denote the set of all ordered A-segments s such that #(s) = m.
In particular, 〈ω〉0A = (ω)∗A = A<ω since there are no variables in these sets and hence
the ordering condition does not apply.

• For X ∈ 〈ω〉ωA, we let 〈X〉mA denote the set of all ordered A-segments s ∈ 〈ω〉mA such
that s∗ ≤ X. That is, s ∈ 〈X〉mA if there is an initial segment t � X such that the
next element in the word X is a new variable, s ∈ (t)m

A and s is ordered. In particular,
〈X〉0A = (X)∗A because we have substituted out all the variables in both of these sets so
the ordering conditions on the variables does not apply.

• We let 〈ω〉<ω
A = ∪m∈ω〈ω〉mA and 〈X〉<ω

A = ∪m∈ω〈X〉mA

The real combinatorial core theorem we will prove is the following strengthening of The-
orem 1.16. (To see why Theorem 1.16 follows immediately from Theorem 1.20, recall from
above that 〈ω〉0A = (ω)∗A = A<ω and 〈X〉0A = (X)∗A. Thus, we are merely strengthening the
conclusion to require that the infinite variable word X is ordered.)

Theorem 1.20 (Combinatorial Core). Let A be a finite nonempty alphabet. If

〈ω〉0A = C0 ∪ · · ·Cl−1

then there exists X ∈ 〈ω〉ωA such that 〈X〉0A ⊆ Ci for some i < l.
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2 Combinatorial core

The key notion for proving Theorem 1.20 is density.

Definition 2.1. For X ∈ 〈ω〉ωA and D ⊆ A<ω, we say D is dense in 〈X〉0A if 〈Y 〉0A ∩ D 6= ∅
for all Y ∈ 〈X〉ωA. That is, no matter how you refine X to an ordered infinite variable word
Y , there is some variable such that if you cut off Y just before the first occurrence of this
variable, it is possible to perform a substitution instance on the remaining variables in this
initial segment of Y to get a string in D.

You should think of D being dense as a largeness property. The key lemma we will
establish is the following.

Lemma 2.2. If D is dense in 〈X〉0A, then there exists a W ∈ 〈X〉ωA such that 〈W 〉0A ⊆ D.

Before proving Lemma 2.2, we show how to use it to establish Theorem 1.20.

Theorem 2.3 (Combinatorial Core). Let A be a finite nonempty alphabet. If

A<ω = 〈ω〉0A = C0 ∪ · · ·Cl−1

then there exists X ∈ 〈ω〉ωA such that 〈X〉0A ⊆ Ci for some i < l.

Proof. We proceed by induction on l. The case of l = 1 is trivial. Consider the case when
l = 2. In this case, we have a coloring 〈ω〉0A = C0∪C1. Since 〈ω〉0A = A<ω, we know C0 ⊆ A<ω.
We break into two cases.

First, suppose that C0 is dense in 〈ω〉0A. Then by Lemma 2.2, there is a W ∈ 〈ω〉ωA such
that 〈W 〉0A ⊆ C0 and we are done.

Otherwise, C0 is not dense in 〈ω〉0A. By definition, this means that there is a Y ∈ 〈ω〉ωA such
that 〈Y 〉0A ∩ C0 = ∅. But then 〈Y 〉0A ⊆ C1 and we are done. Therefore, we have established
the case when l = 2.

Suppose l > 2 and 〈ω〉0A = C0 ∪ · · · ∪ Cl−1. As above, if C0 is dense in 〈ω〉0A, then we
are done by Lemma 2.2. If C0 is not dense in 〈ω〉0A, then there is a Y ∈ 〈ω〉ωA such that
〈Y 〉0A ⊆ C1 ∪ · · · ∪ Cl−1. However, as in the proof of Corollary 1.17, there is a bijection
between 〈ω〉ωA and 〈Y 〉ωA. Therefore, we can shift this coloring of 〈Y 〉0A (with one fewer colors)
to 〈ω〉0A, apply the inductive hypothesis and pull the resulting ordered variable word back into
〈Y 〉ωA.

For the remainder of this section, we work toward a proof of Lemma 2.2. At a key point,
we will use one result from standard Ramsey Theory, the Hales-Jewett Theorem. Let An

denote the set of all length n words over A. For s ∈ An, we denote the element of A in the
i-th position in s (for 0 ≤ i < n) by s(i). Assume that

A = {a0, . . . , ak−1}

A line in An is a sequence s0, . . . , sk−1 of elements of An such that for each coordinate
0 ≤ i < n either
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(1) sj(i) = sj′(i) for all 0 ≤ j, j′ < k, or

(2) sj(i) = aj for all 0 ≤ j < k

and the situation in Condition (2) happens at least once. (Note that we are implicitly assuming
there is a fixed order on the set A.)

Theorem 2.4 (Hales-Jewett Theorem). Let A be a finite nonempty alphabet. For every l,
there is an n such that for all n′ ≥ n, if An′

is l-colored, then there is a monochromatic line.

To translate this statement into our notation, recall that (n)0
A = An. If t ∈ (n)1

A, then t
is a length n word over A and a single variable. Therefore, (t)0

A is the set of size |A| whose
elements are obtained by substituting an element of A in for the single variable in t. We can
order this set (from an ordering of A = {a0, . . . , ak−1}) as s0, . . . , sk−1 where si is the result
of substituting ai in for the variable in t. Therefore, a line in An has the form (t)0

A for some
t ∈ (n)1

A. We can state the Hales-Jewett Theorem as follows.

Theorem 2.5. Let A be a finite nonempty alphabet. For each l, there is an n such that for
all n′ ≥ n, if (n′)0

A = C0 ∪ · · · ∪ Cl−1, then there exists a t ∈ (n′)1
A such that (t)0

A ⊆ Ci for
some i < l.

We need one further restatement of the Hales-Jewett Theorem to get to the version we
will apply.

Theorem 2.6. Let A be a finite nonempty alphabet. For each l, there is an n such that for all
u ∈ 〈ω〉nA and any coloring (u)0

A = C0 ∪ · · · ∪Cl−1, there exists a v ∈ (u)1
A such that (v)0

A ⊆ Ci

for some i < l.

