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1 Polish spaces

Definition 1.1. Let (X, τ) be a topological space. A subset D ⊆ X is called dense if
D ∩O 6= ∅ for every nonempty open set O ⊆ X. X is called separable if X has a countable
dense subset. X is called metrizable if there is a metric d on X such that the topology τ
is the same as the topology induced by the metric. The metric is called complete if every
Cauchy sequence converges in X. Finally, X is a Polish space if X is a separable topological
space that is metrizable by a complete metric.

There are many natural examples of Polish spaces. For example, R is a Polish space under
the usual topology and metric because Q ⊆ R is a dense subset. Similarly, [0, 1] is a compact
Polish space with the usual metric. Notice that (0, 1) is not a Polish space with the usual
metric because the Cauchy sequence 1, 1/2, 1/4, . . . in (0, 1) does not converge in (0, 1). (We
will show later that (0, 1) is a Polish space under a different metric!) The two most important
examples of Polish spaces for our purposes will be Cantor space 2N and Baire space NN.

Before looking at Cantor space and Baire space in detail, we begin with some exercises
about general properties of Polish spaces. For all of these exercises, let X be a Polish space
with complete metric d and countable dense subset D ⊆ X.

Exercise 1.2. Prove that X is Hausdorff. That is, prove that for any two distinct points x
and y, there are open sets Ux and Uy such that x ∈ Ux, y ∈ Uy and Ux ∩ Uy = ∅.

Exercise 1.3. Prove that X has a countable basis. That is, there is a countable collection of
open sets which generate the topology τ of open sets when you close under taking arbitrary
unions. (Hint: Remember that the topology τ is equivalent to the induced metric topology.)

Exercise 1.4. Let X be a Polish space with complete metric d and dense subset D ⊆ X.
Prove that every element of X is the limit of a Cauchy sequence of elements from D.

Exercise 1.5. Prove that |X| ≤ 2ℵ0 .

Exercise 1.6. Let Y ⊆ X be closed and let a ∈ X \ Y . Let

i = inf{d(a, y) | y ∈ Y }.
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First, why is i well defined? Second, prove that i > 0. Third, prove that there is an element
b ∈ Y such that d(a, b) = i. Because of these properties, it is reasonable to define the distance
from a to Y as i and to denote this distance by d(a, Y ). (If a ∈ Y , we say that d(a, Y ) = 0 so
that this “distance” is defined for all a ∈ X. Note that it is important that X is closed here!)

Exercise 1.7. Prove the following stronger version of the Hausdorff property. Let U be an
open set in X and let a, b be distinct points in U . Prove that there are open sets Ua and Ub
such that a ∈ Ua, b ∈ Ub, Ua ⊆ U , Ub ⊆ U , and Ua ∩ Ub = ∅.

Exercise 1.8. Prove that

d̂ =
d(x, y)

1 + d(x, y)

is also a complete metric on X and that d and d̂ induce the same topology on X. Therefore,
complete metrics on Polish spaces are not unique, and moreover, we can always assume that
our complete metric satisfies d(x, y) < 1 if it is useful. (This property is frequently denoted
by the shorthand d < 1.)

Let us now turn to Baire space NN. The elements of Baire space are functions from N to
N and the metric is given by

d(f, g) =
1

2n+1

where n is the least element of N such that f(n) 6= g(n). (If f = g, then d(f, g) = 0.)

Exercise 1.9. Prove that the metric d on NN is complete. Furthermore, show that the set

D = {f ∈ NN | ∃i∀j ≥ i(f(j) = 0)}

is a countable dense subset of NN.

.
A collection of basic open neighborhoods of NN can be indexed by the strings σ ∈ N<N as

follows:
Nσ = {f ∈ NN | f � |σ| = σ}.

Exercise 1.10. Show that the sets Nσ are both closed and open in NN and that they form a
basis for the topology.

Next, we show that the open and closed subsets of Baire space can be represented in
particularly nice forms. The form for open sets follows almost immediately from the previous
exercise.

Exercise 1.11. Prove that a subset U ⊆ NN is open if and only if there is a set W ⊆ N<N

such that
U =

⋃
σ∈W

Nσ.

To give the nice form for closed sets, we need the definition for a subtree of N<N.
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Definition 1.12. T ⊆ N<N is a tree if T is downward closed. That is, for all σ ∈ T and all
µ ⊆ σ, µ ∈ T . If T is a tree, then [T ] denotes the set of all infinite paths through T . That is,
f ∈ [T ] if and only if f � n ∈ T for all n. We say that a tree T is pruned if for every σ ∈ T ,
there is an f ∈ [T ] such that σ = f � |σ|. That is, T is pruned if every node on T can be
extended to an infinite path through T .

Exercise 1.13. Show that C ⊆ NN is closed if and only if there is a (pruned) tree T ⊆ N<N

such that C = [T ]. Hint: If C is closed, then define T by setting σ ∈ T if and only if
Nσ ∩ C 6= ∅. Prove that T is a tree and that C = [T ].

The basic definitions and results for Cantor space 2N are essentially the same as those for
Baire space. The standard metric is d(f, g) = 2−(n+1) where n is the least element of N such
that f(n) 6= g(n), the set D defined for Baire space but restricted to 2N is dense, and the
basic open (in fact clopen) neighborhoods are Nσ defined as before except restricted to 2N.
The main difference between Baire space and Cantor space is that Cantor space is compact
while Baire space is not.

Exercise 1.14. Verify that Baire space is not compact while Cantor space is compact.

In the concrete contexts of Cantor space and Baire space, it is not hard to show that
every uncountable closed set has size 2ℵ0 . For the next two exercises, consider an uncountable
closed set C ⊆ NN.

Exercise 1.15. Assume that σ ∈ N<N is such that Nσ ∩ C is uncountable. Show that there
are two extensions τ0 and τ1 of σ such that Nτ0 ∩Nτ1 = ∅ and both Nτ0 ∩C and Nτ1 ∩C are
uncountable.

Exercise 1.16. Use the previous exercise to build a sequence of basic clopen sets Uσ in NN

indexed by σ ∈ 2<N with the following properties. (That is, each Uσ will be a basic clopen
neighborhood of the form Nτ for some τ ∈ N<N.)

1. U∅ = NN = N∅,

2. Uσ ⊆ Uµ for all σ ⊇ µ,

3. Uσ ∩ C is uncountable for each σ,

4. Uσ∗0 ∩ Uσ∗1 = ∅.

Show that for any f ∈ 2N, ∣∣∣∣∣⋂
n

Uf�n

∣∣∣∣∣ = 1

and that ⋂
n

Uf�n ⊆ C.
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Therefore, the map φ : 2N → C given by

φ(f) =
⋂
n

Uf�n

is well defined. Show that φ is one-to-one and therefore |C| ≥ 2ℵ0 . Since |C| ≤ 2ℵ0 by Exercise
1.5, you know |C| = 2ℵ0 . Finally, show that φ is continuous by showing that for each τ ∈ N<N,
φ−1(Nτ ) is open in 2N.

