Separating principles below RT_2^2

Reed Solomon joint with Manny Lerman and Henry Towsner

September 17, 2013

Separating principles below RT_2^2

Reed Solomon joint with Manny Lerman and Henry Towsner

(4 同) (4 日) (4 日)

Theorem (RT_2^2)

Let $c : [\mathbb{N}]^2 \to \{0,1\}$ be a 2-coloring of the two element subsets of \mathbb{N} . There is an infinite set $H \subseteq \mathbb{N}$ such that c is constant on $[H]^2$.

Theorem (RT_2^2)

Let $c : [\mathbb{N}]^2 \to \{0,1\}$ be a 2-coloring of the two element subsets of \mathbb{N} . There is an infinite set $H \subseteq \mathbb{N}$ such that c is constant on $[H]^2$.

Let (P, \leq_P) be a (countable) partial order. $C \subseteq P$ is a *chain* if every pair of elements in C is comparable.

 $\forall a, b \in C (a \leq_P b \text{ or } b \leq_P a)$

 $A \subseteq P$ is an *antichain* if no pair of distinct elements in A is comparable.

 $\forall a, b \in A (a \neq b \rightarrow a \not\leq_P b \text{ and } b \not\leq_P a)$

Theorem (RT_2^2)

Let $c : [\mathbb{N}]^2 \to \{0, 1\}$ be a 2-coloring of the two element subsets of \mathbb{N} . There is an infinite set $H \subseteq \mathbb{N}$ such that c is constant on $[H]^2$.

Let (P, \leq_P) be a (countable) partial order. $C \subseteq P$ is a *chain* if every pair of elements in C is comparable.

 $\forall a, b \in C (a \leq_P b \text{ or } b \leq_P a)$

 $A \subseteq P$ is an *antichain* if no pair of distinct elements in A is comparable.

$$\forall a, b \in A (a \neq b \rightarrow a \not\leq_P b \text{ and } b \not\leq_P a)$$

Theorem (CAC)

Every infinite partial order contains either an infinite chain or an infinite antichain.

Separating principles below RT_2^2

イロン 不同 とくほう イロン Reed Solomon joint with Manny Lerman and Henry Towsner

-

Think of an instance $c : [\mathbb{N}]^2 \to 2$ of RT_2^2 as a problem. The solution to this problem is an infinite homogeneous set.

Think of an infinite partial order as a *CAC* problem. The solution to this problem is an infinite chain or antichain.

Let (P, \leq_P) be a partial order with $P = \{p_0, p_1, \ldots\}$. Define a coloring $c : [\mathbb{N}]^2 \to \{0, 1\}$ by

 $c(n,m) = 1 \Leftrightarrow p_n$ and p_m are comparable

Fix a homogeneous set H for c and define $B = \{p_n \mid n \in H\}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Let (P, \leq_P) be a partial order with $P = \{p_0, p_1, \ldots\}$. Define a coloring $c : [\mathbb{N}]^2 \to \{0, 1\}$ by

 $c(n,m) = 1 \Leftrightarrow p_n$ and p_m are comparable

Fix a homogeneous set *H* for *c* and define $B = \{p_n \mid n \in H\}$. Suppose *H* is homogeneous for color 1.

For all $n \neq m \in H$, c(n, m) = 1, so $p_n, p_m \in B$ are comparable. Therefore B is a chain.

イロト 不得 とうせい かほとう ほ

Let (P, \leq_P) be a partial order with $P = \{p_0, p_1, \ldots\}$. Define a coloring $c : [\mathbb{N}]^2 \to \{0, 1\}$ by

 $c(n,m) = 1 \Leftrightarrow p_n$ and p_m are comparable

Fix a homogeneous set *H* for *c* and define $B = \{p_n \mid n \in H\}$. Suppose *H* is homogeneous for color 1.

For all $n \neq m \in H$, c(n, m) = 1, so $p_n, p_m \in B$ are comparable. Therefore B is a chain.

Suppose H is homogeneous for color 0.

For all $n \neq m \in H$, c(n, m) = 0, so $p_n, p_m \in B$ are incomparable. Therefore B is an antichain.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Does CAC imply RT_2^2 ?

ヘロト ヘヨト ヘヨト ヘヨト Reed Solomon joint with Manny Lerman and Henry Towsner

æ

Separating principles below RT_2^2

Does CAC imply RT_2^2 ?

Hirschfeldt and Shore proved $RCA_0 \not\vdash (CAC \rightarrow RT_2^2)$ by separating CAC and RT_2^2 on an ω -model of RCA_0 .

Does CAC imply RT_2^2 ?

Hirschfeldt and Shore proved $RCA_0 \not\vdash (CAC \rightarrow RT_2^2)$ by separating CAC and RT_2^2 on an ω -model of RCA_0 . $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is a Turing ideal if it is closed under $\leq_{\mathcal{T}}$ and \oplus . $\mathcal{I} = \{B \subseteq \omega \mid B \text{ is computable}\}$ is a Turing ideal. If $A \subseteq \omega$, then $\mathcal{I}_A = \{B \subseteq \omega \mid B \leq_{\mathcal{T}} A\}$ is a Turing ideal. $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is an ω -model of $RCA_0 \Leftrightarrow \mathcal{I}$ is a Turing ideal.