Proof. By Theorem 2.5, let n be large enough that for any coloring (n)0
A = C0 ∪ · · · ∪ Cl−1,

then there exists a t ∈ (n)1
A such that (t)0

A ⊆ Ci for some i < l. If u ∈ 〈ω〉nA, then u looks
like the word x0x1 · · · xn−1 with extra variables and elements of A interspersed, subject to
the restriction that u is an ordered A-segment. That is, if n = 3, then u could be the word
x0abx0x1x1bbx2ax2.

There is an obvious bijection between (u)0
A and (n)0

A which allows us to shift the coloring
of (u)0

A to a coloring of (n)0
A. (That is, any element of (u)0

A is obtained by substituting
elements of A for the variables x0, . . . , xn−1 in u. Apply the same substitutions to the word
x0x1 · · ·xn−1 to obtain the image in (n)0

A.) Apply Theorem 2.5 to the coloring of (n)0
A to get

t ∈ (n)1
A such that (t)0

A is monochromatic. Since t is formed from the word x0x1 · · ·xn+1 by
substituting in elements of A for some (but not all) of the variables and substituting x0 in
for the remaining variables, we can perform the same sequence of substitutions on u to get
v ∈ (u)1

A. Since (t)0
A is monochromatic, it follows that (v)0

A is monochromatic.

For the remainder of this section, let A be an arbitrary finite nonempty alphabet, X be
an arbitrary element of 〈ω〉ωA and D be an arbitrary subset of A<ω which is dense in 〈X〉0A.
The following lemmas hold for any such objects.

Lemma 2.7. There is an s ∈ 〈X〉<ω
A such that (t)0

A∩D 6= ∅ for all t ∈ 〈X〉<ω
A such that s � t.
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Proof. First, we claim that if 〈X〉0A ⊆ D, then the lemma follows. Suppose that 〈X〉0A ⊆ D.
Consider any t ∈ 〈X〉<ω

A . The set (t)0
A contains all the strings in A|t| formed by substituting

elements of A in for all the variables in t. By the definition of 〈X〉0A, (t)0
A ⊆ 〈X〉0A. Since

〈X〉0A ⊆ D, we have (t)0
A ⊆ D and hence (t)0

A ∩D 6= ∅ for all t ∈ 〈X〉0A. In this case, we can
let s � X be the finite word obtained by cutting off X before the first occurrence of x0 and
the lemma follows.

To proceed in general, we assume for a contradiction that the conclusion of the lemma
fails. By the first paragraph, we know that there is a t0 ∈ 〈X〉0A such that t0 6∈ D. Fix
t0. Notice that (t0)

0
A = {t0} since there are no variables to substitute in for. Therefore,

(t0)
0
A ∩D = ∅.
Assume we have been given tm ∈ 〈X〉mA such that (tm)0

A ∩D = ∅. Recall that tm is formed
by cutting off X just before the first occurrence of a variable xi and possibly refining it (by
plugging in elements of A for variables or variables for other variables in a manner consistent
with maintaining an ordered A-segment) to have only m variables left. Fix sm+1 ∈ 〈X〉m+1

A

such that t∗m � sm+1. (For example, extend tm by adding on the part of X beginning with
the first occurrence of xi and stopping just before the first occurrence of xi+1. Renaming the
variable xi by xm yields such a string sm+1.) Since the conclusion of the lemma fails with
sm+1, there is a t′ ∈ 〈X〉<ω

A such that sm+1 � t′ and (t′)0
A ∩D = ∅. Let tm+1 be the result of

substituting xm in for any variable xj in t′ with index j > m (if such variables occur in t′).
Thus we have tm+1 ∈ 〈X〉m+1

A such that sm+1 � tm+1, tm+1 ∈ 〈X〉m+1
A and (tm+1)

0
A ⊆ (t′)0

A.
Hence, (tm+1)

0
A ∩D = ∅.

Altogether, we have a sequence of words t∗0 � t∗1 � t∗2 � · · · such that tm ∈ 〈X〉mA and
(tm)0

A ∩D = ∅. Let Y be the limit of these words. That is, Y ∈ 〈X〉ωA and t∗m � Y for each
m. We claim that 〈Y 〉0A = ∪(tm)0

A. Consider s ∈ 〈Y 〉0A. The string s is formed by cutting
off Y immediately before the first occurrence of some variable xm and substituting elements
of A for each variable in the resulting initial segment of Y . But, cutting off Y before the
variable xm yields tm and hence s ∈ (tm)0

A. Conversely, since each t∗m ≺ Y , we have that each
s ∈ (tm)0

A is in 〈Y 〉0A. Thus, 〈Y 〉0A = ∪(tm)0
A and hence 〈Y 〉0A ∩D = ∅, contradicting the fact

that D is dense in 〈X〉ωA.

For the next lemma, we need to define a method of concatenating two A-segments. If
s and t are A-segments (viewed as finite words), then s ⊕ t is the finite word obtained by
concatenating s and t and renumbering the variables in t by replacing xi by xi+#(s). That is,
we concatenate the finite words and renumber the variables so that the variables in s and the
renumbered variables in t do not overlap.

Example 2.8. If s = ax0x1bcx1 and t = bx0x1x1cx2, then s⊕ t = ax0x1bcx1bx2x3x3cx4.

Lemma 2.9. There is a t ∈ 〈X〉1A such that (t)0
A ⊆ D.

Proof. Fix s as in Lemma 2.7. Let l = |(s)0
A| and let (s)0

A = {s0, . . . , sl−1}. By Theorem 2.6,
let n be large enough so that for every u ∈ 〈ω〉nA, and any coloring (u)0

A = C0 ∪ · · · ∪ Cl−1,
there exists a v ∈ (u)1

A such that (v)0
A ⊆ Ci for some i < l.

Pick u ∈ 〈ω〉nA such that s⊕ u ∈ 〈X〉<ω
A . That is, let u be the part of X after s extending

through the next n many variables and stopping immediately before the (n + 1)-st variable.

12



Consider an element w ∈ (u)0
A. Then s⊕w is a refinement of s⊕u (that is, s⊕w ≤ s⊕u)

obtained by substituting elements of A for all the variables in the u part of s⊕ u and leaving
the variables in the s part alone. Therefore, s⊕ w ∈ 〈X〉<ω

A and s � s⊕ w. By Lemma 2.7,
(s ⊕ w)0

A ∩ D 6= ∅. Therefore, there is a refinement si of s (that is, si ≤ s) with #(si) = 0
obtained by substituting elements of A for all the variables in s such that si ⊕ w ∈ D.

