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Theorem (RT2)

Let ¢ : [N]> — {0,1} be a 2-coloring of the two element subsets of N.
There is an infinite set H C N such that c is constant on [H]?.
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Theorem (RT2)

Let ¢ : [N]> — {0,1} be a 2-coloring of the two element subsets of N.
There is an infinite set H C N such that c is constant on [H]?.

Let (P, <p) be a (countable) partial order.
C C P is a chain if every pair of elements in C is comparable.

Va,be C(a<p borb<pa)
A C P is an antichain if no pair of distinct elements in A is comparable.

Va,be A(a#b— a<Zpband b<p a)
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Theorem (RT2)

Let ¢ : [N]> — {0,1} be a 2-coloring of the two element subsets of N.
There is an infinite set H C N such that c is constant on [H]?.

Let (P, <p) be a (countable) partial order.
C C P is a chain if every pair of elements in C is comparable.

Va,be C(a<p borb<pa)
A C P is an antichain if no pair of distinct elements in A is comparable.

Va,be A(a#b— a<Zpband b<p a)

Theorem (CAC)

Every infinite partial order contains either an infinite chain or an infinite
antichain.
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Think of an instance ¢ : [N]? — 2 of RT3 as a problem. The solution to
this problem is an infinite homogeneous set.

Think of an infinite partial order as a CAC problem. The solution to this
problem is an infinite chain or antichain.
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RT3 implies CAC

Let (P, <p) be a partial order with P = {po, p1,...}.
Define a coloring c : [N]? — {0,1} by

c(n,m) =1<% p, and p,, are comparable

Fix a homogeneous set H for ¢ and define B = {p, | n € H}.
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RT3 implies CAC

Let (P, <p) be a partial order with P = {po, p1,...}.
Define a coloring c : [N]? — {0,1} by

c(n,m) =1<% p, and p,, are comparable

Fix a homogeneous set H for ¢ and define B = {p, | n € H}.
Suppose H is homogeneous for color 1.

Forall n# m e H, ¢(n,m) =1, so p,, pm € B are comparable.
Therefore B is a chain.
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RT? implies CAC

Let (P, <p) be a partial order with P = {po, p1,...}.
Define a coloring c : [N]? — {0,1} by

c(n,m) =1<% p, and p,, are comparable

Fix a homogeneous set H for ¢ and define B = {p, | n € H}.
Suppose H is homogeneous for color 1.
Forall n# m e H, ¢(n,m) =1, so p,, pm € B are comparable.
Therefore B is a chain.
Suppose H is homogeneous for color 0.

For all n# m € H, ¢(n,m) =0, so pp, pm € B are incomparable.
Therefore B is an antichain.
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o
Does CAC imply RT22?

i
v
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Question
Does CAC imply RT2? J

Hirschfeldt and Shore proved RCAg I (CAC — RT2) by separating
CAC and RT# on an w-model of RCAy.
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Question
Does CAC imply RT2? J

Hirschfeldt and Shore proved RCAg I (CAC — RT2) by separating
CAC and RT# on an w-model of RCAy.
Z C P(w) is a Turing ideal if it is closed under <7 and &®.
Z ={B Cw| B is computable} is a Turing ideal.
If AC w, then Zay = {B Cw | B <1 A} is a Turing ideal.
Z C P(w) is an w-model of RCAg < T is a Turing ideal.
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Question
Does CAC imply RT2?

Hirschfeldt and Shore proved RCAg I (CAC — RT2) by separating
CAC and RT# on an w-model of RCAy.
Z C P(w) is a Turing ideal if it is closed under <7 and &®.
Z ={B Cw| B is computable} is a Turing ideal.
If AC w, then Zay = {B Cw | B <1 A} is a Turing ideal.
Z C P(w) is an w-model of RCAg < T is a Turing ideal.
To separating CAC and RT22 on an w-model of RCAg
Construct a Turing ideal Z such that
e every instance of CAC in Z has a solution in 7
e some instance of RT# in Z has no solution in Z.
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Question
Does CAC imply RT2?

