
Math 5260: Problem Set 1 (Philosophy), Due Thursday Sept 5

For the first three problems, recall that a function f : X → Y is one-to-one if x0 6= x1
implies that f(x0) 6= f(x1). One way to show that a given f is one-to-one is to apply this
definition directly. That is, assume that x0 6= x1 are distinct elements of X and show that
f(x0) 6= f(x1) are distinct elements of Y .

The first problem uses the following definition. Let (A,≤A) and (B,≤B) be linear orders.
A function f : A→ B is strictly increasing if a0 <A a1 implies that f(a0) <B f(a1).

Problem 1. Let (A,≤A) and (B,≤B) be linear orders and let f : A → B be strictly
increasing. Prove that f is one-to-one.

Hint. Try verifying that f is one-to-one directly from the definition. Assume that a0 6= a1
are district elements of A. You need to show that f(a0) 6= f(a1) are distinct elements of B.
Think about the fact that a0 and a1 are district elements of the linear order (A,≤A). What
can you say about their order relationship? How does that help you use the fact that f is
strictly increasing to conclude that f(a0) 6= f(a1)?

For the second problem, consider the relationship between P(A) and 2A. In class, we
indicated that you could show |P(A)| = |2A| by considering the function ∆ : P(A) → 2A

given by ∆(Y ) = χY . The input Y is a subset Y ⊆ A and the output χY : A → {0, 1} is
called the characteristic function of Y and is defined by

χY (a) =

{
0 if a 6∈ Y
1 if a ∈ Y

Problem 2. Let A be a set and let ∆ : P(A)→ 2A be the function ∆(Y ) = χY . Prove that
∆ is one-to-one.

Hint. Again, I would do this problem directly. Assume that Y0 6= Y1 are district subsets of A.
Show that ∆(Y0) 6= ∆(Y1). To show that ∆(Y0) 6= ∆(Y1), you need to show that χY0 6= χY1

as functions. This means that they must differ on some input. In other words, you need to
show that there is some a ∈ A such that χY0(a) 6= χY1(a). Think about what it means for
Y0 6= Y1. That is, what must happen for two sets to be different? How does that help you
find an appropriate a for which χY0(a) 6= χY1(a)?

Another way to show that f : X → Y is one-to-one is to consider the contrapositive of
the definition of one-to-one. That is, f is one-to-one if f(x0) = f(x1) implies that x0 = x1.
Thinking about this form of the definition, you would show f is one-to-one by assuming that
f(x0) = f(x1) and then showing that x0 = x1.

Problem 3. Show that if |A| ≤ |B| and |B| ≤ |C|, then |A| ≤ |C|.
Hint. For this problem, you can fix one-to-one functions f : A→ B and g : B → C. You need
to show there is a one-to-one function h : A→ C. By comments in class, you should set h to
be the composition h = g ◦ f , i.e. for a ∈ A, h(a) = (g ◦ f)(a) = g(f(a)). That is, first apply
f to a to get f(a) ∈ B. Then apply g to f(a) to get g(f(a)) ∈ C. To show h is one-to-one,



assume that h(a0) = h(a1). This means g(f(a0)) = g(f(a1)). Since g is one-to-one, what
can you say about the relationship between f(a0) and f(a1)? Next use the fact that f is
one-to-one. What can you conclude about the relationship between a0 and a1?

The next problem is an example of showing a function is onto. We consider ∆ : P(A)→ 2A

given by ∆(Y ) = χY . To show this function is onto, we start with an element g ∈ 2A, i.e. with
a function g : A→ {0, 1}. We need to show that there is some Y ∈ P(A) such that ∆(Y ) = g.
That is, we need to show that there is a subset Y ⊆ A such that g = χY .

Problem 4. Prove that ∆ : P(A)→ 2A given by ∆(Y ) = χY is onto.

Hint. Fix g ∈ 2A, i.e. g : A→ {0, 1}. Describe a subset Y ⊆ A such that g = χY .

Problem 5. Prove that |N| = |Z|.