We color (u)0
A as follows. Let

Ci = {w ∈ (u)0
A | si ⊕ w ∈ D}

By the previous paragraph (u)0
A = C0∪ · · · ∪Cl−1. By the choice of n, there is a v ∈ (u)1

A and
i < l such that (v)0

A ⊆ Ci. In other words, (si ⊕ v)0
A ⊆ D. Set t = si ⊕ v. Then t ∈ 〈X〉1A and

(t)0
A ⊆ D.

For the next lemma, we extend our ⊕ notation for s ∈ 〈ω〉<ω
A and Y ∈ 〈ω〉ωA by defining s⊕

Y to be the infinite ordered variable word formed by concatenating s and Y and renumbering
all the variables in Y by sending xi to xi+#(s).

Example 2.10. If s = ax0x0bcx1 and Y = abx0x1bcbx1x2 · · · , then

s⊕ Y = ax0x0bcx1abx2x3bcbx3x4 · · ·

Lemma 2.11. There exists s ∈ 〈ω〉1A and Y ∈ 〈ω〉ωA such that s⊕ Y ∈ 〈X〉ωA and the set

{t ∈ A<ω | (s⊕ t)0
A ⊆ D}

is dense in 〈Y 〉0A.

Proof. Assume not and we derive a contradiction. By our assumption, for all s⊕ Y ∈ 〈X〉ωA,
the set {t | (s⊕ t)0

A ⊆ D} is not dense in 〈Y 〉0A. That is, there is a Z ∈ 〈Y 〉0A such that

〈Z〉0A ∩ {t | (s⊕ t)0
A ⊆ D} = ∅

In other words, for all t ∈ 〈Z〉0A, (s ⊕ t)0
A 6⊆ D. Or stated one more way, for every t ∈ 〈Z〉0A,

there is a substitution instance (of the single variable in s) s′ of s such that t⊕ s′ 6∈ D.
To derive a contradiction, we will define W ∈ 〈X〉ωA such that for all u ∈ 〈W 〉1A, (u)0

A 6⊆ D.
This contradicts Lemma 2.9. (Note that if D is dense in 〈X〉0A and W ∈ 〈X〉ωA, then D is
also dense in 〈W 〉0A.) We construct W by constructing a sequence s0, s1, . . . such that each
si ∈ 〈ω〉1A and setting W = s0 ⊕ s1 ⊕ s2 ⊕ · · · .

Fix s0 ∈ 〈ω〉1A and Y0 such that X = s0 ⊕ Y0. That is, let s0 be the initial segment of X
including all instances of x0 and stopping right before the first instance of x1. Let Y0 be the
remainder of X with the variables renumbered by replacing xi by xi−1 so that X = s0 ⊕ Y0

In the future, we will not mention the renumbering of variables and leave it implied by the
context. Let Z0 be such that Z0 ∈ 〈Y0〉ωA and (s⊕ t)0

A 6⊆ D for all t ∈ 〈Z0〉0A.
To continue the induction, fix s1 ∈ 〈ω〉1A and Y1 ∈ 〈Z0〉ωA such that Z0 = s1 ⊕ Y1. Notice

that s0 ⊕ s1 ⊕ Y1 ∈ 〈X〉ωA. Consider the finite set (s0 ⊕ s1)
1
A and list this set as v0, . . . , vk.

That is, s0 ⊕ s1 contains the variables x0 and x1, so there are finitely many ways to perform
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substitutions to reduce this word to having only one variable. We define a sequence V0, . . . , Vk

such that each Vi ∈ 〈Y1〉ωA as follows.
Since v0⊕ Y1 ∈ 〈X〉ωA and v0 ∈ 〈ω〉1A, there is (by the assumption in the first paragraph of

this proof) a V0 ∈ 〈Y1〉ωA such that (v0 ⊕ t)0
A 6⊆ D for all t ∈ 〈V0〉0A.

By induction, assume that we have defined Vi ∈ 〈Y1〉ωA such that (vj⊕ t)0
A 6⊆ D for all j ≤ i

and all t ∈ 〈Vi〉0A. Since vi+1 ⊕ Vi ∈ 〈X〉ωA and vi+1 ∈ 〈ω〉1A, there is a Vi+1 ∈ 〈Vi〉ωA such that
(vi+1 ⊕ t)0

A 6⊆ D for all t ∈ 〈Vi+1〉0A. Note the following facts.

• Vi+1 ∈ 〈Y1〉ωA since Vi+1 ∈ 〈Vi〉ωA and Vi ∈ 〈Y1〉ωA.

• For any t ∈ 〈Vi+1〉0A, we have t ∈ 〈Vi〉0A since Vi+1 ∈ 〈Vi〉ωA.

• Fix t ∈ 〈Vi+1〉0A and j ≤ i. Since t ∈ 〈Vi〉0A, we have by induction that (vj ⊕ t)0
A 6⊆ D.

We have now established that Vi+1 ∈ 〈Y1〉ωA and for all j ≤ i + 1 and all t ∈ 〈Vi+1〉0A,
(vj ⊕ t)0

A 6⊆ D. Therefore, we have established the required induction hypothesis to continue
defining the sequence V0, . . . , Vk.

Set Z1 = Vk. Notice that Z1 ∈ 〈Y1〉ωA and for all s ∈ (s0 ⊕ s1)
1
A, we have (s⊕ t)0

A 6⊆ D for
all t ∈ 〈Z1〉0A. Write Z1 = s2⊕Y2 where s2 ∈ 〈ω〉1A. Since s0⊕ s1⊕Y1 ∈ 〈X〉ωA and Z1 ∈ 〈Y1〉ωA,
we have that s0 ⊕ s1 ⊕ s2 ⊕ Y2 ∈ 〈X〉ωA.

The induction continues in the same way. Suppose we have defined s0, . . . , sn and Yn

so that s0 ⊕ · · · ⊕ sn ⊕ Yn ∈ 〈X〉ωA. Let Zn ∈ 〈Yn〉ωA be such that (s ⊕ t)0
A 6⊆ D for all

s ∈ (s0 ⊕ · · · ⊕ sn)1
A and all t ∈ 〈Zn〉0A. Write Zn = sn+1 ⊕ Yn+1 to continue the induction.