Hirschfeldt and Shore proved RCAg I (CAC — RT2) by separating
CAC and RT# on an w-model of RCAy.
Z C P(w) is a Turing ideal if it is closed under <7 and &®.
Z ={B Cw| B is computable} is a Turing ideal.
If AC w, then Zay = {B Cw | B <1 A} is a Turing ideal.
Z C P(w) is an w-model of RCAg < T is a Turing ideal.
To separating CAC and RT22 on an w-model of RCAg
Construct a Turing ideal Z such that
e every instance of CAC in Z has a solution in 7
e some instance of RT# in Z has no solution in Z.

Theorem (ADS)

If (L, <) is an infinite linear order, then L contains either an infinite
ascending sequence or an infinite descending sequence.
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S
RCAq + CAC i/ RT3, l
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Theorem (Hirschfeldt, Shore)
RCAo + CAC I/ RT2. J

Let P be poset. For p € P

p € A*(P) & p is below almost every element of P
p € B*(P) & p is incomparable with almost every element of P
p € C*(P) < p is above almost every element of P
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Theorem (Hirschfeldt, Shore)
RCAo + CAC I/ RT2.

Let P be poset. For p € P

p € A*(P) & p is below almost every element of P
p € B*(P) & p is incomparable with almost every element of P
p € C*(P) < p is above almost every element of P

P is stable if either A*(P)U B*(P) = P or C*(P) U B*(P) = P.
SCAC is CAC restricted to stable posets.
CCAC says every poset has a stable suborder.
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Theorem (Hirschfeldt, Shore)
RCAo + CAC I/ RT2.

Let P be poset. For p € P

p € A*(P) & p is below almost every element of P
p € B*(P) & p is incomparable with almost every element of P
p € C*(P) < p is above almost every element of P

P is stable if either A*(P)U B*(P) =P or C*(P)U B*(P) = P.
SCAC is CAC restricted to stable posets.

CCAC says every poset has a stable suborder.
RCAy + CCAC < ADS

RCAq + ADS + SCAC = CAC.
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Theorem (Hirschfeldt, Shore)
RCAo + CAC I/ RT2.

Let P be poset. For p € P

p € A*(P) & p is below almost every element of P
p € B*(P) & p is incomparable with almost every element of P
p € C*(P) < p is above almost every element of P

P is stable if either A*(P)U B*(P) = P or C*(P) U B*(P) = P.
SCAC is CAC restricted to stable posets.
CCAC says every poset has a stable suborder.
RCAy + CCAC < ADS

RCAo + ADS + SCAC + CAC.

There is a Turing ideal Z:

T is closed under solutions to ADS and SCAC, so T = CAC
but Z does not contain a diagonally nonrecursive function
and therefore Z is not a model of RTZ by known results
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A tournament is a directed graph (T, —) such that for all x # y,
exactly one of x — y or y — x holds.

A tournament is transitive if x — y and y — z implies x — z.

Theorem (EM)

Every infinite tournament has an infinite transitive subtournament.

Think of ADS and EM as problems to be solved.
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A tournament is a directed graph (T, —) such that for all x # y,
exactly one of x — y or y — x holds.

A tournament is transitive if x — y and y — z implies x — z.

Theorem (EM)

Every infinite tournament has an infinite transitive subtournament.

Think of ADS and EM as problems to be solved.

RCA, + CAC + ADS
RCAo + RTZ - EM
RCAo + EM + ADS + RT2 (Bovykin and Weiermann)

Questions
Does ADS = CAC? (Equivalently, does ADS = SCAC?)
Does EM = RT2? (Equivalently, does EM = ADS?)
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RCAo + ADS t/ SCAC

RCAq + EM I/ RT2, so RCAo + EM I/ ADS.




Theorem (Lerman, Solomon and Towsner)
RCAo + ADS t/ SCAC
RCAo + EM I RT2, so RCAq + EM t ADS.

Focus on RCAg + ADS t/ SCAC
Build Turing ideal Z such that Z = ADS and Z [~ SCAC.
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Theorem (Lerman, Solomon and Towsner)
RCAo + ADS t# SCAC
RCAo + EM I RT2, so RCAg + EM I/ ADS.