Does CAC imply RT_2^2 ?

Hirschfeldt and Shore proved $RCA_0 \not\vdash (CAC \rightarrow RT_2^2)$ by separating CAC and RT_2^2 on an ω -model of RCA_0 . $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is a Turing ideal if it is closed under \leq_T and \oplus . $\mathcal{I} = \{B \subseteq \omega \mid B \text{ is computable}\}$ is a Turing ideal. If $A \subseteq \omega$, then $\mathcal{I}_A = \{B \subseteq \omega \mid B \leq_T A\}$ is a Turing ideal. $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is an ω -model of $RCA_0 \Leftrightarrow \mathcal{I}$ is a Turing ideal. To separating CAC and RT_2^2 on an ω -model of RCA_0 Construct a Turing ideal \mathcal{I} such that • every instance of CAC in \mathcal{I} has a solution in \mathcal{I}

• some instance of RT_2^2 in \mathcal{I} has no solution in \mathcal{I} .

Does CAC imply RT_2^2 ?

Hirschfeldt and Shore proved $RCA_0 \not\vdash (CAC \rightarrow RT_2^2)$ by separating CAC and RT_2^2 on an ω -model of RCA_0 . $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is a Turing ideal if it is closed under $\leq_{\mathcal{T}}$ and \oplus . $\mathcal{I} = \{B \subseteq \omega \mid B \text{ is computable}\}$ is a Turing ideal. If $A \subseteq \omega$, then $\mathcal{I}_A = \{B \subseteq \omega \mid B \leq_{\mathcal{T}} A\}$ is a Turing ideal. $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is an ω -model of $RCA_0 \Leftrightarrow \mathcal{I}$ is a Turing ideal. To separating CAC and RT_2^2 on an ω -model of RCA_0 Construct a Turing ideal \mathcal{I} such that

- every instance of CAC in \mathcal{I} has a solution in \mathcal{I}
- some instance of RT_2^2 in \mathcal{I} has no solution in \mathcal{I} .

Theorem (ADS)

If (L, \leq_L) is an infinite linear order, then L contains either an infinite ascending sequence or an infinite descending sequence.

Separating principles below RT_2^2

Reed Solomon joint with Manny Lerman and Henry Towsner

 $RCA_0 + CAC \not\vdash RT_2^2$.

イロン イロン イヨン イヨン Reed Solomon joint with Manny Lerman and Henry Towsner

3

 $RCA_0 + CAC \not\vdash RT_2^2$.

Let P be poset. For $p \in P$ $p \in A^*(P) \Leftrightarrow p$ is below almost every element of P $p \in B^*(P) \Leftrightarrow p$ is incomparable with almost every element of P $p \in C^*(P) \Leftrightarrow p$ is above almost every element of P

 $RCA_0 + CAC \not\vdash RT_2^2$.

Let P be poset. For $p \in P$ $p \in A^*(P) \Leftrightarrow p$ is below almost every element of P $p \in B^*(P) \Leftrightarrow p$ is incomparable with almost every element of P $p \in C^*(P) \Leftrightarrow p$ is above almost every element of P P is stable if either $A^*(P) \cup B^*(P) = P$ or $C^*(P) \cup B^*(P) = P$. *SCAC* is *CAC* restricted to stable posets. *CCAC* says every poset has a stable suborder.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

 $RCA_0 + CAC \not\vdash RT_2^2$.

Let P be poset. For $p \in P$ $p \in A^*(P) \Leftrightarrow p$ is below almost every element of P $p \in B^*(P) \Leftrightarrow p$ is incomparable with almost every element of P $p \in C^*(P) \Leftrightarrow p$ is above almost every element of P P is stable if either $A^*(P) \cup B^*(P) = P$ or $C^*(P) \cup B^*(P) = P$. SCAC is CAC restricted to stable posets. CCAC says every poset has a stable suborder. $RCA_0 \vdash CCAC \leftrightarrow ADS$

 $RCA_0 + ADS + SCAC \vdash CAC$.

 $RCA_0 + CAC \not\vdash RT_2^2$.

Let P be poset. For $p \in P$ $p \in A^*(P) \Leftrightarrow p$ is below almost every element of P $p \in B^*(P) \Leftrightarrow p$ is incomparable with almost every element of P $p \in C^*(P) \Leftrightarrow p$ is above almost every element of P P is stable if either $A^*(P) \cup B^*(P) = P$ or $C^*(P) \cup B^*(P) = P$. SCAC is CAC restricted to stable posets. CCAC says every poset has a stable suborder. $RCA_0 \vdash CCAC \leftrightarrow ADS$

 $RCA_0 + ADS + SCAC \vdash CAC$.