Let W = s0 ⊕ s1 ⊕ · · · ∈ 〈X〉ωA. Recall that our desired contradiction is to show that
(u)0

A 6⊆ D for all u ∈ 〈W 〉1A. Fix any u ∈ 〈W 〉1A. The finite word u is formed by cutting off
W before the first occurrence of a variable xn+1 and performing substitutions to reduce this
initial segment to having only one variable. That is, we substitute elements of A for some
(but not all) the variables in the initial segment and substitute x0 for the remaining variables.
Because u must contain a variable, we cannot obtain the initial segment of X by cutting off
before x0. Therefore, we can denote the variable used to obtain the initial segment of X by
xn+1.

It follows that u has the form u ∈ (s0⊕ · · ·⊕ sn⊕ t)1
A where t ∈ A<ω is the initial segment

of sn+1 formed by cutting off sn+1 just before the occurrence of the (only) variable in sn+1.
However, since sn+1 was defined such that Zn = sn+1 ⊕ Yn+1, we have that t ≺ Zn, and more
specifically, t is the initial segment of Zn formed by cutting off Zn before the first occurrence
of the first variable in Zn. Therefore, t ∈ 〈Zn〉0A. But, then our construction of Zn implies
that (u)0

A 6⊆ D, giving the necessary contradiction.

Lemma 2.12. There exists s ∈ 〈ω〉1A and Y ∈ 〈ω〉ωA such that s⊕ Y ∈ 〈X〉ωA, the set

{t ∈ A<ω | (s⊕ t)0
A ⊆ D}

is dense in 〈Y 〉0A and there is an r ∈ D such that r∗ � s.

Proof. We apply Lemma 2.11 repeatedly to define three sequences s0, s1, . . . with si ∈ 〈ω〉1A,
Y0, Y1, . . . with Yi ∈ 〈ω〉ωA and D0, D1, . . . such that Dn ⊆ A<ω is dense in 〈Yn〉0A. Let s0 and Y0
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be as in the conclusion of Lemma 2.11. That is, s0⊕Y0 ∈ 〈X〉ωA and D0 = {t | (s0⊕ t)0
A ⊆ D}

is dense in 〈Y0〉0A.
Given Yn and Dn (constructed inductively) such that Dn is dense in 〈Yn〉0A, apply Lemma

2.11 to obtain sn+1 and Yn+1 such that sn+1⊕Yn+1 ∈ 〈Yn〉ωA and Dn+1 = {t | (sn+1⊕t)0
A ⊆ Dn}

is dense in 〈Yn+1〉0A. By induction on n, we have the following two properties.

• s0 ⊕ · · · ⊕ sn ⊕ Yn ∈ 〈X〉ωA

• Dn = {t | (s0 ⊕ · · · ⊕ sn ⊕ t)0
A ⊆ D}

Set W = s0⊕s1⊕· · · ∈ 〈X〉ωA. Since D is dense in 〈X〉0A and W ∈ 〈X〉ωA, there is an r ∈ D
such that r ∈ 〈W 〉0A. Fix n ∈ ω such that length(r) < length(s0 ⊕ · · · ⊕ sn). Since r ∈ 〈W 〉0A,
there is an s ∈ (s0 ⊕ · · · ⊕ sn)1

A such that r∗ � s. Fix s and set Y = Yn. Since r∗ � s, it
remains to show the items in the conclusion of Lemma 2.11.

• s ⊕ Y ∈ 〈X〉ωA follows since s0 ⊕ · · · ⊕ sn ⊕ Yn ∈ 〈X〉ωA and we have both Y = Yn and
s ∈ (s0 ⊕ · · · ⊕ sn)1

A.

• We know that {t | (s0 ⊕ · · · sn ⊕ t)0
A ⊆ D} is dense in 〈Y 〉0A. Since s ∈ (s0 ⊕ · · · ⊕ sn)1

A,
we have that (s⊕ t)0

A ⊆ (s0 ⊕ · · · ⊕ sn ⊕ t)0
A for every t. Therefore

{t | (s0 ⊕ · · · ⊕ sn ⊕ t)0
A ⊆ D} ⊆ {t | (s⊕ t)0

A ⊆ D}

so {t | (s⊕ t)0
A ⊆ D} is dense in 〈Y 〉0A.

Finally, we can prove Lemma 2.2 which we restate below for convenience.

Lemma 2.13. If D is dense in 〈X〉0A, then there is a W ∈ 〈X〉ωA such that 〈W 〉0A ⊆ D.

Proof. The proof is very similar to the proof of Lemma 2.12, except that we apply Lemma
2.12 at each step instead of Lemma 2.11. That is, we define sequences

• s0, s1, . . . ∈ 〈ω〉1A,

• Y0, Y1, . . . ∈ 〈ω〉ωA

• D0, D1, . . . such that Dn is dense in 〈Yn〉0A,

• r0, r1, . . . such that r∗i � si, r0 ∈ D, rn+1 ∈ Dn.

Let r0, s0 and Y0 be as in the conclusion of Lemma 2.12. That is, r0 ∈ D, s0 ⊕ Y0 ∈ 〈X〉ωA
and D0 = {t | (s0 ⊕ t)0

A ⊆ D} is dense in 〈Y0〉0A.
Given Yn and Dn (constructed inductively) such that Dn is dense in 〈Yn〉0A, apply Lemma

2.12 to obtain rn+1, sn+1 and Yn+1 such that rn+1 ∈ Dn, r∗n+1 � sn+1, sn+1 ⊕ Yn+1 ∈ 〈Yn〉ωA
and Dn+1 = {t | (sn+1 ⊕ t)0

A ⊆ Dn} is dense in 〈Yn+1〉0A. By induction on n, we have

• s0 ⊕ · · · ⊕ sn ⊕ Yn ∈ 〈X〉ωA

15



• Dn = {t | (s0 ⊕ · · · ⊕ sn ⊕ t)0
A ⊆ D}

Let W = s0⊕ s1⊕ · · · ∈ 〈X〉ωA. It remains to show that 〈W 〉0A ⊆ D. Fix any r ∈ 〈W 〉0A. If
length(r) < length(s0), then r = r0 ∈ D (because we have to obtain r by cutting off W right
before the first occurrence of the first variable). If

length(s0 ⊕ · · · ⊕ sn) ≤ length(r) < length(s0 ⊕ · · · ⊕ sn+1)

then we obtain r by cutting off W before the first occurrence of the variable in sn+1 and
substituting in for the variables in s0 ⊕ · · · ⊕ sn. Since r∗n+1 � sn+1, we have

r ∈ (s0 ⊕ · · · ⊕ sn ⊕ rn+1)
0
A

But, rn+1 ∈ Dn and hence (s0 ⊕ · · · ⊕ sn ⊕ rn+1)
0
A ⊆ D. Therefore, r ∈ D as required.