Focus on RCAg + ADS t/ SCAC
Build Turing ideal Z such that Z = ADS and Z [~ SCAC.
To satisfy Z = SCAC, build poset (M, A*(M), B*(M)) € T
a € A*(M) < ais below almost every element of M
b € B*(M) < b is incomparable with almost every element of M
A*(M)U B*(M) = M =w, so M is stable
If X € Z is infinite, then X N A*(M) % 0 and X N B*(M) # 0
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Theorem (Lerman, Solomon and Towsner)
RCAo + ADS t# SCAC
RCAo + EM I RT2, so RCAg + EM I/ ADS.

Focus on RCAg + ADS t/ SCAC
Build Turing ideal Z such that Z = ADS and Z [~ SCAC.
To satisfy Z = SCAC, build poset (M, A*(M), B*(M)) € T
a € A*(M) < ais below almost every element of M
b € B*(M) < b is incomparable with almost every element of M
A*(M)U B*(M) = M =w, so M is stable
If X € Z is infinite, then X N A*(M) % 0 and X N B*(M) # 0
To satisfy Z = ADS

For X € Z, e € w s.t. ® is an infinite linear order <X on w
there is f € T such that f is ascending or descending sequence in <X
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Fix a linear order (w, <). Let V be the initial segment consisting of the

elements with finitely many predecessors. (w, <) is called stable-ish if V
and w \ V are nonempty, V does not have a greatest element and w \ V
does not have a least element.
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Fix a linear order (w, <). Let V be the initial segment consisting of the

elements with finitely many predecessors. (w, <) is called stable-ish if V
and w \ V are nonempty, V does not have a greatest element and w \ V
does not have a least element.

Fact
If (w, <) is not stable-ish, then there is a solution to (w, <) computable
from <.

Therefore, when building Z, we only need to add solutions to linear orders
which are stable-ish.
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Ground forcing: Build (M, A*(M), B*(M))
(1) M does not compute infinite chain or antichain in M.
If ®M is infinite, then ®M N A*(M) # 0 and ®M N B*(M) # 0
(2) Requirements for first level of iteration forcing are appropriately dense.
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Ground forcing: Build (M, A*(M), B*(M))
(1) M does not compute infinite chain or antichain in M.
If ®M is infinite, then ®Y N A*(M) # () and &M N B*(M) # ()
(2) Requirements for first level of iteration forcing are appropriately dense.
Iteration forcing - context is fixed set X and index e
M<: X
X does not compute solution to M.
®X is stable-ish linear order <X on w
Each requirement indexed by X is uniformly dense.
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Ground forcing: Build (M, A*(M), B*(M))
(1) M does not compute infinite chain or antichain in M.
If ®M is infinite, then ®Y N A*(M) # () and &M N B*(M) # ()
(2) Requirements for first level of iteration forcing are appropriately dense.
Iteration forcing - context is fixed set X and index e
M<r X
X does not compute solution to M.
®X is stable-ish linear order <X on w
Each requirement indexed by X is uniformly dense.
Iteration forcing - action is to build generic solution G to <X

(1) X @ G does not compute solution to M
(2) Each requirement indexed by X @ G is uniformly dense.

Full construction

Use ground forcing to build stable poset M.
Each step of iteration forcing adds solution f to <X to form X @ f.
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Ground forcing

F is the set of conditions (F, A*, B*) where
e F is finite partial order, domain is an initial segment of w
o if x <fy, then x <y y
e A*UB*C F with A*NB*=10

e A* closed downward and B* closed upward under <¢

(F,A*,B*) < (Fo, A§, By) if and only if

F extends Fy as partial order

Aj C A* and B§ C B*

(aeAfand x € F\ Fp) = a <f x

(b€ B§ and x € F\ Fo) = b is incomparable with x
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We define generic sequence of conditions
(F07A37 B(T) > (FlvAI7 Bf) >

and set M = U,F, to satisfy
(C1) M is stable: Vidn(i € AL U B})
(C2) M does not compute solution to itself: If ®M is infinite, then