Definition 1.17. Let P ⊆ NN and let f ∈ P . We say f is isolated in P if there is a basic
clopen set Nσ such that P ∩ Nσ = {f}. P is called perfect if P is closed and contains no
isolated points.

The same style of argument in the previous two exercises works in the case when P ⊆ NN

is a nonempty perfect set. For the next two exercises, let P be a nonempty perfect subset of
NN.

Exercise 1.18. Assume that σ ∈ N<N is such that Nσ ∩ P is nonempty. Show that there
are two extensions τ0 and τ1 of σ such that Nτ0 ∩Nτ1 = ∅ and both Nτ0 ∩ P and Nτ1 ∩ P are
nonempty.

Exercise 1.19. Use the previous exercise to build a sequence of basic clopen sets Uσ in NN

indexed by σ ∈ 2<N with the following properties. (That is, each Uσ will be a basic clopen
neighborhood of the form Nτ for some τ ∈ N<N.)

1. U∅ = NN = N∅,

2. Uσ ⊆ Uµ for all σ ⊇ µ,

3. Uσ ∩ P is nonempty for each σ,

4. Uσ∗0 ∩ Uσ∗1 = ∅.

Show that for any f ∈ 2N, ∣∣∣∣∣⋂
n

Uf�n

∣∣∣∣∣ = 1

and that ⋂
n

Uf�n ⊆ P.

(Recall that P is closed!) Therefore, the map φ : 2N → P given by

φ(f) =
⋂
n

Uf�n

is well defined. Show that φ is one-to-one and therefore |P | = 2ℵ0 . Finally, show that φ is
continuous.
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Before leaving this section of basic exercises on Polish spaces and in particular on Cantor
space and Baire space, I want you to prove that our Polish topology on NN is the same as
the usual product topology on NN when N is given the discrete topology. This equivalence
is contained in the remaining exercises in this section. (Similarly, the Polish topology on
Cantor space is the same as the product topology on 2N when 2 = {0, 1} is given the discrete
topology.)

As a reminder, the discrete topology on N is the topology under which every subset of N
is open. Notice that N with the discrete topology is separable since N is countable and hence
forms a countable dense subset of itself!

Exercise 1.20. Prove that the discrete topology on N has a countable basis consisting of the
singleton subsets of N.

Exercise 1.21. Show that the discrete topology on N is the same as the metric topology
generated by the complete metric

d(x, y) =

{
0 ifx = y
1 ifx 6= y

This exercise includes showing that d is a complete metric.

You now know a quite different looking example of a Polish space – N with the discrete
topology! We next need to introduce the usual product topology. Let Xi for i ∈ I be
topological spaces and consider the product set∏

I

Xi = {f : I →
⋃

Xi | ∀i ∈ I (f(i) ∈ Xi)}.

There are natural projection functions πi :
∏
Xi → Xi for each i ∈ I defined by πi(f) = f(i).

The product topology on
∏

I Xi is generated as follows. For each i ∈ I and each basic open
Oi ⊆ Xi, the subset π−1

i (Oi) is open in the product topology. The collection of all such subsets
forms a subbasis for the product topology on

∏
I Xi. We typically omit the subscript I when

it is understood from context.
The set π−1

i (Oi) consists of all functions f ∈
∏
Xi such that f(i) ∈ Oi. That is, we restrict

the i-th component of f to lie within Oi and allow the other components f(j) for j 6= i to
take on any values in Xj. Taking finite intersections of these subbasic open sets means that
a basic open set is formed by specifying a finite number of components i0, i1, . . . , ik and basic
open sets Oi0 , Oi1 , . . . , Oik from Xi0 , Xi1 , . . . , Xik and taking

π−1
i0

(Oi0) ∩ π−1
i1

(Oi1) ∩ · · · ∩ π−1
ik

(Oik).

In other words, we restrict finitely many values f(i) to lie within specified basic open subsets
Oi of Xi and allow the other values f(j) to range over all of Xj.

The most important property of the product topology is that if you look at any map
φ : Y →

∏
Xi where Y is a topological space and

∏
Xi is given the product topology, then

φ is continuous if and only if it is continuous when restricted to each component. That is, φ
is continuous if and only if each map φi : Y → Xi defined by πi ◦ φ is continuous.
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Exercise 1.22. Consider NN as the product space
∏

N N where each copy of N is given the
discrete topology. Given that a basic open set in N is a singleton, what do the subbasic open
sets in

∏
N N look like? What do the basic open sets in

∏
N N look like?

Exercise 1.23. Prove that
∏

N N with the product topology is homeomorphic to Baire space
NN with our Polish topology.

In Lemma 3.1 we will extend this exercise to show that countable products of Polish
spaces are always Polish. The way that the metric is defined in this extension does not quite
match the way that the metric was defined on NN. The following exercise gives a different
metric on Baire space which you will show generates the same topology as the metric we have
already defined on this space. It is the metric from Exercise 1.24 that we will use to show
that countable products of Polish spaces are Polish.

Exercise 1.24. Let d denote our previous metric on Baire space: for f 6= g ∈ NN, d(f, g) =
2−(n+1) where n is the least number such that f(n) 6= g(n). Let dN denote the metric on N
with the discrete topology from Exercise 1.21. Define a new metric d̂ on NN as follows: for
f 6= g ∈ NN

d̂(f, g) =
∞∑
i=0

1

2n+1
dN(f(i), g(i)).

Prove that d̂ is a metric and that d and d̂ generate the same topology on Baire space. (There-
fore d̂ is a complete metric and it generates the product topology when Baire space is viewed
as a product space.)

2 Basic properties

If X is a Polish space and A ⊆ X, we let

diam(A) = sup{d(x, y) | x, y ∈ A}.

Notice that in general, diam(A) does not have to be finite. Two of the fundamental facts
about Polish spaces are contained in the following lemmas.

Lemma 2.1. Let X be a Polish space and X0 ⊇ X1 ⊇ X2 ⊇ · · · be a nested sequence of
nonempty closed subsets such that limn→∞ diam(Xn) = 0. Then, there is an x ∈ X such that⋂
n∈NXn = {x}.

Proof. For each n ∈ N, fix an element xn ∈ X. Because diam(Xn) → 0, the sequence xn,
n ∈ N, is a Cauchy sequence (or more precisely, contains a Cauchy subsequence). Let x ∈ X
be the limit of this sequence. For each n, the “tail” xn, xn+1, xn+2, . . . is in Xn, so because Xn

is closed, x ∈ Xn. Therefore, x ∈
⋂
Xn. Since diam(Xn)→ 0, if y ∈

⋂
Xn, y = x. Therefore,⋂

Xn = {x}.