3 Dual Ramsey Theorem

Recall the statement of the Dual Ramsey Theorem.

Theorem 3.1 (Dual Ramsey Theorem). Let k ≥ 1. If

(ω)k = C0 ∪ C1 ∪ · · · ∪ Cl−1

where each Ci is Borel, then there exists an X ∈ (ω)ω such that (X)k ⊆ Ci for some Ci.

Remember that (ω)k denotes the set of all partitions of ω into exactly k blocks. Note that
unlike the notation 〈ω〉kA which denoted finite ordered variable words with k many variables
(which correspond to A-partitions of finite initial segments of ω), we are back to looking at
partitions of all of ω. Similarly, (ω)k

A denotes the set of all A-partitions of ω with exactly k
many free blocks.

To define the topology used here, notice that we can view each partition P in (ω)ω or
(ω)k as a relation P ⊆ ω × ω for which P (n, m) holds if and only if n and m are in the
same partition block. Therefore, each partition P is an element of 2ω×ω. This space is given
the product topology (and {0, 1} is given the discrete topology), so (ω)k and (ω)ω inherit a
subspace topology. The same idea holds for a finite alphabet A and the sets (ω)k

A and (ω)ω
A.

These spaces inherit a subspace topology from 2(A∪ω)×(A∪ω).
To give a little more intuition about the topology on (ω)k

A, consider the basic open sets
in 2(A∪ω)×(A∪ω). To specify a basic open set in this space, we list finitely many conditions of
the form u and v are related (i.e. in the same block), or u and v are not related (i.e. not in
the same block) for elements u, v ∈ A ∪ ω. This finite list of conditions determines the basic
open set of all relations on A ∪ ω which satisfy these conditions. Of course, not all such sets
of conditions can be satisfied by an A-partition. For example, if we specify that 0 and 1 are
related, 1 and 2 are related, but 0 and 2 are not related, then this finite information cannot
be satisfied by an A-partition. Similarly, if a, b ∈ A and we specify that a and b are related,
then this information cannot be accommodated by an A-partition. However, restricting the
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finite list of conditions to actual sets of A-partitions is taken care of by the subspace topology
(i.e. by the restriction to the intersection with the set (ω)k

A).
In this section, we will prove the following generalization of the Dual Ramsey Theorem.

The Dual Ramsey Theorem is the special case when A = ∅.

Theorem 3.2. Let A be a finite (possibly empty) alphabet and k ∈ ω (with k ≥ 1 if A = ∅).
If (ω)k

A = C0 ∪ C1 ∪ · · · ∪ Cl−1 where each Ci is Borel, then there exists an X ∈ (ω)ω
A such

that (X)k
A ⊆ Ci for some i < l.

Theorem 3.2 follows from three lemmas.

Lemma 3.3. Let k ∈ ω and let A be a finite alphabet such that |A| = 1. If Theorem 3.2 holds
for (ω)k

A, then it also holds for (ω)k+1
∅ (i.e. for (ω)k+1).

Lemma 3.4. Let A be a finite nonempty alphabet. If

(ω)0
A = C0 ∪ C1 ∪ · · · ∪ Cl−1

where each Ci is Borel, then there exists a Y ∈ (ω)ω
A such that (Y )0

A ⊆ Ci for some i < l.

Lemma 3.5. Let A be a finite nonempty alphabet and let a be a new symbol not in A. If
Theorem 3.2 holds for (ω)k

A∪{a}, then it also holds for (ω)k+1
A .

Notice that Theorem 3.2 follows immediately from these three lemmas. Fix a finite (pos-
sible empty) alphabet A and k ∈ ω. If k = 0 (and hence A is nonempty), then we are done
by Lemma 3.4. If k ≥ 1, then let A + k denote an alphabet of size |A|+ k. If A is nonempty,
then Theorem 3.2 follows by applying Lemma 3.5 k many times. If A is empty, then we apply
Lemma 3.5 k− 1 times to obtain Theorem 3.2 for (ω)k−1

B where B is a singleton set. Then we
apply Lemma 3.3 once to obtain Theorem 3.2 for (ω)k.

Therefore, it remains to prove Lemmas 3.3 – 3.5. The proof of Lemma 3.3 is trivial because
(ω)k
{a}
∼= (ω)k+1. That is, in (ω)k

{a}, the lone nonfree block corresponding to the single element

a acts like any other block and hence (ω)k
{a} is really the set of all partitions of ω into exactly

k + 1 blocks. More specifically, we obtain an element of (ω)k+1 by collapsing blocks in the
partition

{0}, {1}, {2}, . . .
of ω until we are left with exactly k + 1 many blocks. Similarly, we obtain an element of
(ω)k
{a} by collapsing blocks in the partition

{a}, {0}, {1}, . . .

of {a} ∪ ω until we have the block containing a and exactly k many free blocks. However,
notice that there are no restrictions on blocks which can be collapsed with the nonfree block
containing a. Thus, the nonfree block containing a acts just like a free block. Therefore,
Lemma 3.3 is established.

Notice that this reasoning cannot be extended. That is, (ω)k
{a,b} is not the same as (ω)k+2.

When collapsing blocks in the partition

{a}, {b}, {0}, {1}, . . .
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to obtain an A-partition with k free blocks, the nonfree blocks containing a and b do not act
like arbitrary free blocks because they cannot be collapsed together. This is why we need to
work harder to prove our generalization of the Dual Ramsey Theorem.