Ja € A*(M)3b € B*(M) (®M(a) = oM (b) = 1)

(C3) If <M is stable-ish, then each requirement for the iterated forcing is
uniformly dense.
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To meet (C2)

(F, A*, B*) IF (®¢ is finite) if there is k such that
Y(Fo, Ay, B) < (F, A*, B*)¥x (®F(x) =1 — x < k)
(F, A", B*) IF (0¢ Z A*(G) A ®¢ Z B*(G)) if

Ja€ A*3b e B* (dL(a) = dL(b) = 1)
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To meet (C2)

(F, A*, B*) IF (®¢ is finite) if there is k such that
Y(Fo, Ay, B) < (F, A*, B*)¥x (®F(x) =1 — x < k)
(F, A", B*) IF (0¢ Z A*(G) A ®¢ Z B*(G)) if

Ja€ A*3b e B* (dL(a) = dL(b) = 1)

Lemma

The set of conditions which either force ®¢ is finite or force
®g € A*(G) A g & B*(G)

is dense in F.
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Assume (F, A*, B*) has no extension forcing ®¢ is finite.
(1) Find extension (F1, A%, Bf) with a € A} and ®f1(a) = 1.
Fix 2> F and (Fo, A*, B*) < (F, A*, B*) such that ®fs(a) = 1.

Without loss of generality, a € Fg.
Since a & F, for all b € B*, a and b are incomparable.

Define (Fy, A}, Bf) by F; = Fo, Bf = B* and

Al =A"U{ce Fy|c=f a}

Reed Solomon joint with Manny Lerman and Henry Towsner
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Assume (F, A*, B*) has no extension forcing ®¢ is finite.

(1) Find extension (F1, A%, Bf) with a € A} and ®f1(a) = 1.
Fix a > F and (Fo, A*, B*) < (F, A*, B*) such that ®f(a) = 1.

Without loss of generality, a € Fg.
Since a & F, for all b € B*, a and b are incomparable.

Define (F1, A}, Bf) by F1 = Fo, Bf = B* and
Al =A"U{ce Fy|c=Fa}
(2) Find extension (F3, A3, BS) with b € B} and &f3(b) = 1.
Fix b > F1 and (F2, A}, Bf) < (F1, A}, By) such that ®f2(b) = 1.

Without loss of generality, b € F,.
Since b & Fy, for all a€ A}, a<r b
Define (F3, A%, B3) by F3 = Fp, A = A% and

B;IB;U{C€F0|bjFD C}
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Ground forcing: Build (M, A*(M), B*(M))
(1) M does not compute infinite chain or antichain in M.
If ®M is infinite, then ®Y N A*(M) # () and &M N B*(M) # ()
(2) Requirements for first level of iteration forcing are appropriately dense.
Iteration forcing - context is fixed set X and index e
M<r X
X does not compute solution to M.
®X is stable-ish linear order <X on w
Each requirement indexed by X is uniformly dense.
Iteration forcing - action is to build generic solution G to <X

(1) X @ G does not compute solution to M
(2) Each requirement indexed by X @ G is uniformly dense.

Full construction

Use ground forcing to build stable poset M.
Each step of iteration forcing adds solution f to <X to form X & f.
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lteration forcing

Conditions
AX = {0 | 0 is a finite ascending sequence in <X}.
DX = {7 | 7 is a finite descending sequence in <X}.
PX ={(0,7) |0 € AX and 7 € D and 0 <X 7}.

g<p&op,Loqand 7, E 7y

If p € PX, we write p = (0p, 7p).
op is attempt at an ascending solution to <X

Tp is attempt at a descending solution to <X
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A significant concern

There are p € }P’é( for which o, is not an initial part of an ascending
sequence or 7, is not part of a descending sequence.
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A significant concern

There are p € }P’é( for which o, is not an initial part of an ascending
sequence or 7, is not part of a descending sequence.

Recall <X is stable-ish and fix V.

