Math 5260: Problem Set 1 (Philosophy), Due Thursday Sept 5

For the first three problems, recall that a function f : X — Y is one-to-one if xq # x;
implies that f(xg) # f(z1). One way to show that a given f is one-to-one is to apply this
definition directly. That is, assume that xy # x; are distinct elements of X and show that
f(zo) # f(xy1) are distinct elements of Y.

The first problem uses the following definition. Let (A, <4) and (B, <p) be linear orders.
A function f: A — B is strictly increasing if ag <4 a1 implies that f(ag) <p f(a1).

Problem 1. Let (A4,<y4) and (B,<p) be linear orders and let f : A — B be strictly
increasing. Prove that f is one-to-one.

Hint. Try verifying that f is one-to-one directly from the definition. Assume that ay # a;
are district elements of A. You need to show that f(ag) # f(a1) are distinct elements of B.
Think about the fact that ag and a; are district elements of the linear order (A, <,). What
can you say about their order relationship? How does that help you use the fact that f is
strictly increasing to conclude that f(ag) # f(aq)?

For the second problem, consider the relationship between P(A) and 24. In class, we
indicated that you could show |P(A)| = |2#| by considering the function A : P(A4) — 24
given by A(Y) = xy. The input Y is a subset ¥ C A and the output yy : A — {0,1} is
called the characteristic function of Y and is defined by
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Problem 2. Let A be a set and let A : P(A) — 24 be the function A(Y) = xy. Prove that
A is one-to-one.

Hint. Again, I would do this problem directly. Assume that Y, ## Y] are district subsets of A.
Show that A(Yy) # A(Y7). To show that A(Yy) # A(Y7), you need to show that xy, # xv,
as functions. This means that they must differ on some input. In other words, you need to
show that there is some a € A such that xy,(a) # xv,(a). Think about what it means for
Yy # Yi. That is, what must happen for two sets to be different? How does that help you
find an appropriate a for which yy,(a) # xy,(a)?

Another way to show that f : X — Y is one-to-one is to consider the contrapositive of
the definition of one-to-one. That is, f is one-to-one if f(x¢) = f(z1) implies that zo = z;.
Thinking about this form of the definition, you would show f is one-to-one by assuming that
f(xo) = f(x1) and then showing that xy = ;.

Problem 3. Show that if |A| < |B| and |B| < |C], then |A| < |C|.

Hint. For this problem, you can fix one-to-one functions f : A — B and g : B — C. You need
to show there is a one-to-one function h : A — C. By comments in class, you should set h to
be the composition h = go f, i.e. for a € A, h(a) = (go f)(a) = g(f(a)). That is, first apply
f to a to get f(a) € B. Then apply g to f(a) to get g(f(a)) € C. To show h is one-to-one,



assume that h(ag) = h(a;). This means g(f(ap)) = g(f(a1)). Since g is one-to-one, what
can you say about the relationship between f(ag) and f(a;)? Next use the fact that f is
one-to-one. What can you conclude about the relationship between ag and a;?

The next problem is an example of showing a function is onto. We consider A : P(A) — 24
given by A(Y) = xy. To show this function is onto, we start with an element g € 24, i.e. with
a function g : A — {0,1}. We need to show that there is some Y € P(A) such that A(Y) = g.
That is, we need to show that there is a subset Y C A such that g = xy.

Problem 4. Prove that A : P(A) — 24 given by A(Y) = yy is onto.
Hint. Fix g € 24, i.e. g: A — {0,1}. Describe a subset Y C A such that g = yy-.

Problem 5. Prove that |[N| = |Z].

Problem 6. Let A be a set. Prove that |A| < |P(A).

Hint. This problem has two parts. First, you need to show that |A| < |P(A)| by giving a
one-to-one function f: A — P(A). Second, you need to show that |A| # |P(A)| by proving
there is no bijection g : A — P(A). Fix g: A — P(A). To show ¢ is not a bijection, it suffices
to show ¢ is not onto. Prove the subset Y C A given by

V={acAlaggla)}

is not in the range of g. For a contradiction, assume that there is a b € A such that g(b) =Y.
Is b € Y? Both possible answers should lead you to a contradiction.

Problem 7. Prove that a countable union of countable sets is countable. That is, let A;, for
i € N, be a family of sets such that each A; is countable. Prove that (J;.y A; is countable.

Hint. You can fix bijections g; : A; — N for each i € N. Let B = |J;.y 4i- You need to
show |N| < |B| and |B| < |N|. For the second inequality, it suffices to show |B| < |N x NJ.
The temptation is to try to define a one-to-one function f : B — N x N by specifying f(b) as
follows: Since b € B, we know b € A; for some i, so let f(b) = (i, g;(b)). The difficulty is that
the sets A; need not be disjoint. That is, if b € B, then you know b € A; for some 7. But, in
fact, you could have b € A; for many indices i.

Problem 8. Prove that the order defined in Example 3.11 of the notes is a well order. (Hint.
Look at Example 3.8.)

Problem 9. Prove that the order defined in Example 3.12 of the notes is a well order. (Hint.
Look at Example 3.9.)

Problem 10. Prove that (Z, <z) 2 (Q, <g).

Hint. Suppose for a contradiction that f : Z — Q is an isomorphism. Since 0 <z 1, you
know f(0) <@ f(1). Consider the element ¢ = (f(0) + f(1))/2 € Q. Where does it sit in the
ordering on Q7 Show that there cannot be an element z € Z such that f(z) = q.



If you want to try a challenging problem, here one more. This doesn’t use anything mathe-
matical beyond careful manipulations of functions, but the argument is more involved than
anything above. You don’t have to hand this one in, but at some point, it is a good exercise
to try to work through. The proof of the Schroeder-Bernstein Theorem outlined below does
not us AC.

Bonus Problem. Prove the Schroeder-Bernstein Theorem by showing that |A| = |B| if and
only if |A| < |B| and |B| < |A]. (See back side for hint.)

Hint. One direction is trivial. For the nontrivial direction, assume that |A| < |B| and
|B| < |A| and prove that |A| = |B|. Fix one-to-one functions f : A — B and g : B — A.
We need to define a bijection h : A — B. Define decreasing sequences of subsets of A and B
indexed by N

A=A20A1 DA DA3D -+
B=By2B 2By 2A32 -

by induction. For the base case, set Ag = A and By = B. For the induction step, set
Apy1 = g[Bn] and B,y = f[A,].

Step 1. Consider Ao, Ala AQ, Bo, Bl and BQ.

(a) Prove that f gives a bijection between Ay \ A; and By \ Bs.
(b) Analogously, prove that g gives a bijection between By \ By and A; \ As.

Step 2. Using Step 1, show that h: Ag \ Ay — By \ By defined by

flx) ifze A\ A
h(m):{ g lz) ifxe A\ A

is a bijection.
Step 3. Using essentially the same arguments, show that for any n € N:

(a) f gives a bijection between Ay, \ Ag,i1 and Ba, i1 \ Ba,ie and

(b) g gives a bijection between By, \ Ba,i1 and Agy,yq \ Agpio.

Step 4. Let Ay = (,,en An and By = (),,cy Bn- Prove that f gives a bijection between Ay
and B..

Step 5. Prove that h : A — B given by

f(z) ifx € Ay, \ Ag,qq for some n
h(z) =< g '(z) ifx € Agyiq \ Agpya for some n
f(z) ifr e Ay

is a bijection.