Since we are now working with partitions instead of words, let me review some of the
definitions in this context. We say s is a segment of an A-partition X and write s ≺ X to
mean s = X[n] for some n, where we identify n with {0, 1, . . . , n− 1} and

X[n] = {x ∩ (A ∪ n) | x ∈ X} \ ∅

That is, we simply restrict the X-blocks to the initial segment n of ω and remove any blocks
whose intersection with this initial segment is empty. Thus, we obtain exactly the A-partition
of n formed by restricting the A-partition X.

In this section, we will freely use the language of both variable words and A-partitions since
these notions are equivalent (as explained in the first section). Recall that we no longer have
the restriction on variable words that all occurrences of xi come before the first occurrence
of xi+1. We do retain the restriction that the first occurrence of xi comes before the first
occurrence of xi+1. (The point of this restriction was to have a one-to-one correspondence
between variable words and A-partitions.) Recall that s ≤ X means s ≤ X[n], or equivalently,
s � Y [n] for some Y ∈ (X)ω

A. For s ≤ X, we write

(s, X)ω
A = {Y ∈ (X)ω

A | s ≺ Y }
(s, X)k

A = {Y ∈ (X)k
A | s ≺ Y }

We can now prove Lemma 3.4, which is restated here for convenience.

Lemma 3.6. Let A be a finite nonempty alphabet. If (ω)0
A = C0∪C1∪ · · · ∪Cl−1, where each

Ci is Borel, then there exists a Y ∈ (ω)ω
A such that (Y )0

A ⊆ Ci for some i < l.

Proof. Note that (ω)0
A = Aω and hence is a compact Hausdorff space with basic open sets

Ts = {Y ∈ Aω | s ≺ Y }

where s ∈ A<ω. Pictorially, you can think of Aω as the set of infinite paths through the finitely
branching tree A<ω. The basic open set Ts is the set of all infinite paths passing through the
node s on A<ω.

We will use two topological facts without proof. The first topological fact is that Borel
subsets of Aω have the Property of Baire. That is, each Borel subset of Aω differs from an
open set by a set of first category (i.e. by a countable union of nowhere dense sets). Since
each color Ci is Borel, this means that for each i < l, there is open set Oi and a sequence of
dense open sets Di,n such that

Ci4Oi ⊆
⋃
n∈ω

Di,n

or equivalently

Ci4Oi ⊆ Aω \
⋂
n∈ω

Di,n
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Since C0 ∪ · · · ∪Cl−1 = Aω, we have that O0 ∪ · · · ∪Ol−1 contains all the points in Aω except
possibly the points in each Ci \Oi. Since⋃

i<l

(Ci \Oi) ⊆
⋃

i<l,n∈ω

Di,n

we have
Aω \

⋃
i<l,n∈ω

Di,n ⊆ O0 ∪ · · · ∪Ol−1

and hence ⋂
i<l,n∈ω

Di,n ⊆ O0 ∪ · · · ∪Ol−1.

The second topological fact we will use is the Baire Category Theorem which says that
a countable intersection of dense open sets in Aω remains dense. Thus, the set ∩i,nDi,n is
dense and hence O0 ∪ · · · ∪ Ol−1 is a dense open set. Therefore, at least one of the Oi sets is
nonempty, so we can fix an i < l and a t0 ∈ A<ω such that Tt0 ⊆ Ci.

We want to continue to define a sequence t0, t1, t2, . . . such that tn ≺ tn+1, #(tn+1) = n+1
and for all s ≤ tn+1 with #(s) = 0, Ts ⊆ Di,n. In other words, for n ≥ 1, tn is a finite variable
word with n many variables such that for each s obtained by substituting elements of A for
all the variables in tn, the basic open set Ts is contained in Di,n−1. Our desired infinite word
Y will be the limit of the finite tn words.

How do we define t1? Recall that Di,0 is a dense open set. Therefore, it intersects Tt0

and the intersection is open (and hence contains a basic open set). Fix t′0 ∈ A<ω such that
t0 � t′0 and Tt′0

⊆ Di,0. Let t1 = t′∗0 = t′0x0. Clearly, #(t1) = 1 as required and any s ≤ t1
with #(s) = 0 satisfies t′0 � s and hence Ts ⊆ Tt′0

⊆ Di,0.
How do we define t2? For simplicity, suppose A = {a, b} and recall that t1 = t′0x0. Let

sa = t′0a be the result of substituting a in for x0 in t1. Thus sa ∈ A<ω determines a basic open
set Tsa . Since Di,1 is a dense open set, there is a s′a ∈ A<ω such that sa � s′a and Ts′

a
⊆ Di,1.

Fix u ∈ A<ω such that s′a = sau = t′0au.
Let sb = t′0bu ∈ A<ω. That is, replace the occurrence of the symbol a in s′a which was

originally substituted for x0 in t1 to form sa by the symbol b. Again, since D1,n is an open
dense set, there is a string s′b ∈ A<ω such that sb � s′b and Ts′

b
⊆ Di,1. Fix v ∈ A<ω such that

s′b = sbv = t′0buv

and let t2 be defined by
t2 = t′0x0uvx1

Notice that #(t2) = 2 as required. Also, if s ≤ t2 and #(s) = 0 (so s ∈ A<ω), then either
s′a � s (if a is substituted in for x0) or s′b � s (if b is substituted in for x0). In either case, we
have that Ts ⊆ Di,1 are required.

Containing in this way, we get a sequence t0 ≺ t1 ≺ t2 ≺ · · · ≺ tn+1 ≺ · · · such that
#(tn+1) = n + 1 and for all s ≤ tn+1 with #(s) = 0, Ts ⊆ Di,n.

Let Y be the limit of the finite tn partitions. That is, Y is the unique element of (ω)ω
A such

that tn ≺ Y for all n. The fact that t0 ≺ Y implies that (Y )0
A ⊆ Oi. That is, an arbitrary
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element of (Y )0
A is formed by substituting elements of A in for the (infinitely many) variables

of Y . Since t0 ≺ Y and t0 contains no variables, no matter how this substitution is done, the
resulting string contains t0 as an initial segment. Therefore, an arbitrary element of (Y )0

A has
t0 as an initial segment, and hence is contained in Tt0 , which is contained (by construction)
in Oi.