There is a Turing ideal \mathcal{I} :

 \mathcal{I} is closed under solutions to *ADS* and *SCAC*, so $\mathcal{I} \models CAC$ but \mathcal{I} does not contain a diagonally nonrecursive function and therefore \mathcal{I} is not a model of RT_2^2 by known results

A *tournament* is a directed graph (T, \rightarrow) such that for all $x \neq y$, exactly one of $x \rightarrow y$ or $y \rightarrow x$ holds.

A tournament is *transitive* if $x \rightarrow y$ and $y \rightarrow z$ implies $x \rightarrow z$.

Theorem (EM)

Every infinite tournament has an infinite transitive subtournament.

Think of ADS and EM as problems to be solved.

A *tournament* is a directed graph (T, \rightarrow) such that for all $x \neq y$, exactly one of $x \rightarrow y$ or $y \rightarrow x$ holds.

A tournament is *transitive* if $x \rightarrow y$ and $y \rightarrow z$ implies $x \rightarrow z$.

Theorem (EM)

Every infinite tournament has an infinite transitive subtournament.

Think of ADS and EM as problems to be solved. $RCA_0 + CAC \vdash ADS$ $RCA_0 + RT_2^2 \vdash EM$ $RCA_0 + EM + ADS \vdash RT_2^2$ (Bovykin and Weiermann)

Questions

Does $ADS \Rightarrow CAC$? (Equivalently, does $ADS \Rightarrow SCAC$?) Does $EM \Rightarrow RT_2^2$? (Equivalently, does $EM \Rightarrow ADS$?)

Separating principles below RT_2^2

Reed Solomon joint with Manny Lerman and Henry Towsner

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Theorem (Lerman, Solomon and Towsner)

 $RCA_0 + ADS \not\vdash SCAC$ $RCA_0 + EM \not\vdash RT_2^2$, so $RCA_0 + EM \not\vdash ADS$.

ৰ া ► ৰ বি ► ৰ ই ► ৰ ই ► ই ত ৭ বি Reed Solomon joint with Manny Lerman and Henry Towsner Theorem (Lerman, Solomon and Towsner) $RCA_0 + ADS \nvDash SCAC$ $RCA_0 + EM \nvDash RT_2^2$, so $RCA_0 + EM \nvDash ADS$.

Focus on $RCA_0 + ADS \not\vdash SCAC$ Build Turing ideal \mathcal{I} such that $\mathcal{I} \models ADS$ and $\mathcal{I} \not\models SCAC$.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Theorem (Lerman, Solomon and Towsner) $RCA_0 + ADS \nvDash SCAC$ $RCA_0 + EM \nvDash RT_2^2$, so $RCA_0 + EM \nvDash ADS$.

Focus on $RCA_0 + ADS \not\vdash SCAC$ Build Turing ideal \mathcal{I} such that $\mathcal{I} \models ADS$ and $\mathcal{I} \not\models SCAC$. To satisfy $\mathcal{I} \not\models SCAC$, build poset $(M, A^*(M), B^*(M)) \in \mathcal{I}$ $a \in A^*(M) \Leftrightarrow a$ is below almost every element of M $b \in B^*(M) \Leftrightarrow b$ is incomparable with almost every element of M $A^*(M) \cup B^*(M) = M = \omega$, so M is stable If $X \in \mathcal{I}$ is infinite, then $X \cap A^*(M) \neq \emptyset$ and $X \cap B^*(M) \neq \emptyset$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Theorem (Lerman, Solomon and Towsner) $RCA_0 + ADS \nvDash SCAC$ $RCA_0 + EM \nvDash RT_2^2$, so $RCA_0 + EM \nvDash ADS$.

Focus on $RCA_0 + ADS$ \forall SCACBuild Turing ideal \mathcal{I} such that $\mathcal{I} \models ADS$ and $\mathcal{I} \not\models SCAC$. To satisfy $\mathcal{I} \not\models SCAC$, build poset $(M, A^*(M), B^*(M)) \in \mathcal{I}$ $a \in A^*(M) \Leftrightarrow a$ is below almost every element of M $b \in B^*(M) \Leftrightarrow b$ is incomparable with almost every element of M $A^*(M) \cup B^*(M) = M = \omega$, so M is stable If $X \in \mathcal{I}$ is infinite, then $X \cap A^*(M) \neq \emptyset$ and $X \cap B^*(M) \neq \emptyset$ To satisfy $\mathcal{I} \models ADS$ For $X \in \mathcal{I}$, $e \in \omega$ s.t. Φ_e^X is an infinite linear order \prec_e^X on ω there is $f \in \mathcal{I}$ such that f is ascending or descending sequence in \prec_{a}^{X}

Fix a linear order (ω, \prec) . Let V be the initial segment consisting of the elements with finitely many predecessors. (ω, \prec) is called *stable-ish* if V and $\omega \setminus V$ are nonempty, V does not have a greatest element and $\omega \setminus V$ does not have a least element.

Fix a linear order (ω, \prec) . Let V be the initial segment consisting of the elements with finitely many predecessors. (ω, \prec) is called *stable-ish* if V and $\omega \setminus V$ are nonempty, V does not have a greatest element and $\omega \setminus V$ does not have a least element.