V is nonempty initial segment with no maximal element.
w \ V is nonempty with no minimum element.
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A significant concern

There are p € }P’é( for which o, is not an initial part of an ascending
sequence or 7, is not part of a descending sequence.

Recall <X is stable-ish and fix V.

V is nonempty initial segment with no maximal element.
w \ V is nonempty with no minimum element.

Let V¥ ={pePX |0, C Vand 7, Cw)\ V}
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A significant concern

There are p € }P’é( for which o, is not an initial part of an ascending
sequence or 7, is not part of a descending sequence.

Recall <X is stable-ish and fix V.

V is nonempty initial segment with no maximal element.
w \ V is nonempty with no minimum element.

Let V¥ ={pePX |0, C Vand 7, Cw)\ V}

A split pair below p is o = (0p0’,7p) and g1 = (op, 75 7') with
o <X 1.
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A significant concern

There are p € }P’é( for which o, is not an initial part of an ascending
sequence or 7, is not part of a descending sequence.

Recall <X is stable-ish and fix V.

V is nonempty initial segment with no maximal element.
w \ V is nonempty with no minimum element.

Let V¥ ={pePX |0, C Vand 7, Cw)\ V}

A split pair below p is o = (0p0’,7p) and g1 = (op, 75 7') with

o <X 1.

If p € VX and qo, g1 is split pair below p, then go € VX or g1 € VX,
We always look for split pairs and stay inside V.
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PX ={(0,7)| 0 € A and 7 € DX and o <X 7}.

g<p&op,LCogand 7, C 7y

A diagonalization requirement is specified by indices m and n.

Given p € PX, we want to do (1) or (2).

(1) Find o J 0, with ¢ <X 7, such that

Ja € A*(M)3b € B*(M) (9727 (a) = X7 (p) = 1)
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PX ={(0,7)| 0 € A and 7 € DX and o <X 7}.

g<p&op,LCogand 7, C 7y

A diagonalization requirement is specified by indices m and n.

Given p € PX, we want to do (1) or (2).

(1) Find o J 0, with ¢ <X 7, such that

Ja € A*(M)3b € B*(M) (9727 (a) = X7 (p) = 1)

(2) Find 7 J 7, with 0, <X 7 such that

Ja € A*(M)3b € B*(M) (X7 (a) = oX%7(b) = 1)
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An A-side half requirement is downward closed set
RXAM).E (M) — {5 e AX | Ja € A*(M)3b € B*(M) (RX(0, a, b))}

where RX(x, y, z) is computable in X.
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An A-side half requirement is downward closed set
RXAM).E (M) — {5 e AX | Ja € A*(M)3b € B*(M) (RX(0, a, b))}

where RX(x, y, z) is computable in X.

A D-side half requirements is defined similarly.
A requirement is downward closed set
KA METM) = {p ¢ P | 3a € A*(M)3b € B*(M) (KX (p, 3, b))}

where KX(x, y, z) is computable in X.
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An A-side half requirement is downward closed set
RXAM).E (M) — {5 e AX | Ja € A*(M)3b € B*(M) (RX(0, a, b))}

where RX(x, y, z) is computable in X.

A D-side half requirements is defined similarly.
A requirement is downward closed set
KA METM) = {p ¢ P | 3a € A*(M)3b € B*(M) (KX (p, 3, b))}

where KX(x, y, z) is computable in X.

The requirements we are concerned with have the form

ngg*(M)’B*(M) _ {p c ]P;>e< o, € RXA(M),B*(M) 7, € SX,A*(I\/I),B*(M)}

where R and S are A and D-side half requirements.
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Fix an A-side half requirement RX-A"(M).B"(M) J

For finite sets A and B, let
RXAB = {5 € AX | 3a € A3b € B(RX(0,a, b))}

Let RX be operator mapping A, B to RXAE,
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Fix an A-side half requirement RX-A"(M).B"(M) J

For finite sets A and B, let

RXAB = {5 € AX | 3a € A3b € B(RX(0,a, b))}
Let RX be operator mapping A, B to RXAE,
Fix an infinite ascending sequence A in <X,