Problem 6. Let A be a set. Prove that |A| < |P(A)|.
Hint. This problem has two parts. First, you need to show that |A| ≤ |P(A)| by giving a
one-to-one function f : A → P(A). Second, you need to show that |A| 6= |P(A)| by proving
there is no bijection g : A→ P(A). Fix g : A→ P(A). To show g is not a bijection, it suffices
to show g is not onto. Prove the subset Y ⊆ A given by

Y = {a ∈ A | a 6∈ g(a)}

is not in the range of g. For a contradiction, assume that there is a b ∈ A such that g(b) = Y .
Is b ∈ Y ? Both possible answers should lead you to a contradiction.

Problem 7. Prove that a countable union of countable sets is countable. That is, let Ai, for
i ∈ N, be a family of sets such that each Ai is countable. Prove that

⋃
i∈NAi is countable.

Hint. You can fix bijections gi : Ai → N for each i ∈ N. Let B =
⋃

i∈NAi. You need to
show |N| ≤ |B| and |B| ≤ |N|. For the second inequality, it suffices to show |B| ≤ |N × N|.
The temptation is to try to define a one-to-one function f : B → N×N by specifying f(b) as
follows: Since b ∈ B, we know b ∈ Ai for some i, so let f(b) = 〈i, gi(b)〉. The difficulty is that
the sets Ai need not be disjoint. That is, if b ∈ B, then you know b ∈ Ai for some i. But, in
fact, you could have b ∈ Ai for many indices i.

Problem 8. Prove that the order defined in Example 3.11 of the notes is a well order. (Hint.
Look at Example 3.8.)

Problem 9. Prove that the order defined in Example 3.12 of the notes is a well order. (Hint.
Look at Example 3.9.)

Problem 10. Prove that (Z,≤Z) 6∼= (Q,≤Q).

Hint. Suppose for a contradiction that f : Z → Q is an isomorphism. Since 0 <Z 1, you
know f(0) <Q f(1). Consider the element q = (f(0) + f(1))/2 ∈ Q. Where does it sit in the
ordering on Q? Show that there cannot be an element z ∈ Z such that f(z) = q.



If you want to try a challenging problem, here one more. This doesn’t use anything mathe-
matical beyond careful manipulations of functions, but the argument is more involved than
anything above. You don’t have to hand this one in, but at some point, it is a good exercise
to try to work through. The proof of the Schroeder-Bernstein Theorem outlined below does
not us AC.

Bonus Problem. Prove the Schroeder-Bernstein Theorem by showing that |A| = |B| if and
only if |A| ≤ |B| and |B| ≤ |A|. (See back side for hint.)

Hint. One direction is trivial. For the nontrivial direction, assume that |A| ≤ |B| and
|B| ≤ |A| and prove that |A| = |B|. Fix one-to-one functions f : A → B and g : B → A.
We need to define a bijection h : A→ B. Define decreasing sequences of subsets of A and B
indexed by N

A = A0 ⊇ A1 ⊇ A2 ⊇ A3 ⊇ · · ·
B = B0 ⊇ B1 ⊇ B2 ⊇ A3 ⊇ · · ·

by induction. For the base case, set A0 = A and B0 = B. For the induction step, set
An+1 = g[Bn] and Bn+1 = f [An].

Step 1. Consider A0, A1, A2, B0, B1 and B2.

(a) Prove that f gives a bijection between A0 \ A1 and B1 \B2.

(b) Analogously, prove that g gives a bijection between B0 \B1 and A1 \ A2.

Step 2. Using Step 1, show that h : A0 \ A2 → B0 \B2 defined by

h(x) =

{
f(x) if x ∈ A0 \ A1

g−1(x) if x ∈ A1 \ A2

is a bijection.

Step 3. Using essentially the same arguments, show that for any n ∈ N:

(a) f gives a bijection between A2n \ A2n+1 and B2n+1 \B2n+2 and

(b) g gives a bijection between B2n \B2n+1 and A2n+1 \ A2n+2.

Step 4. Let A∞ =
⋂

n∈NAn and B∞ =
⋂

n∈NBn. Prove that f gives a bijection between A∞
and B∞.

Step 5. Prove that h : A→ B given by

h(x) =


f(x) if x ∈ A2n \ A2n+1 for some n
g−1(x) if x ∈ A2n+1 \ A2n+2 for some n
f(x) if x ∈ A∞

is a bijection.