Fact

If (ω, \prec) is not stable-ish, then there is a solution to (ω, \prec) computable from \prec .

Therefore, when building \mathcal{I} , we only need to add solutions to linear orders which are stable-ish.

- (1) *M* does not compute infinite chain or antichain in *M*. If Φ_e^M is infinite, then $\Phi_e^M \cap A^*(M) \neq \emptyset$ and $\Phi_e^M \cap B^*(M) \neq \emptyset$
- (2) Requirements for first level of iteration forcing are appropriately dense.

- (1) M does not compute infinite chain or antichain in M.
 - If Φ_e^M is infinite, then $\Phi_e^M \cap A^*(M) \neq \emptyset$ and $\Phi_e^M \cap B^*(M) \neq \emptyset$
- (2) Requirements for first level of iteration forcing are appropriately dense.

Iteration forcing - context is fixed set X and index e

$$\begin{split} &M \leq_T X \\ &X \text{ does not compute solution to } M. \\ &\Phi_e^X \text{ is stable-ish linear order } \prec_e^X \text{ on } \omega \\ &\text{ Each requirement indexed by } X \text{ is uniformly dense.} \end{split}$$

(1) M does not compute infinite chain or antichain in M.

- If Φ_e^M is infinite, then $\Phi_e^M \cap A^*(M) \neq \emptyset$ and $\Phi_e^M \cap B^*(M) \neq \emptyset$
- (2) Requirements for first level of iteration forcing are appropriately dense.

Iteration forcing - context is fixed set X and index e

 $M \leq_{T} X$

X does not compute solution to M.

 Φ_{e}^{χ} is stable-ish linear order \prec_{e}^{χ} on ω

Each requirement indexed by X is uniformly dense.

Iteration forcing - action is to build generic solution G to \prec_e^X

- (1) $X \oplus G$ does not compute solution to M
- (2) Each requirement indexed by $X \oplus G$ is uniformly dense.

Full construction

Use ground forcing to build stable poset M.

Each step of iteration forcing adds solution f to \prec_e^X to form $X \oplus f$.

・ロン ・四 と ・ ヨ と ・ ヨ

Ground forcing

- \mathcal{F} is the set of conditions (F, A^*, B^*) where
 - F is finite partial order, domain is an initial segment of ω
 - if $x \prec_F y$, then $x <_{\mathbb{N}} y$

•
$$A^* \cup B^* \subseteq F$$
 with $A^* \cap B^* = \emptyset$

• A^* closed downward and B^* closed upward under \prec_F

$(F, A^*, B^*) \leq (F_0, A_0^*, B_0^*)$ if and only if

- F extends F₀ as partial order
- $A_0^* \subseteq A^*$ and $B_0^* \subseteq B^*$

•
$$(a \in A_0^* ext{ and } x \in F \setminus F_0) \Rightarrow a \prec_F x$$

• $(b \in B^*_0$ and $x \in F \setminus F_0) \Rightarrow b$ is incomparable with x

We define generic sequence of conditions

 $(F_0, A_0^*, B_0^*) > (F_1, A_1^*, B_1^*) > \cdots$

and set $M = \bigcup_n F_n$ to satisfy

(C1) *M* is stable:
$$\forall i \exists n (i \in A_n^* \cup B_n^*)$$

(C2) *M* does not compute solution to itself: If Φ_e^M is infinite, then

$$\exists a \in A^*(M) \exists b \in B^*(M) \, (\Phi^M_e(a) = \Phi^M_e(b) = 1)$$

(C3) If \prec_e^M is stable-ish, then each requirement for the iterated forcing is uniformly dense.

To meet (C2)

 $(F, A^*, B^*) \Vdash (\Phi_e^G \text{ is finite}) \text{ if there is } k \text{ such that}$ $\forall (F_0, A_0^*, B_0^*) \leq (F, A^*, B^*) \forall x (\Phi_e^{F_0}(x) = 1 \rightarrow x \leq k)$ $(F, A^*, B^*) \Vdash (\Phi_e^G \not\subseteq A^*(G) \land \Phi_e^G \not\subseteq B^*(G)) \text{ if}$ $\exists a \in A^* \exists b \in B^* (\Phi_e^F(a) = \Phi_e^F(b) = 1)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

To meet (C2)

 $(F, A^*, B^*) \Vdash (\Phi_e^G \text{ is finite})$ if there is k such that $\forall (F_0, A_0^*, B_0^*) \leq (F, A^*, B^*) \forall x (\Phi_e^{F_0}(x) = 1 \rightarrow x < k)$ $(F, A^*, B^*) \Vdash (\Phi_a^G \not\subset A^*(G) \land \Phi_a^G \not\subset B^*(G))$ if $\exists a \in A^* \exists b \in B^* (\Phi_a^F(a) = \Phi_a^F(b) = 1)$

l emma

The set of conditions which either force Φ_{e}^{G} is finite or force

$$\Phi_e^G \not\subseteq A^*(G) \land \Phi_e^G \not\subseteq B^*(G)$$

is dense in \mathcal{F} .