Lemma 2.2. Let X be a Polish space, U ⊆ X be open, and ε > 0. Then, there are nonempty
open sets U0, U1, . . . such that U =

⋃
Uk =

⋃
Uk and diam(Uk) < ε for all k.
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Proof. Fix a countable dense subset D ⊆ X. Let U0, U1, . . . list all subsets of X of the form
B1/n(d) where d ∈ D, 1/n < ε/2 and B1/n(d) ⊆ U . We check that Uk has the required
properties. It is clear that diam(B1/n(d)) ≤ 2/n < ε and that

⋃
Uk ⊆

⋃
Uk ⊆ U .

It remains to check that U ⊆
⋃
Uk. Fix x ∈ U . Because U is open, there is a δ such that

Bδ(x) ⊆ U and δ < ε/2. Because D is dense, there is an a ∈ D and an n ∈ N such that
d(x, a) < 1/n < δ/3. It follows that x ∈ B1/n(a), 1/n < ε/2 and (by the triangle inequality)

B1/n(a) ⊆ Bδ(x) ⊆ U . Therefore, B1/n(a) is one of our Uk sets and x ∈
⋃
Uk as required.

One of the first applications of these fundamental lemmas is the following result.

Theorem 2.3. Let X be a Polish space. There is a continuous surjection φ : NN → X.

Proof. Applying Lemma 2.2, we can obtain a “tree” of open subsets Vσ ⊆ X indexed by
σ ∈ N<N that has the following properties:

1. V∅ = X,

2. Vσ is open,

3. diam(Vσ) < 1/|σ|,

4. Vµ ⊆ Vσ for all σ ⊂ µ, and

5. Vσ =
⋃
n∈ω Vσ∗n.

How do we get such subsets? Start with V∅ = X. Assume we have defined Vσ and we show
how to define Vσ∗k for k ∈ N. Apply Lemma 2.2 with U = Vσ (which by the induction
hypothesis is open) and ε = 1/(|σ|+ 1) to get a sequence of open subsets U0, U1, . . . such that
diam(Uk) < ε and Vσ = U =

⋃
Uk =

⋃
Uk. Set Vσ∗k = Uk. Notice that each Vσ∗k is open,

Vσ∗k ⊆ Vσ, Vσ =
⋃
Vσ∗k, and

diam(Vσ∗k) < ε =
1

|σ|+ 1
=

1

|σ ∗ k|
.

Therefore, we have the desired properties of our tree of open subsets of U .
We want to use this tree of subsets to define the map φ : NN → X. Fix any f ∈ NN. Let

Wn = Vf�n. By the properties of our sets Vσ, we have that the Wn sets form a nested sequence
of closed sets

X = W0 ⊇ W1 ⊇ W2 ⊇ · · ·

with diam(Wn) → 0. By Lemma 2.1, there is a unique element x ∈
⋂
Wn. We define

φ(f) = x.
It remains to show that the map φ : NN → X is onto and is continuous. To see that φ is

onto, fix any element x ∈ X. We build a sequence σ0 ⊂ σ1 ⊂ σ2 ⊂ · · · such that |σn| = n
and x ∈ Vσn for all n. Set σ0 = ∅ and notice that x ∈ X = V∅ = Vσ0 . By induction, assume
that we have defined σn such that |σn| = n and x ∈ Vσn . Since Vσn =

⋃
k∈ω Vσn∗k, there is a k

such that x ∈ Vσn∗k. Fix such a k and set σn+1 = σn ∗ k.
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Because σ0 ⊂ σ1 ⊂ σ2 ⊂ · · · , there is a unique function f such that f =
⋃
σn. (That is, f

is defined so that f � n = σn.) Because x ∈ Vσn ⊆ Vσn = Vf�n for all n, we have that φ(f) = x
as required.

Finally, we check that φ is continuous. Fix an open ball Bε(x) ⊆ X. Let

S = {σ ∈ N<N | Vσ ⊆ Bε(x)}

and let O =
⋃
σ∈S Nσ. O is open in NN since it is a union of open sets. We claim that

φ−1(Bε(x)) = O (which suffices to prove that φ is continuous).
First we show that O ⊆ φ−1(Bε(x)). Consider f ∈ O and fix σ ∈ S such that f ∈ Nσ.

Since f ∈ Nσ implies that φ(f) ∈ Vσ, we have that φ(f) ∈ Bε(x). Therefore, O ⊆ φ−1(Bε(x)).
Second we show that O ⊇ φ−1(Bε(x)). Consider y ∈ Bε(x) and fix any g ∈ NN such

that φ(g) = y. We need to show that g ∈ O. Since y ∈ Bε(x), we can fix a δ such that
Bδ(y) ⊆ Bε(x). Since φ(g) = y, we know that setting Wn = Vg�n gives a nested sequence of
closed sets such that diam(Wn) → 0 and

⋂
Wn = {y}. Therefore, there must be an n such

that Wn ⊆ Bδ(y) ⊆ Bε(x). In particular, setting σ = g � n, we have

Wn = Vg�n = Vσ ⊆ Bε(x)

and hence σ ∈ S. Since σ = g � n, we have that g ∈ Nσ ⊆ O as required.

We will see this technique of building a map by using a “tree” of subsets several more
times in these notes. Before moving to the next section, we show one more property of the
map φ from the proof of Theorem 2.3 that is often true of maps defined in this way. The map
φ is actually an open map – that is, it maps open sets in NN to open sets in X. (In general
φ need not be one-to-one, so it is not a homeomorphism.) To show that φ is open, it suffices
to show that φ maps every basic open set in NN to an open set in X. Fix σ ∈ N<N and we
show that φ(Nσ) = Vσ, which by definition is open in X.

First we show that φ(Nσ) ⊆ Vσ. Fix x ∈ φ(Nσ) and let f ∈ Nσ be such that φ(f) = x.
Because f ∈ Nσ, we know that f � |σ| = σ. By the definition of φ, φ(f) = x implies that

x = φ(f) ∈ Vσ∗f(|σ|) ⊆ Vσ.

Therefore, x ∈ Vσ as required.
Second we show that φ(Nσ) ⊇ Vσ. (This proof is just a “translation” to the cone Vσ of

the proof that φ is onto.) Fix x ∈ Vσ. We define a sequence σ0 ⊆ σ1 ⊆ · · · such that σ0 = σ,
x ∈ Vσn for all n, and |σn| = |σ| + n. Assume that σn has been defined so that x ∈ Vσn . Fix
k such that x ∈ Vσn∗k and set σn+1 = σn ∗ k. It is clear that this sequence has the stated
properties. Set f =

⋃
σn. Since σ0 = σ, we have that f � |σ| = σ and hence f ∈ Nσ. Because

φ(f) =
⋂
Vf�n (by the definition of φ) and x ∈ Vf�n for all n (by the definition of the sequence

σn), we have φ(f) = x as required.

3 Building new Polish spaces

We will develop various tools for obtaining new Polish spaces from old Polish spaces. One
simple way to do this is to take countable products. In the next lemma, we show how to
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define a complete metric on a countable product of Polish spaces. The metric we use is a
generalization of the metric from Exercise 1.24. After the lemma, you will show in an exercise
that the topology generated by this complete metric is actually the product topology on the
product space.