The fact that tn+1 ≺ Y implies that (Y )0
A ⊆ Di,n. That is, since tn+1 ≺ Y , any element

of (Y )0
A must contain some s ≤ tn+1 with #(s) = 0 as an initial segment. By construction,

for such s, we have Ts ⊆ Di,n. Hence, each element of (Y )0
A is in Di,n. Since (Y )0

A ⊆ Di,n for
every n, we have

(Y )0
A ⊆

⋂
n∈ω

Di,n

Since
Ci4Oi ⊆ Aω \

⋂
n∈ω

Di,n

we have (Y )0
A ∩ (Ci 4 Oi) = ∅. This means that (Y )0

A is either contained in both Ci and Oi

or in neither Ci nor Oi. Since (Y )0
A ⊆ Oi, it follows that (Y )0

A ⊆ Ci as required.

Before proving Lemma 3.5, we need an important observation. Assume that the conclusion
of Theorem 3.2 holds for (ω)k

A∪{a}. Our goal is to show that this conclusion also holds for

(ω)k+1
A . The idea will be to transfer instances of (ω)k+1

A to instances of (ω)k
A∪{a}. The difficulty,

as noted before, is that in (ω)ω
A∪{a}, the block containing the element of a does not behave

like an arbitrary free block because it cannot be collapsed with a block containing an element
of A. Therefore, there is a crucial difference between (ω)k+1

A and (ω)k
A∪{a} even though the

number of partition blocks in each case is the same.
What we need is a way of “fixing” a free block in (ω)ω

A that is not collapsed into a block
containing an element of A, so that this free block acts like the block containing a in (ω)ω

A∪{a}.
The idea for doing this procedure will be to iterate the following lemma. Recall that for
X ∈ (ω)ω

A and s ≤ X, (s, X)k
A denotes the set of all Y ∈ (X)k

A such that s ≺ Y . In terms
of infinite words, (s, X)k

A is the set of all coarsenings Y of the infinite variable word X such
that Y is an infinite word with exactly k variables and Y contains s as an initial segment.

Lemma 3.7. Assume that Theorem 3.2 holds for (ω)k
A∪{a} and fix a Borel coloring

(ω)k+1
A = C0 ∪ · · · ∪ Cl−1

For any X ∈ (ω)ω
A, s ∈ (X)∗A and X ′ ∈ (X)ω

A such that X ′[|s∗|] = X[|s∗|], there is an
X ′′ ∈ (X ′)ω

A such that X ′′[|s∗|] = X ′[|s∗|] and (s∗, X ′′)k+1
A ⊆ Ci for some i < l.

Proof. Fix X ∈ (ω)ω
A, s ∈ (X)∗A and X ′ ∈ (X)ω

A such that X ′[|s∗|] = X[|s∗|]. That is, there is
a finite word t such that t ≺ X, the first symbol in X after t is the variable x#(t) (i.e. t∗ � X),
s ∈ (t)0

A (i.e. s is the result of substituting elements of A in for all the variables in t) and (since
|s∗| = |sx0| = |t∗|), t∗ ≺ X ′. In terms of a picture, we have fixed a coarsening s of an initial
segment t of X, where the first symbol in X after the initial segment t is a new variable, and
X ′ is an infinite variable word coarsening X which starts with this fixed initial segment t∗.
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We need to show that there is a further coarsening X ′′ of X ′ which retains the initial segment
t∗ but which has the property that any way we coarsen X ′′ down to an infinite word with
exactly k + 1 many variables which begins with s∗, we land in a fixed color Ci. Notice that by
restricting ourselves to coarsenings of X ′′ which begin with s∗, we have guaranteed that the
variable x0 occurs as the |s|-th symbol in the coarsening. In terms of partitions, the free block
containing the number |s| is not collapsed into a nonfree block in any element of (s∗, X ′′)k+1

A .
To prove the existence of X ′′, we claim that there is a canonical homeomorphism between

(s∗, X ′)k+1
A and (ω)k

A∪{a}. To see why, consider how we obtain elements of these two spaces. Let

A = {a0, . . . , ak}. To form an element of (ω)k
A∪{a}, we start with the trivial A∪ {a}-partition

with nonfree blocks
Ba0 = {a0}, . . . , Bak

= {ak}, Ba = {a}

and free blocks
F0 = {0}, F1 = {1}, F2 = {2}, . . .

First, we choose whether to collapse the free block F0 into one of the nonfree blocks or to allow
it to remain free. Second, we choose whether to collapse F1 into one of the nonfree blocks,
to collapse it with the free block F0 (if F0 remains free), or to allow it to remain as a new
free block. This process continues through the free blocks as we choose in stage n whether to
collapse Fn into a nonfree block, to collapse it with a free block of lower index (which remains
free), or to allow it to remain a new free block. To get an element of (ω)k

A∪{a}, we must retain
exactly k many free blocks at the end of this process.

To get an element of (s∗, X ′)k+1
A , we perform a similar process. Let Y ∈ (ω)ω

A be such that
t⊕ Y = X ′ and let Z = s⊕ Y . That is, Z is the result of doing the coarsening prescribed by
s to X ′. Note that s∗ ≺ Z since t∗ ≺ X ′. Thus (s∗, X ′)k+1

A = (s∗, Z)k+1
A and (since s ∈ A<ω)

the least element of ω which is in a free block in Z is |s|. Therefore, the 0-th free block of Z
contains the number |s|.

To form an element of (s∗, X ′)k+1
A , we start with the A-partition given by Z which consists

of nonfree blocks
B′a1

, B′a2
, . . . , B′ak

and free blocks
F ′0 = {|s|, . . .}, F ′1, F ′2, . . .

We proceed by making choices in stages about collapsing the free blocks F ′n exactly as in
the case of (ω)k

A∪{a} with the important exception that we are forced to choose to retain F ′0
as a free block (since we consider only coarsenings that begin with s∗). Thus F ′0 is a fixed
free block that remains free in all the coarsenings considered. So, we can think of elements
of (s∗, X ′)k+1

A as constructed in stages where at stage n, we decide what to do with the free
block F ′n+1 (since there is no choice for F0).