Separating principles below RT_2^2

Reed Solomon joint with Manny Lerman and Henry Towsner

3

Assume (F, A^*, B^*) has no extension forcing Φ_e^G is finite. (1) Find extension (F_1, A_1^*, B_1^*) with $a \in A_1^*$ and $\Phi_e^{F_1}(a) = 1$. Fix a > F and $(F_0, A^*, B^*) \le (F, A^*, B^*)$ such that $\Phi_e^{F_0}(a) = 1$. Without loss of generality, $a \in F_0$. Since $a \notin F$, for all $b \in B^*$, a and b are incomparable. Define (F_1, A_1^*, B_1^*) by $F_1 = F_0$, $B_1^* = B^*$ and

$$A_1^* = A^* \cup \{c \in F_0 \mid c \preceq_{F_0} a\}$$

Assume (F, A^*, B^*) has no extension forcing Φ_e^G is finite. (1) Find extension (F_1, A_1^*, B_1^*) with $a \in A_1^*$ and $\Phi_e^{F_1}(a) = 1$. Fix a > F and $(F_0, A^*, B^*) \le (F, A^*, B^*)$ such that $\Phi_e^{F_0}(a) = 1$. Without loss of generality, $a \in F_0$. Since $a \notin F$, for all $b \in B^*$, a and b are incomparable. Define (F_1, A_1^*, B_1^*) by $F_1 = F_0$, $B_1^* = B^*$ and

$$A_1^* = A^* \cup \{c \in F_0 \mid c \preceq_{F_0} a\}$$

(2) Find extension (F_3, A_3^*, B_3^*) with $b \in B_3^*$ and $\Phi_e^{F_3}(b) = 1$. Fix $b > F_1$ and $(F_2, A_1^*, B_1^*) \le (F_1, A_1^*, B_1^*)$ such that $\Phi_e^{F_2}(b) = 1$. Without loss of generality, $b \in F_2$. Since $b \notin F_1$, for all $a \in A_1^*$, $a \prec_F b$ Define (F_3, A_3^*, B_3^*) by $F_3 = F_2$, $A_3^* = A_2^*$ and $B_3^* = B_2^* \cup \{c \in F_0 \mid b \prec_{F_0} c\}$

イロト イポト イラト イラト 一戸

(1) M does not compute infinite chain or antichain in M.

- If Φ_e^M is infinite, then $\Phi_e^M \cap A^*(M) \neq \emptyset$ and $\Phi_e^M \cap B^*(M) \neq \emptyset$
- (2) Requirements for first level of iteration forcing are appropriately dense.

Iteration forcing - context is fixed set X and index e

 $M \leq_{T} X$

X does not compute solution to M.

 Φ_{e}^{χ} is stable-ish linear order \prec_{e}^{χ} on ω

Each requirement indexed by X is uniformly dense.

Iteration forcing - action is to build generic solution G to \prec_e^X

- (1) $X \oplus G$ does not compute solution to M
- (2) Each requirement indexed by $X \oplus G$ is uniformly dense.

Full construction

Use ground forcing to build stable poset M.

Each step of iteration forcing adds solution f to \prec_e^X to form $X \oplus f$.

・ロン ・四 と ・ ヨ と ・ ヨ

Iteration forcing

Conditions

$$\begin{split} \mathbb{A}_{e}^{X} &= \{ \sigma \mid \sigma \text{ is a finite ascending sequence in } \prec_{e}^{X} \}. \\ \mathbb{D}_{e}^{X} &= \{ \tau \mid \tau \text{ is a finite descending sequence in } \prec_{e}^{X} \}. \\ \mathbb{P}_{e}^{X} &= \{ (\sigma, \tau) \mid \sigma \in \mathbb{A}_{e}^{X} \text{ and } \tau \in \mathbb{D}_{e}^{X} \text{ and } \sigma \prec_{e}^{X} \tau \}. \\ q &\leq p \Leftrightarrow \sigma_{p} \sqsubseteq \sigma_{q} \text{ and } \tau_{p} \sqsubseteq \tau_{q} \end{split}$$

If
$$p \in \mathbb{P}_e^X$$
, we write $p = (\sigma_p, \tau_p)$.
 σ_p is attempt at an ascending solution to \prec_e^X
 τ_p is attempt at a descending solution to \prec_e^X

Recall \prec_e^{χ} is stable-ish and fix V.

V is nonempty initial segment with no maximal element.

 $\omega \setminus V$ is nonempty with no minimum element.

Recall \prec_e^X is stable-ish and fix V.

V is nonempty initial segment with no maximal element.

 $\omega \setminus V$ is nonempty with no minimum element.

Let
$$\mathbb{V}_e^X = \{ p \in \mathbb{P}_e^X \mid \sigma_p \subseteq V \text{ and } \tau_p \subseteq \omega \setminus V \}.$$

Recall \prec_e^{χ} is stable-ish and fix V.