Lemma 3.1. Let X0, X1, . . . be a countable sequence of Polish spaces. The product space∏
Xn is also a Polish space.

Proof. Fix complete metrics dn on each Xn and assume that dn(x, y) < 1 for all x, y ∈ Xn.
Define d̂ on

∏
Xn by

d̂(f, g) =
∞∑
n=0

1

2n+1
dn(f(n), g(n)).

We need to show that d̂ is a complete metric on
∏
Xn and that the topology induced by this

metric is separable. First, we show that d̂ is complete. (Check: this is a metric.)
Fix a Cauchy sequence f0, f1, . . . in

∏
Xn. For any fixed n ∈ N, look at the sequence

f0(n), f1(n), f2(n), . . . in Xn and we calculate a bound on dn(fi(n), fi+1(n)). Since d̂(fi, fi+1) ≤
2−i by our Cauchy assumption, we have that

∞∑
n=0

1

2n+1
dn(fi(n), fi+1(n)) ≤ 2−i.

Since the terms in this sum are all positive, this inequality implies that

1

2n+1
dn(fi(n), fi+1(n)) ≤ 2−i

or in other words, dn(fi(n), fi+1(n)) ≤ 2n+1−i. Since n is fixed, it follows that the sequence
f0(n), f1(n), . . . is a Cauchy sequence in Xn. Therefore, because dn is a complete metric on
Xn, limi→∞ fi(n) exists for each n. Define

g(n) = lim
i→∞

fi(n).

Check: g is the limit of the Cauchy sequence f0, f1, . . . in
∏
Xn. Therefore, d̂ is a complete

metric on
∏
Xn.

It remains to show that the topology induced by d̂ on
∏
Xn is separable. To see this fact,

let an0 , a
n
1 , a

n
2 , . . . be a dense subset of Xn. For each string σ ∈ N<N, define fσ ∈

∏
Xn by

fσ(n) = anσ(n) for n < |σ| and fσ(n) = an0 for n ≥ |σ|. (For the intuition behind this definition,

look back at Exercise 1.9.)
We claim that D = {fσ | σ ∈ N<N} is a dense subset of

∏
Xn. It is enough to show that

every basic open ball Bε(g) in
∏
Xn contains an element of D. Fix k such that

∞∑
n=k

1

2n+1
< ε
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and let σ = g � k. Because fσ(n) = g(n) for all n < k, we have

k−1∑
n=0

dn(fσ(n), g(n)) = 0.

Because of our assumption that dn(x, y) < 1 for all x, y ∈ Xn, we have that

∞∑
n=k

1

2n+1
dn(fσ(n), g(n)) =

∞∑
n=k

1

2n+1
dn(an0 , g(n)) ≤

∞∑
n=k

1

2n+1
< ε.

Therefore,

d̂(fσ, g) =
∞∑
n=0

1

2n+1
dn(fσ(n), g(n)) < ε

and fσ ∈ D as required.

Exercise 3.2. Prove that the complete metric d̂ we defined on
∏
Xn generates the usual

product topology on this space.

A second way to get new Polish spaces is by taking certain subspaces of known Polish
spaces. The simplest examples are closed subsets of Polish spaces because the restriction of
a complete metric on X to a closed subset is still a complete metric.

Exercise 3.3. Verify that every closed subspace of a Polish space is a Polish space (with the
subspace topology).

Dealing with open subsets of a Polish space is not so straightforward. For example, the
interval (0, 1) is an open subset of R, but the restriction of the usual metric on R to (0, 1) is
not a complete metric. (It is a metric, it is just not complete.) However, perhaps surprisingly,
open subsets of Polish spaces are in fact still Polish! Of course, they require a modified metric,
but they do admit a complete metric which is compatible with the subspace topology.

Lemma 3.4. If X is a Polish space and U ⊆ X is open, the U (with the subspace topology)
is a Polish space.

Proof. Fix a complete metric d on X such that d is compatible with the topology on X and
d < 1. Define the following metric on U :

d̂(x, y) = d(x, y) +

∣∣∣∣ 1

d(x,X \ U)
− 1

d(y,X \ U)

∣∣∣∣ .
Notice that because U is open, X \ U is closed, and hence the expression d(x,X \ U) makes
sense and is positive by Exercise 1.6. Check: d̂ is a metric on U .

We need to show that d̂ is compatible with the subspace topology on U and that d̂ is a
complete metric. First, we show that d̂ is compatible with the subspace topology. This means
showing that every d-open ball (in the subspace topology) contains a d̂-open ball and vice
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versa. To make the notation clear, we will use Bε,d(x) for the d-open ball of radius ε around

x and we will use Bε,d̂(x) for the d̂-open ball of radius ε around x.

Consider a d-open ball Bε,d(x) for x ∈ U . Since d̂(x, y) ≥ d(x, y) for all y, we have that
Bε,d̂(x) ⊆ Bε,d(x). Therefore, one half of the compatibility check is trivial.

Next, consider a d̂-open ball Bε,d̂(x) for x ∈ U . We need to find a δ > 0 such that
Bδ,d(x) ⊆ Bε,d̂(x). By Exercise 1.6 d(x,X \ U) > 0, so we can fix a positive real r such that
d(x,X \U) = r > 0. For any δ > 0, it follows from the triangle inequality that if d(x, y) < δ,
then d(y,X \ U) > r − δ. Therefore, for any 0 < δ < r, we have that if d(x, y) < δ, then∣∣∣∣ 1

d(x,X \ U)
− 1

d(y,X \ U)

∣∣∣∣ ≤ ∣∣∣∣1r − 1

r − δ

∣∣∣∣ =

∣∣∣∣ −δ
r(r − δ)

∣∣∣∣ .
It remains to choose an appropriate δ to control the fraction δ

r(r−δ) . Choose δ such that

0 < δ < r and δ + δ
r(r−δ) < ε. (This choice is possible since limx→0+ f(x) = 0 where

f(x) = x+ x
r(r−x) for 0 < x < r.) Finally, suppose that y ∈ Bδ,d(x). Then d(x, y) < δ and by

the calculations above and the choice of δ, we have

d̂(x, y) ≤ δ +

∣∣∣∣1r − 1

r − δ

∣∣∣∣ = δ +

∣∣∣∣ −δ
r(r − δ)

∣∣∣∣ < ε.

Therefore Bδ,d(x) ⊆ Bε,d̂(x) as required. This completes the proof that the metric d̂ on U is
compatible with the subspace topology on U .

It remains to show that the metric d̂ is complete on U . Fix a d̂-Cauchy sequence x0, x1, . . .
in U . Because d(xi, xi+1) ≤ d̂(xi, xi+1), this sequence is also a d-Cauchy sequence and therefore
has a limit x in X. We need to show that this limit x is actually in U .