We can now describe the homeomorphism between (s∗, X ′)k+1
A and (ω)k

A∪{a}. For an ele-

ment W ∈ (ω)k
A∪{a} consider the list of choices made in the stages constructing W . Construct

an element V ∈ (s∗, X ′)k+1
A by (at stage n) collapsing F ′n+1 into B′ai

if Fn is collapsed into Bai
,

collapsing F ′n+1 into F ′0 if Fn is collapsed into Ba, collapsing F ′n+1 into F ′i+1 if Fn is collapsed
into Fi (for i < n), and leaving F ′n+1 as a new free block if Fn is left as a new free block. This
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gives a bijection between these spaces which is a homeomorphism because it respects finite
lists of conditions specifying which free blocks are (or are not) collapsed into nonfree blocks
and which free blocks are (or are not) collapsed together.

It remains to use this homeomorphism to extract an appropriate X ′′. Fix a Borel coloring
of (ω)k+1

A . This restricts to a Borel coloring of (s∗, X ′)k+1
A and via the homeomorphism gives

a Borel coloring of (ω)k
A∪{a}. Since Theorem 3.2 holds for (ω)k

A∪{a}, there is a U ∈ (ω)ω
A∪{a}

such that (U)k
A∪{a} is monochromatic.

We want to push this solution back to a solution for (s∗, X ′)k+1
A . Notice that the corre-

spondence we have described between (ω)k
A∪{a} and (s∗, X ′)k+1

A also works as a correspondence

between (ω)ω
A∪{a} and (s∗, X ′)ω

A. That is, rather than mapping coarsening with exactly k (or

k+1) free blocks, we look at coarsenings which retain infinitely many free blocks. The obvious
map preserves these. Therefore, we can map U ∈ (ω)ω

A∪{a} to V ∈ (s∗, X ′)ω
A. Furthermore,

because the method of coarsening is the same in both spaces (modulo the shift of +1 in
the indices on the free blocks and the use of F ′0 in place of Ba), we have that if (U)k

A∪{a} is

monochromatic in the induced coloring on (ω)k
A∪{a}, then (s∗, V )k+1

A is monochromatic in the

coloring on (s∗, X ′)k+1
A .

To get X ′′ so that X ′′[|s∗|] = X ′[|s∗|] = X[|s∗|] = t∗, we replace the initial segment s∗ ≺ V
by t∗. Since s ≤ t, we have (s∗, X ′′)k+1

A = (s∗, V )k+1
A is monochromatic (i.e. contained in some

Ci) as required.

We can now give our proof of Lemma 3.5, which is restated here for convenience.

Lemma 3.8. Let A be a finite nonempty alphabet and let a be a new symbol not in A. If
Theorem 3.2 holds for (ω)k

A∪{a}, then it also holds for (ω)k+1
A .

Proof. We construct a sequence X0, X1, . . . of elements of (ω)ω
A and a sequence of A-segments

t0, t1, . . . such that t∗0 � t∗1 � t∗2 � · · · as follows. Let X0 ∈ (ω)ω
A be arbitrary. Given

Xn ∈ (ω)ω
A, let tn be the unique A-segment such that t∗n ≺ Xn and #(tn) = n. In terms of

words, let tn be the initial segment of Xn ending just before the first occurrence of xn. We
claim that there is an Xn+1 ∈ (t∗n, Xn)ω

A such that for each s ≤ tn with #(s) = 0, there is a
color Ci (depending on s) such that (s∗, Xn+1)

k+1
A ⊆ Ci. (We prove this below.) Let Xn+1 be

such an A-partition to continue the recursive definition. Note that since Xn+1 ∈ (t∗n, Xn)ω
A,

the definition of tn+1 yields t∗n � t∗n+1.
Why is there such an Xn+1? Let {sj | j ≤ m} enumerate all s ≤ tn such that #(s) = 0. Set

X0
n = Xn. Note that t∗n ≺ X0

n and s0 ≤ tn. Therefore, s∗0 ∈ (X0
n)∗A. Assume we have defined

Xj
n for a fixed j ≤ m such that t∗n ≺ Xj

n and hence sj ∈ (Xj
n)∗A. Apply our observation above

to Xj
n and sj to get a color Ci and a partition Xj+1

n ∈ (t∗n, X
j
n)ω

A such that (s∗j , X
j+1
n )k+1

A ⊆ Ci

and
Xj+1

n [length(s∗j)] = Xj
n[length(s∗j)] = Xn[length(s∗j)] = t∗n

Finally, let Xn+1 = Xm+1
n .

Let Y be the limit of the t∗n segments. That is, Y ∈ (ω)ω
A is the unique element such that

t∗n ≺ Y for all n. Consider any s ∈ (Y )∗A. By definition, s is formed by cutting off Y just before
the first occurrence of a variable xn and substituting elements of A for all the variables in this
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initial segment. However, since t∗n � Y and t∗n ends with the first occurrence of xn, we have
that the initial segment of Y formed by cutting off before the first occurrence of xn is exactly tn.
Therefore, if s ∈ (Y )∗A, then s ≤ tn for some n ∈ ω and #(s) = 0. Therefore, by construction
(s∗, Xn+1)

k+1
A ⊆ Ci for some i depending on s. However, Y ∈ (t∗n, Xn+1)

ω
A since Y is the limit

of the process of coarsening of the Xi partitions. Therefore, (s∗, Y )k+1
A ⊆ (s∗, Xn+1)

k+1
A ⊆ Ci.

Define a coloring (Y )∗A = C∗0 ∪ · · · ∪ C∗l−1 as follows. For s ∈ (Y )∗A, we put s ∈ C∗i if
and only if (s∗, Y )k+1

A ⊆ Ci. By Corollary 1.17 (which is a form of our Combinatorial Core
Theorem), there is a Z ∈ (Y )ω

A such that (Z)∗A ⊆ C∗i for some i < l. That is, there is a fixed
i < l such that (s∗, Z)k+1

A ⊆ Ci for all s ∈ (Z)∗A.
We claim that (Z)k+1

A ⊆ Ci which finishes the proof. Consider an arbitrary U ∈ (Z)k+1
A .

Let s ∈ A<ω be such that s∗ ≺ U (i.e. s is the initial segment of U obtained by cutting off
before the first occurrence of x0 in U). Because U is a coarsening of Z, the first occurrence
of x0 in U corresponds to the first occurrence of some variable in Z. Therefore, s ∈ (Z)∗A and
hence (s∗, Z)k+1

A ⊆ Ci. However, U ∈ (s∗, Z)k+1
A and hence U ∈ Ci as required.

23