V is nonempty initial segment with no maximal element.

 $\omega \setminus V$ is nonempty with no minimum element.

Let $\mathbb{V}_e^X = \{ p \in \mathbb{P}_e^X \mid \sigma_p \subseteq V \text{ and } \tau_p \subseteq \omega \setminus V \}.$

A split pair below p is $q_0 = (\sigma_p^{\frown} \sigma', \tau_p)$ and $q_1 = (\sigma_p, \tau_p^{\frown} \tau')$ with $\sigma' \prec_e^X \tau'$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Recall \prec_e^{χ} is stable-ish and fix V.

V is nonempty initial segment with no maximal element.

 $\omega \setminus V$ is nonempty with no minimum element.

Let
$$\mathbb{V}_e^X = \{ p \in \mathbb{P}_e^X \mid \sigma_p \subseteq V \text{ and } \tau_p \subseteq \omega \setminus V \}.$$

A split pair below p is $q_0 = (\sigma_p^{\frown} \sigma', \tau_p)$ and $q_1 = (\sigma_p, \tau_p^{\frown} \tau')$ with $\sigma' \prec_p^X \tau'$.

If $p \in \mathbb{V}_e^X$ and q_0, q_1 is split pair below p, then $q_0 \in \mathbb{V}_e^X$ or $q_1 \in \mathbb{V}_e^X$. We always look for split pairs and stay inside \mathbb{V}_e^X .

$$\mathbb{P}_e^X = \{ (\sigma, \tau) \mid \sigma \in \mathbb{A}_e^X \text{ and } \tau \in \mathbb{D}_e^X \text{ and } \sigma \prec_e^X \tau \}.$$
$$q \le p \Leftrightarrow \sigma_p \sqsubseteq \sigma_q \text{ and } \tau_p \sqsubseteq \tau_q$$

A diagonalization requirement is specified by indices m and n. Given $p \in \mathbb{P}_e^X$, we want to do (1) or (2). (1) Find $\sigma \supseteq \sigma_p$ with $\sigma \prec_e^X \tau_p$ such that

$$\exists a \in A^*(M) \, \exists b \in B^*(M) \, (\Phi^{X \oplus \sigma}_m(a) = \Phi^{X \oplus \sigma}_m(b) = 1)$$

$$\mathbb{P}_e^X = \{ (\sigma, \tau) \mid \sigma \in \mathbb{A}_e^X \text{ and } \tau \in \mathbb{D}_e^X \text{ and } \sigma \prec_e^X \tau \}.$$
$$q \le p \Leftrightarrow \sigma_p \sqsubseteq \sigma_q \text{ and } \tau_p \sqsubseteq \tau_q$$

A diagonalization requirement is specified by indices m and n. Given $p \in \mathbb{P}_e^X$, we want to do (1) or (2). (1) Find $\sigma \supseteq \sigma_p$ with $\sigma \prec_e^X \tau_p$ such that

$$\exists \mathsf{a} \in \mathsf{A}^*(\mathsf{M}) \, \exists \mathsf{b} \in \mathsf{B}^*(\mathsf{M}) \, (\Phi^{X \oplus \sigma}_m(\mathsf{a}) = \Phi^{X \oplus \sigma}_m(\mathsf{b}) = 1)$$

(2) Find
$$\tau \sqsupseteq \tau_p$$
 with $\sigma_p \prec_e^X \tau$ such that
$$\exists a \in A^*(M) \exists b \in B^*(M) (\Phi_n^{X \oplus \tau}(a) = \Phi_n^{X \oplus \tau}(b) = 1)$$

Reed Solomon joint with Manny Lerman and Henry Towsner

An A-side half requirement is downward closed set

 $\mathcal{R}^{X,A^*(M),B^*(M)} = \{ \sigma \in \mathbb{A}_e^X \mid \exists a \in A^*(M) \exists b \in B^*(M) \left(R^X(\sigma,a,b) \right) \}$

where $R^X(x, y, z)$ is computable in X.

An A-side half requirement is downward closed set

 $\mathcal{R}^{X,A^*(M),B^*(M)} = \{ \sigma \in \mathbb{A}_e^X \mid \exists a \in A^*(M) \exists b \in B^*(M) \left(R^X(\sigma, a, b) \right) \}$

where $R^X(x, y, z)$ is computable in X.

A \mathbb{D} -side half requirements is defined similarly.

A requirement is downward closed set

 $\mathcal{K}^{X,A^*(M),B^*(M)} = \{ p \in \mathbb{P}_e^X \mid \exists a \in A^*(M) \exists b \in B^*(M) \left(\mathcal{K}^X(p,a,b) \right) \}$

where $K^{X}(x, y, z)$ is computable in X.

An A-side half requirement is downward closed set

 $\mathcal{R}^{X,A^*(M),B^*(M)} = \{ \sigma \in \mathbb{A}_e^X \mid \exists a \in A^*(M) \exists b \in B^*(M) \left(R^X(\sigma, a, b) \right) \}$

where $R^X(x, y, z)$ is computable in X.