Because x0, x1, . . . is a d̂-Cauchy sequence, we have that∣∣∣∣ 1

d(xi, X \ U)
− 1

d(xi+1, X \ U)

∣∣∣∣ ≤ 1

2i
.

Therefore, the sequence

1

d(x0, X \ U)
,

1

d(x1, X \ U)
,

1

d(x2, X \ U)
, . . .

is a Cauchy sequence in R and must approach a limit r ∈ R. Because d < 1, each term in
this sequence is > 1 and hence r ≥ 1. The important point is that r > 0 and therefore,
limi→∞ d(xi, X \U) = 1/r > 0 and each term 1

d(xi,X\U)
is bounded away from 0 by some fixed

positive ε. Thus, d(x,X \ U) > 0 and x ∈ U as desired.

This lemma can be improved to show that every Gδ subset of a Polish space is a Polish
space with the subspace topology. However, the Gδ sets are the best that one can do in terms
of the Borel hierarchy with such a result. That is, if X is a Polish space and Y ⊆ X is a
Polish space with the subspace topology, then Y is a Gδ subset of X. (Later we will see that
any Borel subset of a Polish space can be made into a Polish space, but this requires changing
the topology so that we are no longer using the subspace topology.)

We end this section with one more example of building new Polish spaces from old ones.
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Lemma 3.5. Let X and Y be disjoint Polish spaces. The disjoint union X t Y is the space
X ∪ Y where U ⊆ X ∪ Y is open if and only if U ∩X is open (in X) and U ∩ Y is open (in
Y ). The disjoint union X t Y is a Polish space.

Proof. Let dX be the complete compatible metric on X and let dY be the complete compatible
metric on Y . Assume that dX < 1 and dY < 1. Define the metric d on X t Y by

d(a, b) =


dX(a, b) if a, b ∈ X
dY (a, b) if a, b ∈ Y
2 otherwise.

Notice that X and Y are both clopen in X t Y and that any open set U ⊆ X t Y is the
union of an open set in X and an open set in Y . Check: X t Y is separable and d is a
complete metric on X t Y . (For completeness, notice that any Cauchy sequence in X t Y
must eventually be inside X or inside Y .)

4 Borel sets

Definition 4.1. Let X be any set. A σ-algebra on X is a collection of subsets of X which is
closed under taking complements and countable unions.

Exercise 4.2. Show that any σ-algebra on X is also closed under taking countable intersec-
tions.

Definition 4.3. Let X be a Polish space. The class of Borel sets on X, denoted B(X), is the
smallest σ-algebra on X containing the open sets. We introduce the following notations (called
the Borel hierarchy) to classify the complexity of individual Borel sets on X by induction on
ordinals α < ω1:

• Σ0
1(X) is the collection of all open subsets of X.

• Π0
α(X) is the collection of all subsets of X of the form X \ A where A ∈ Σ0

α(X).

• For α > 0, Σ0
α(X) is the collection of all subsets of X of the form

⋃
i∈NAi where each

Ai ∈ Π0
βi

(X) for some βi < α.

We say that a subset A ⊆ X is ∆0
α(X) if and only if A ∈ Σ0

α(X) ∩Π0
α(X).

Exercise 4.4. Prove that B(X) is the smallest collection of subsets of X containing the
open sets and closed under taking complements and countable intersections. (That is, we can
replace “closing under countable unions” with “closing under countable intersections” and
still obtain the Borel sets.)

The classes lower down in the Borel hierarchy have more standard names: Π0
1(X) is

exactly the closed subsets of X, Σ0
2(X) is exactly the Fσ subsets of X (the countable unions

of closed sets), and Π0
2(X) is exactly the Gδ subsets of X (the countable intersections of open

sets).
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Notice that here we are using a boldface type on Σ, Π and ∆ as opposed to the lightface
type Σ, Π and ∆ that you have seen in recursion theory or in the study of random sets. When
reading these symbols, one typically reads A ∈ Σ0

α by saying “A is boldface Sigma–0–alpha.”
What is the difference between the boldface and lightface notions? The difference is

whether one places computability restrictions on the definition of the classes. In the study
of randomness, we say that U ⊆ 2N is Σ0

1 (“U is lightface Sigma-0-1”) if and only if there
is a computably enumerable set W ⊆ 2<N such that U =

⋃
σ∈W Nσ. Notice that U is an

open subset of 2N, but furthermore, it is effectively open in the sense that it is the union of a
computably enumerable sequence of basic open neighborhoods.

On the other hand, V ∈ Σ0
1(2N) if and only if V is an open subset of 2N, which you know

is equivalent to the existence of a set Y ⊆ 2<N such that V =
⋃
σ∈Y Nσ. That is, there is

no restriction here on the complexity of the set Y of basic open neighborhoods making up
V . Thus, the difference between the lightface and boldface notions is whether one places
computability restrictions on the definitions or not.

We will not be going into a detailed analysis of the Borel hierarchy, but there are a few
easy facts to check that are frequently useful to know.

Exercise 4.5. Prove (by induction on α) that Σ0
α(X) ∪Π0

α(X) ⊆ ∆0
α+1(X) for all α < ω1.

(Really, start with α = 1 since we have not defined Σ0
0(X). The same comment applies below

– I will just ignore that α = 0 case. Sometimes Σ0
0(X) and Π0

1(X) are defined to be equal to
the basic open sets, which has the advantage of letting one work with α = 0, but it breaks
the symmetry of taking complements between the Σ and Π sides.)

Exercise 4.6. Prove that B(X) =
⋃
α<ω1

Σ0
α(X). For the ⊇ containment, proceed by induc-

tion on α. For the ⊆ containment, show that
⋃
α<ω1

Σ0
α(X) contains the open sets and is

closed under complementation and countable unions.

5 Changing the topology

In this section, we will show that if X is a Polish space and Y ⊆ X is Borel, then there is
a topology we can put on Y that will make Y into a Polish space. In general, we cannot
just use the subspace topology on Y (the way we did when Y was closed or open) because
not all Borel subsets Y ⊆ X are Polish spaces with the subspace topology. (As commented
earlier, Y ⊆ X is a Polish space with the subspace topology if and only if Y is Gδ.) However,
what we can do is to change to topology on X so that X is still a Polish space (with the new
topology) but Y becomes closed (even clopen) in the new topology. Thus, Y with the new
subspace topology is a Polish space by Exercise 3.3!

We begin with the case when Y ⊆ X is closed and show how to put a new Polish topology
on X so that Y becomes clopen, but the class of Borel sets remains the same. Because we
will be changing the topology, we explicitly denote the (original) topology on X by τ .

Lemma 5.1. Let (X, τ) be a Polish space and let Y ⊆ X be closed. There is a Polish topology
τ1 on X such that Y is clopen in τ1. Furthermore, τ ⊆ τ1 and the Borel sets in (X, τ) and
(X, τ1) are the same.