RX is essential in A\ if for every n and x,

JA > xVy3B > y3Im>n(A | me RXAB)
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Fix an A-side half requirement RX-A"(M).B"(M) J

For finite sets A and B, let

RXAB = {5 € AX | 3a € A3b € B(RX(0,a, b))}

Let RX be operator mapping A, B to RXAE,

Fix an infinite ascending sequence A in <X,

RX is essential in A\ if for every n and x,

JA > xVy3B > y3Im>n(A | me RXAB)

A satisfies RXA"(M),B*(M) if either

(1) RX is not essential in A, or
(2) there is an n such that A | n € RXA (M),B"(M)
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Consider the A-side half requirement A),,S’A*(M)’B*(M)

{o € AX | 3a € A*(M)3b € B*(M) (dX%7(a) = X7 () = 1)}

AZ is essential in A if and only if ®%X®N is infinite.
AXA(M)BX(M) g satisfied by A if and only if ®XN s finite or
Ja € A*(M)3b € B*(M) (XN (a) = oXPN(b) = 1)

Either way, A is a solution to <X which doesn’t compute a solution to M.
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Fix a requirement KX-A"(M).B"(M)

{pePX|3aec A*(M)3b e B*(M)(KX(p,a, b))}

For finite sets A and B, let

K*XAB = {p e PX |3a € Adbe B(KX(p,a,b))}
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Fix a requirement JCX-A"(M),B*(M)

{pePX|3aec A*(M)3b e B*(M)(KX(p,a, b))}

For finite sets A and B, let
KXAB = {pePX|3aec Adbe B(KX(p,a, b))}
ICX is essential below p if for every x

JA > xVy3IB > y(qo,q1 € KXAB for some split pair qo, g1 below p)
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Fix a requirement JCX-A"(M),B*(M)

{pePX|3aec A*(M)3b e B*(M)(KX(p,a, b))}

For finite sets A and B, let
KXAB = {pePX |Jac A3bc B(KX(p,a,b))}
ICX is essential below p if for every x
JA > xVy3IB > y(qo,q1 € KXAB for some split pair qo, g1 below p)

JCXAT(M).B*(M) is uniformly dense if whenever KX is essential below p,
there is a split pair qo, g1 below p with qqg, g1 € XA (M).B*(M),

This is the notion of density from the set-up for the iteration forcing.
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X coricfi X, A*(M),B*(M) £ .
A sequence pg > p1 > --- from P{ satisfies K™ (M).B*(M) if either

(1) for cofinitely many p;, ICX is not essential below p;, or
(2) there is a p, € KXA"(M).B"(M)
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A sequence pg > py > --- from PX satisfies KXA"(M).B"(M) if ejther
(1) for cofinitely many p;, KX is not essential below p;, or
(2) thereis a p, € XA (M).B"(M)
There is a sequence py > p; > --- from VX which satisfies every
requirement KX:A"(M),B*(M)
Let po = (0,0) € VX
Given p, € fo, let m be least s.t. lCﬁ’A*(M)’B*(M)
but not satisfied yet.

is essential below p,

By assumption, ICﬁ’A*(M)’B*(M) is uniformly dense.
So, there is split pair go, g1 < p, in KA (M).B" (M)

Let p,.1 be which of qq, g is in VX.
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Check that these notions of satisfaction work together.

Let 0 = U,0, and T = U,7,. If RX is essential in o and SX is essential
in 7, then KX o is essential below every p,.
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Check that these notions of satisfaction work together.

Let 0 = U,0, and T = U,7,. If RX is essential in o and SX is essential
in 7, then KX o is essential below every p,.

Either o satisfies every AX-side half requirement or 7 satisfies every
DX-side half requirement.
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Check that these notions of satisfaction work together.
Let 0 = U,0, and T = U,7,. If RX is essential in o and SX is essential
in 7, then IC%S is essential below every p,.
Either o satisfies every AX-side half requirement or 7 satisfies every
DX-side half requirement.
Check that requirements forcing KX®GA"(M).B*(M) {5 be uniformly
dense (for the next iteration stage) can be written using
X-computable relations as described here.
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