A \mathbb{D} -side half requirements is defined similarly.

A requirement is downward closed set

$$\mathcal{K}^{X,A^*(M),B^*(M)} = \{ p \in \mathbb{P}_e^X \mid \exists a \in A^*(M) \exists b \in B^*(M) \left(\mathcal{K}^X(p,a,b) \right) \}$$

where $K^X(x, y, z)$ is computable in X.

The requirements we are concerned with have the form

$$\mathcal{K}_{\mathcal{R},\mathcal{S}}^{X,A^*(M),B^*(M)} = \left\{ p \in \mathbb{P}_e^X \mid \sigma_p \in \mathcal{R}^{X,A^*(M),B^*(M)} \text{ or } \tau_p \in \mathcal{S}^{X,A^*(M),B^*(M)} \right\}$$

where $\mathcal R$ and $\mathcal S$ are $\mathbb A$ and $\mathbb D$ -side half requirements.

Separating principles below RT_2^2

Reed Solomon joint with Manny Lerman and Henry Towsner

Fix an A-side half requirement $\mathcal{R}^{X,A^*(M),B^*(M)}$

For finite sets A and B, let

$$\mathcal{R}^{X,\mathcal{A},\mathcal{B}} = \{\sigma \in \mathbb{A}_e^X \mid \exists \mathbf{a} \in \mathcal{A} \exists \mathbf{b} \in \mathcal{B}(\mathcal{R}^X(\sigma,\mathbf{a},\mathbf{b}))\}$$

Let \mathcal{R}^X be operator mapping A, B to $\mathcal{R}^{X,A,B}$.

-

Fix an A-side half requirement $\mathcal{R}^{X,A^*(M),B^*(M)}$

For finite sets A and B, let

$$\mathcal{R}^{X,A,B} = \{ \sigma \in \mathbb{A}_e^X \mid \exists a \in A \exists b \in B(\mathcal{R}^X(\sigma, a, b)) \}$$

Let \mathcal{R}^X be operator mapping A, B to $\mathcal{R}^{X,A,B}$. Fix an infinite ascending sequence Λ in \prec_e^X . \mathcal{R}^X is *essential in* Λ if for every n and x,

$$\exists A > x \, \forall y \, \exists B > y \, \exists m > n \, (\Lambda \upharpoonright m \in \mathcal{R}^{X,A,B})$$

Separating principles below RT_2^2

Reed Solomon joint with Manny Lerman and Henry Towsner

Fix an A-side half requirement $\mathcal{R}^{X,A^*(M),B^*(M)}$

For finite sets A and B, let

$$\mathcal{R}^{X,A,B} = \{ \sigma \in \mathbb{A}_e^X \mid \exists a \in A \exists b \in B(\mathcal{R}^X(\sigma, a, b)) \}$$

Let \mathcal{R}^X be operator mapping A, B to $\mathcal{R}^{X,A,B}$. Fix an infinite ascending sequence Λ in \prec_e^X . \mathcal{R}^X is *essential in* Λ if for every n and x,

$$\exists A > x \,\forall y \,\exists B > y \,\exists m > n \,(\Lambda \upharpoonright m \in \mathcal{R}^{X,A,B})$$

A satisfies
$$\mathcal{R}^{X,A^*(M),B^*(M)}$$
 if either
(1) \mathcal{R}^X is not essential in Λ , or
(2) there is an *n* such that $\Lambda \upharpoonright n \in \mathcal{R}^{X,A^*(M),B^*(M)}$.

Consider the A-side half requirement $\mathcal{A}_m^{X,A^*(M),B^*(M)}$

$$\{\sigma\in\mathbb{A}_e^X\mid \exists a\in A^*(M)\,\exists b\in B^*(M)\,(\Phi_m^{X\oplus\sigma}(a)=\Phi_m^{X\oplus\sigma}(b)=1)\}$$

 \mathcal{A}_m^X is essential in Λ if and only if $\Phi_m^{X \oplus \Lambda}$ is infinite. $\mathcal{A}_m^{X,A^*(M),B^*(M)}$ is satisfied by Λ if and only if $\Phi_m^{X \oplus \Lambda}$ is finite or $\exists a \in A^*(M) \exists b \in B^*(M) (\Phi_m^{X \oplus \Lambda}(a) = \Phi_m^{X \oplus \Lambda}(b) = 1)$

Either way, Λ is a solution to \prec_e^X which doesn't compute a solution to M.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Fix a requirement $\mathcal{K}^{X,A^*(M),B^*(M)}$

$$\{p \in \mathbb{P}_e^X \mid \exists a \in A^*(M) \exists b \in B^*(M) (K^X(p, a, b))\}$$

For finite sets A and B, let

$$\mathcal{K}^{X,A,B} = \{ p \in \mathbb{P}_e^X \mid \exists a \in A \exists b \in B (\mathcal{K}^X(p,a,b)) \}$$