13



Proof. By Exercise 3.3, we know that Y is a Polish space with the subspace topology from
τ . Furthermore, since X \ Y is open, we know from Lemma 3.4 that X \ Y is a Polish space
with the subspace topology from τ . Let τ1 be the topology on the disjoint union Y ∪ (X \ Y )
from Lemma 3.5, so (X, τ1) is a Polish space. As pointed out in the proof of Lemma 3.5, Y
is clopen in the Polish topology τ1 and the open sets in τ1 are intersections of open sets in Y
and X \ Y (with the subspace topologies from τ). Therefore, every open set in (X, τ) is open
in (X, τ1). Furthermore, any open set in (X, τ1) is Borel in τ , and hence the Borel sets in τ
and τ1 are the same.

Theorem 5.2. Let (X, τ) be a Polish space and let Y ⊆ X be Borel. There is a Polish
topology τ ∗ on X such that Y is clopen in (X, τ ∗). Furthermore, τ ⊆ τ ∗ and (X, τ) and
(X, τ ∗) have the same Borel sets.

Proof. Let Ω be the collection of all B ∈ B(X) such that there is a Polish topology on X
which makes B clopen, which refines τ , and which has the same Borel sets as τ . To show
Ω = B(X), it suffices to show that Ω contains all of the τ -open sets and that Ω is closed under
complementation and countable intersections. (Recall Exercise 4.4.)

To see that Ω is closed under complementation, suppose that B ∈ Ω and let τ ∗ be the
Polish topology on X witnessing the fact that B ∈ Ω. Because B is clopen in the topology
τ ∗, we have that B is also clopen in τ ∗. Therefore, τ ∗ also witnesses that B ∈ Ω.

By Lemma 5.1, Ω contains all of the τ -closed sets. Since Ω is closed under complementa-
tion, it follows that Ω contains all τ -open sets.

Finally, we need to show that Ω is closed under countable intersections. Fix A0, A1, . . . ∈ Ω
and let B =

⋂
Ai. Fix Polish topologies τi witnessing that Ai ∈ Ω. Consider the Polish space∏

(X, τi) and the diagonal map φ : X →
∏

(X, τi) defined by φ(x) = fx where fx : N → X
is fx(i) = x. That is, φ(x) = (x, x, x, . . .) ∈

∏
(X, τi). Unfortunately, as a map from (X, τ)

to the product space, φ need not be continuous. Therefore, it is useful to think of X as just
a set rather than as a topological space. We will define τ ∗ on X by pulling τ ∗ back from the
product space.

We have projection functions πi :
∏

(X, τi) → X defined by πi(f) = f(i) for each f ∈∏
(X, τi). Recall that we get a subbasis for the product space

∏
(X, τi) by taking subsets of∏

(X, τi) of the form π−1
i (U) where i ∈ N and U is a basic open set in (X, τi). That is, we

restrict one component of the product space to a basic open set U ∈ (X, τi) and let the other
components equal X.

First, we show that φ(X) is closed in the product space
∏

(X, τi). One way to do this by
showing that φ(X) is open in

∏
(X, τi). By our definition of φ, f ∈ φ(X) if and only if there

are i 6= j ∈ N such that f(i) 6= f(j).
Consider any tuple σ = 〈x, y, i, j, ε, δ〉 such that i 6= j ∈ N, x 6= y ∈ X and Bε(x) ∩

Bδ(y) = ∅, where Bε(x) and Bδ(y) are calculated relative to the original complete metric
corresponding to τ . Since each τi is a refinement of τ , the balls Bε(x) and Bδ(y) are open
in all of the topologies (X, τi). For each such tuple σ, the subset Vσ of

∏
(X, τi) given by

π−1
i (Bε(x))∩π−1

j (Bδ(y)) is open. Furthermore, for any f ∈ Vσ, f(i) 6= f(j) since f(i) ∈ Bε(x),
f(j) ∈ Bδ(y) and Bε(x) ∩Bδ(y) = ∅. The union

⋂
Vσ taken over all such tuples σ is equal to

φ(X). Check that this equality is true.
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Second, we consider the topology τ ∗ on X defined by U ∈ τ ∗ if and only if there is an open
set V ∈

∏
(X, τi) such that U = φ−1(V ). We claim that τ ∗ is a Polish topology on X. To see

why this is true, notice the following facts. First, φ is a bijection from X onto φ(X). Second,
φ(X) is closed and hence is a Polish space with the subspace topology from

∏
(X, τi). Third,

by our definition of τ ∗, both φ and φ−1 are continuous. Therefore, (X, τ ∗) is homeomorphic
to φ(X) with the subspace topology, and hence (X, τ ∗) is a Polish topology.

Third, recall that the sets of the form π−1
i (U) for i ∈ N and U open in (X, τi) form a

subbasis for
∏

(X, τi). By intersection these sets with φ(X), we get that sets of the form
π−1
i (U)∩φ(X) form a subbasis for φ(X) in the subspace topology, and hence sets of the form

φ−1(π−1
i (U) ∩ φ(X))

form a subbasis for X in the topology τ ∗. However, because φ is the diagonal map, we have
that

φ−1(π−1
i (U) ∩ φ(X)) = U.

Hence, the collection of all subsets U ⊆ X which are τi open for some i ∈ N forms a subbasis
for τ ∗. Since each τi is a refinement of τ , every τ -open set is τi-open, and hence is τ ∗-open.
Furthermore, because τi and τ have the same Borel sets, each such set U is τ -Borel. Therefore,
τ ∗ has a subbasis of sets which are all τ -Borel. It follows that τ and τ ∗ have the same Borel
sets as required.

Fourth, remember that we started all of this process with a sequence of sets A0, A1, . . . ∈ Ω
such that each Ai is τi-clopen. By the last paragraph, each Ai is also τ ∗-clopen, so B =

⋂
Ai

is τ ∗-closed. Therefore, we have shown that there is a Polish topology τ ∗ on X extending
τ which has the same Borel sets as τ and which makes B closed. Applying Lemma 5.1 to
(X, τast) and B ⊆ X (which is τ ∗-closed) gives us a Polish topology on X extending τ ∗ (and
hence extending τ) which has the same Borel sets as τast (and hence the same Borel sets as
τ) and which makes B clopen. Therefore, Ω is closed under taking countable intersections
which complete this proof.

Theorem 5.3. Let (X, τ) be a Polish space and let Y ⊆ X be a nonempty Borel set. There
is a continuous function φ : NN → X such that φ(NN) = Y .

Proof. By Theorem 5.2, there is a topology τ ∗ on X such that Y is closed (even clopen)
in (X, τ ∗). By Exercise 3.3, Y is a Polish space with the subspace topology from τ ∗. By
Theorem 2.3, there is an onto function φ : NN → Y that is continuous with respect to the
τ ∗-subspace topology on Y . When φ is viewed as a function from NN → X, it has image Y
and is continuous with respect to τ ∗. However, every τ -open set in X is τ ∗-open, and therefore
φ is also continuous with respect to the topology τ .

6 Analytic sets

Not all sets are Borel so it is useful to develop some definitions for larger classes of sets which
are still reasonably well behaved, if not quite as nice as the Borel sets themselves. One of the
natural classes extending the Borel sets are the analytic sets. These sets are the continuous
images of the Borel sets.
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Definition 6.1. Let X be a Polish space. A ⊆ X is called analytic if there is a Polish space
Y , a continuous function f : Y → X and a Borel set B ∈ B(Y ) such that f(B) = A. We
denote the collection of analytic subsets of X by Σ1

1(X).

Not surprisingly, we also have a notation for the complements of the analytic sets. Al-
though these sets will not be important for us, they are important in their own rite as well. A
set A ⊆ X is called co-analytic if X \A is analytic. We denote the collection of co-analytic
subsets of X by Π1

1(X) and we denote the collection of sets which are both analytic and
co-analytic by ∆1

1(X).

Exercise 6.2. Show that every Borel subset of X is Σ1
1(X).

Exercise 6.3. Show that every Borel subset of X is ∆1
1(X).

It is a non-trivial fact that every ∆1
1(X) set is a Borel subset of X. From this non-trivial

fact and Exercise 6.3, it follows that ∆1
1(X) = B(X) – that is, the class of sets which are

both analytic and co-analytic is exactly the same as the class of Borel sets! The main fact
that we will need about analytic subsets of X is contained in the following lemma.

Lemma 6.4. Let X be a Polish space. For every nonempty subset A ⊆ X, the following are
equivalent.

1. A ∈ Σ1
1(X).

2. There is a continuous map φ : NN → X such that φ(NN) = A.

Proof. To see 1⇒ 2, suppose A ∈ Σ1
1(X) is nonempty. Fix the Polish space Y , the continuous

map f : Y → X and the Borel subset B ∈ B(Y ) such that f(B) = A. By Theorem 5.3, there
is a continuous map g : NN → Y which is onto B. Let φ = f ◦ g. It is clear that φ : NN → X
is continuous and onto A as required.

To see that 2⇒ 1, just let Y = B = NN in the definition of an analytic set.

7 Continuum hypothesis for analytic sets

In this section, we show that the continuum hypothesis holds for analytic subsets of Polish
spaces. That is, if A ⊆ X is analytic, then either |A| ≤ ℵ0 or |A| = 2ℵ0 . By Exercise 6.2, this
result implies that for all B ∈ B(X), either |B| ≤ ℵ0 or |B| = 2ℵ0 . We begin our analysis by
looking at perfect sets and the Cantor-Bendixson Theorem for closed sets.

Definition 7.1. Let X be a Polish space and let P ⊆ X. A point x ∈ P is isolated if there
is an open set U such that P ∩U = {x}. P is called perfect if it is closed and has no isolated
points.

Our first lemma is the generalization of Exercise 1.19 from Baire space to general Polish
spaces.

Lemma 7.2. Let X be a Polish space and P ⊆ X be a nonempty perfect set. There is a
continuous one-to-one map φ : 2N → P , and hence |P | = 2ℵ0.
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Proof. We define a family of nonempty open subsets Uσ ⊆ X indexed by σ ∈ 2ω such that

1. U∅ = X,

2. Uτ ⊆ Uσ for σ ⊂ τ ,

3. Uσ∗0 ∩ Uσ∗1 = ∅ for all σ,

4. diam(Uσ) < 1/|σ|, and

5. Uσ ∩ P 6= ∅ for all σ

by induction on σ. The base case is set already with U∅ = X. For the induction case, assume
we have defined Uσ with Uσ ∩ P 6= ∅. Because P is perfect, we know that Uσ ∩ P is not a
singleton, so we can pick two points x0 6= x1 ∈ P ∩Uσ. Because Uσ is open and x0 6= x1 ∈ Uσ,
there are open balls Uσ∗0 and Uσ∗1 such that xi ∈ Uσ∗i, Uσ∗i ⊆ Uσ, Uσ∗0 ∩ Uσ∗1 = ∅ and
diam(Uσ∗i) < 1/(|σ| + 1). (Look back at Exercise 1.7 to see why this is true.) Therefore, we
can continue our definition by induction.

To define the map φ, consider any element f ∈ 2N. The sequence

Uf�0 ⊇ Uf�1 ⊇ Uf�2 ⊇ · · ·

is a nested sequence of nonempty closed sets such that limn→∞ diam(Uf�n) → 0. By Lemma
2.1, there is a unique element in the intersection of this nested sequence. We define φ(f) to
be equal to this unique element. Furthermore, since Uf�n ∩P 6= ∅ for all n and both Uf�n and
P are closed, we have that

φ(f) =
⋂

Uf�n =
⋂

(Uf�n ∩ P )

so φ(f) ∈ P . Check: φ is one-to-one and continuous.

The importance of Lemma 7.2 is that if we want to show that a subset A ⊆ X has size
|A| = 2ℵ0 , it suffices to show that A contains a nonempty perfect set. One way to do this in
the case when A ⊆ X is closed is to use the Cantor-Bendixson derivative.

Definition 7.3. Let X be a Polish space and A ⊆ X be closed. The Cantor-Bendixson
derivative of A is

Γ(A) = {x ∈ A | x is not isolated }.

Lemma 7.4. Let X be a Polish space and A ⊆ X be closed. Γ(A) = A if and only if A is
perfect.

Proof. By definition, A \ Γ(A) is the set of isolated points of A. Therefore Γ(A) = A ⇔ A
has no isolated points ⇔ A is perfect.

Lemma 7.5. Let X be a Polish space, A ⊆ X be closed, and A0 ⊆ A be the set of isolated
points of A. A0 is countable and the Cantor-Bendixson derivative Γ(A) = A \ A0 is closed.
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Proof. Fix a countable basis for X. For each a ∈ A0, there is a basic open set Ua from this
countable basis such that Ua ∩ A = {a}. (We say that Ua isolated a.) Since the basis is
countable and each element of the basis can isolate at most one element of A, the set A0 is
countable. Furthermore,

Γ(A) = A \ A0 = A \ (∪a∈A0Ua) = A ∩ (∪a∈A0Ua).

Since
⋃
a∈A0

Ua is open, Γ(A) is closed as required.

For a closed set A ⊆ X, we define the iterated Cantor-Bendixson derivative by induction
on α < ω1 as follows: Γ0(A) = A, Γα+1(A) = Γ(Γα(A)) and Γβ(A) =

⋂
α<β Γα(A) for limit

ordinals β. By Lemma 7.5, Γα(A) is closed for each α < ω1, so this iteration is possible.
Notice that these derivatives for a nested sequence of closed sets

A = Γ0(A) ⊇ Γ1(A) ⊇ Γ2(A) ⊇ · · · ⊇ Γω(A) ⊇ Γω+1(A) ⊇ · · ·

If there is an α such that Γα+1(A) = Γα(A), then by Lemma 7.4, Γα(A) is perfect and
Γγ(A) = Γα(A) for all γ ≥ α. In the next lemma, we show that such a fixed point must exist.