Fix a requirement $\mathcal{K}^{X,A^*(M),B^*(M)}$

$$\{p \in \mathbb{P}_e^X \mid \exists a \in A^*(M) \exists b \in B^*(M) (K^X(p, a, b))\}$$

For finite sets A and B, let

$$\mathcal{K}^{X,A,B} = \{ p \in \mathbb{P}_e^X \mid \exists a \in A \exists b \in B \left(\mathcal{K}^X(p,a,b) \right) \}$$

 \mathcal{K}^X is essential below p if for every x

 $\exists A > x \, \forall y \, \exists B > y \, (q_0, q_1 \in \mathcal{K}^{X,A,B} \text{ for some split pair } q_0, q_1 \text{ below } p)$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Fix a requirement $\mathcal{K}^{X,A^*(M),B^*(M)}$

$$\{p \in \mathbb{P}_e^X \mid \exists a \in A^*(M) \exists b \in B^*(M) (K^X(p, a, b))\}$$

For finite sets A and B, let

$$\mathcal{K}^{X,A,B} = \{ p \in \mathbb{P}_e^X \mid \exists a \in A \exists b \in B \left(\mathcal{K}^X(p,a,b) \right) \}$$

 \mathcal{K}^X is essential below p if for every x

 $\exists A > x \, \forall y \, \exists B > y \, (q_0, q_1 \in \mathcal{K}^{X,A,B} \text{ for some split pair } q_0, q_1 \text{ below } p)$

 $\mathcal{K}^{X,A^*(M),B^*(M)}$ is uniformly dense if whenever \mathcal{K}^X is essential below p, there is a split pair q_0, q_1 below p with $q_0, q_1 \in \mathcal{K}^{X,A^*(M),B^*(M)}$.

This is the notion of density from the set-up for the iteration forcing.

A sequence $p_0 > p_1 > \cdots$ from \mathbb{P}_e^X satisfies $\mathcal{K}^{X,A^*(M),B^*(M)}$ if either (1) for cofinitely many p_i , \mathcal{K}^X is not essential below p_i , or (2) there is a $p_n \in \mathcal{K}^{X,A^*(M),B^*(M)}$

- (同) (回) (回) - 回

A sequence $p_0 > p_1 > \cdots$ from \mathbb{P}_e^X satisfies $\mathcal{K}^{X,A^*(M),B^*(M)}$ if either (1) for cofinitely many p_i , \mathcal{K}^X is not essential below p_i , or (2) there is a $p_n \in \mathcal{K}^{X,A^*(M),B^*(M)}$

There is a sequence $p_0 > p_1 > \cdots$ from \mathbb{V}_e^X which satisfies every requirement $\mathcal{K}^{X,A^*(M),B^*(M)}$.

Let $p_0 = (\emptyset, \emptyset) \in \mathbb{V}_e^X$ Given $p_n \in \mathbb{V}_e^X$, let *m* be least s.t. $\mathcal{K}_m^{X,A^*(M),B^*(M)}$ is essential below p_n but not satisfied yet. By assumption, $\mathcal{K}_m^{X,A^*(M),B^*(M)}$ is uniformly dense. So, there is split pair $q_0, q_1 < p_n$ in $\mathcal{K}_m^{X,A^*(M),B^*(M)}$ Let p_{n+1} be which of q_0, q_1 is in \mathbb{V}_e^X .

Check that these notions of satisfaction work together.

Let $\sigma = \bigcup_n \sigma_n$ and $\tau = \bigcup_n \tau_n$. If \mathcal{R}^X is essential in σ and \mathcal{S}^X is essential in τ , then $\mathcal{K}^X_{\mathcal{R},\mathcal{S}}$ is essential below every p_n .

Check that these notions of satisfaction work together.

Let $\sigma = \bigcup_n \sigma_n$ and $\tau = \bigcup_n \tau_n$. If \mathcal{R}^X is essential in σ and \mathcal{S}^X is essential in τ , then $\mathcal{K}^X_{\mathcal{R},\mathcal{S}}$ is essential below every p_n . Either σ satisfies every \mathbb{A}^X_e -side half requirement or τ satisfies every \mathbb{D}^X is the later σ satisfies every

 \mathbb{D}_{e}^{X} -side half requirement.

Check that these notions of satisfaction work together.

Let $\sigma = \bigcup_n \sigma_n$ and $\tau = \bigcup_n \tau_n$. If \mathcal{R}^X is essential in σ and \mathcal{S}^X is essential in τ , then $\mathcal{K}^X_{\mathcal{R},\mathcal{S}}$ is essential below every p_n . Either σ satisfies even \wedge^X side bely requirement or σ satisfies even.

Either σ satisfies every \mathbb{A}_e^X -side half requirement or τ satisfies every \mathbb{D}_e^X -side half requirement.

Check that requirements forcing $\mathcal{K}^{X \oplus G, A^*(M), B^*(M)}$ to be uniformly dense (for the next iteration stage) can be written using X-computable relations as described here.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thank you!

<ロ> <部> <き> <き> Reed Solomon joint with Manny Lerman and Henry Towsner

æ