Lemma 7.6. Let X be a Polish space and A ⊆ X be closed.

1. Γα(A) \ Γα+1(A) is countable for each α < ω1.

2. There is an α < ω1 such that Γα+1(A) = Γα(A).

Proof. Since Γα(A) \ Γα+1(A) is equal to the set of isolated points of Γα(A), 1 follows imme-
diately from Lemma 7.5. To prove 2, suppose for a contradiction that there is no such α. Fix
an enumeration U0, U1, . . . of a countable basis for X. For every α < ω1, we can fix an element
aα ∈ Γα(A) \ Γα+1(A) and an index nα ∈ N such that Unα isolates aα. Because aα ∈ Γβ(A)
for all β ≤ α, Unα cannot also isolate another point aβ for β < α. Therefore, nα 6= nβ for all
α 6= β. But then the map f : ω1 → N given by f(α) = nα is one-to-one, giving the desired
contradiction.

Definition 7.7. The Cantor-Bendixson rank of a closed set A is the least α < ω1 such
that Γα+1(A) = Γα(A).

We now arrive at what is frequently called the Cantor-Bendixson Theorem.

Theorem 7.8. Let X be a Polish space and A ⊆ X be closed. Then A = P ∪ C where P is
perfect, C is countable and P ∩C = ∅. In particular, if A is uncountable, then A has size 2ℵ0.

Proof. Let α be the Cantor-Bendixson rank of A. Since Γα+1(A) = Γα(A), Γα(A) is perfect
and

A \ Γα(A) =
⋃
β<α

(Γβ(A) \ Γβ+1(A)).

Since each Γβ(A) \ Γβ+1(A) is countable (by Lemma 7.6), this union is a countable union of
countable sets, and hence is countable. Therefore, setting P = Γα(A) and C = A \ P gives
the desired decomposition. If A is uncountable, then P is a nonempty perfect set, and hence
by Lemma 7.2, |P | = 2ℵ0 and |A| = 2ℵ0 + |C| = 2ℵ0 .
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We can extend these ideas to analytic sets fairly easily, but not using such a nice method
as the Cantor-Bendixson analysis.

Lemma 7.9. Let X be a Polish space. If A ⊆ X is uncountable, then there are disjoint open
sets V0 and V1 such that V0 ∩ A and V1 ∩ A are both uncountable.

Proof. For a contradiction, assume there do not exist such open sets V0 and V1. Applying
Lemma 2.2, for each n > 0, we can find an open cover Un

0 , U
n
1 , . . . of X by balls of radius

< 1/n. Because A is uncountable and

A = (Un
0 ∩ A) ∪ (Un

1 ∩ A) ∪ (Un
2 ∩ A) ∪ · · ·

one of the sets Un
m∩A must be uncountable. Fix f : N→ N such that Un

f(n)∩A is uncountable.
Let

An = A \ Un
f(n).

We must have that either some An is uncountable or that all of the An are (at most) countable.
First, consider the case when some An is uncountable. Set V0 = Un

f(n) and V1 = X \Un
f(n).

Clearly V0 ∩ V1 = ∅. V0 ∩ A is uncountable by the definition of f(n). V1 is open since Un
f(n)

is closed and V1 ∩ A is uncountable since V1 ∩ A = A \ Un
f(n) = An which is uncountable by

assumption.
Second, consider the case when all of the An are countable. We show that this case cannot

happen as it implies that A is countable. By the definition of An we have

A \ (
⋃

An) ⊆
⋂

Un
f(n).

But, since diam(Un
f(n))→ 0, we have that

⋂
Un
f(n) has at most one element in it. Therefore, A

can be decomposed in
⋃
An (which is countable as it is a countable union of countable sets)

plus at most one more element. Therefore, A is countable contradicting our assumption that
A is uncountable.

Theorem 7.10. Let X be a Polish space and A ⊆ X be analytic and uncountable. A contains
a perfect set and therefore |A| = 2ℵ0.

Proof. Because A is analytic, we can fix a continuous function φ : NN → X such that φ(NN) =
A by Lemma 6.4. We build a one-to-one function from 2<N to N<N which we denote by σ 7→ τσ
that has the following properties. (You should think of this function as assigning a basic clopen
subset Nτσ of NN to each string σ ∈ 2<N.)

1. τ∅ = ∅, so Nτ∅ = N∅ = X.

2. If σ ⊆ µ, then τσ ⊆ τµ.

3. φ(Nτσ) ⊆ A is uncountable for each σ.

4. φ(Nτσ∗0) ∩ φ(Nτσ∗1) = ∅ for all σ.
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We define this function σ 7→ τσ by induction on σ. We begin with ∅ 7→ τ∅ = ∅. Notice that
Nτ∅ = X and φ(X) = A is uncountable.

Assume that we have defined τσ so that φ(Nτσ) is uncountable. By Lemma 7.9, there
are open sets U0 and U1 in X such that U0 ∩ φ(Nτσ) and U1 ∩ φ(Nτσ) are uncountable. Let
Wi = φ−1(Ui)∩Nτσ (for i = 0, 1) and notice that Wi is open in NN, that φ(Wi) is uncountable
and that φ(W0) ∩ φ(W1) = ∅.

Wi ⊆ Nτσ is open, so Wi can be written as a countable union of basic clopen sets of the
form Nµ with µ ⊇ τσ. Because this union is countable and φ(Wi) is uncountable, there must
be strings µi ∈ 2<N such that τσ ⊆ µi, Nµi ⊆ Wi and φ(Nµi) is uncountable.

Fix such strings µi and set τσ∗i = µi. It is clear that this definition maintains Properties 2
and 3. To see that Property 4 holds, notice that φ(Nσ∗i) ⊆ φ(Wi), so since φ(W0)∩φ(W1) = ∅
we have that Property 4 holds. This completes the construction of our map σ 7→ τσ.

As with many earlier proofs, we use this mapping of strings to define a map α : 2N → NN

by setting α(g) =
⋂
Nτg�n =

⋃
τg�n. Check: both α : 2N → NN and φ ◦ α : 2N → X are

continuous and one-to-one.
To finish this proof, we use a couple of basic facts from point set topology. Because 2N is

compact and α is continuous, α(2N) is a compact subset of NN. Again, because φ is continuous
and α(2N) is compact, φ(α(2N)) is a compact subset of X (contained in A). Because X is
Hausdorff (recall Exercise 1.2), every compact subset of X is closed. Therefore, φ(α(2N)) is
closed in X and because φ ◦ α is one-to-one, φ(α(2N)) is uncountable. It follows by Theorem
7.8 that φ(α(2N)) (and hence A) contains a nonempty perfect set and |A| = 2ℵ0 .

You might wonder if this type of analysis can be extended to show that every uncountable
co-analytic (that is, every Π1

1(X)) subset of X has size 2ℵ0 . Unfortunately, whether or not
every Π1

1(X) set satisfies the continuun hypothesis is independent of ZFC!

20


