
Notes on ordinals and cardinals

Reed Solomon

August 27, 2013

1 Background Terminology

We will use the following notation for the common number systems:

N = {0, 1, 2, . . .} = the natural numbers

Z = {. . . ,−2,−1, 0, 1, 2, . . .} = the integers

Q = {m/n | m,n ∈ Z ∧ n 6= 0} = the rational numbers

R = the real numbers

Definition 1.1. Let A and B be sets. The Cartesian product of A and B is

A×B = {〈a, b〉 | a ∈ A and b ∈ B}.

We write A2 for A × A. In general, An is the set of n-tuples of the form 〈a0, a1, . . . , an−1〉
where each ai ∈ A.

Definition 1.2. Let A be a set and n ∈ N with n ≥ 1. An n-ary relation R on A is a subset
R ⊆ An. Given a tuple a = 〈a0, . . . , an−1〉 ∈ An, we say R holds of a if a ∈ R, and otherwise
we say R does not hold of a.

If n = 1, we call R a unary relation; if n = 2, we call R a binary relation; and if n = 3, we
call R a ternary relation. In these notes, we will mostly consider binary relations, typically
specifying some type of ordering relation.

Definition 1.3. Let R be a binary relation on a set A.

• R is reflexive if for all a ∈ A, 〈a, a〉 ∈ R.

• R is irreflexive if for all a ∈ A, 〈a, a〉 6∈ R.

• R is symmetric if for all a, b ∈ A, 〈a, b〉 ∈ R implies 〈b, a〉 ∈ R.

• R is antisymmetric if for all a, b ∈ A, 〈a, b〉 ∈ R and 〈b, a〉 ∈ R implies that a = b.

• R is transitive if for all a, b, c ∈ A, if 〈a, b〉 ∈ R and 〈b, c〉 ∈ R, then 〈a, c〉 ∈ R.
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• R is total if for all a, b ∈ A, either 〈a, b〉 ∈ R or 〈b, a〉 ∈ R.

• R satisfies trichotomy if for all a, b ∈ A, exactly one of a = b, 〈a, b〉 ∈ R or 〈b, a〉 ∈ R
holds.

For the most part, our examples come from the following classes of algebraic structures.

Definition 1.4. An equivalence relation is a pair (E,∼) such that E is a set and ∼ is a
binary relation on E which is reflexive, transitive and symmetric.

Example 1.5. Let A and B be sets and let f : A→ B be a function between them. Define a
binary relation ∼ on A by a ∼ b if and only if f(a) = f(b). The relation ∼ is reflexive because
f(a) = f(a) (i.e. a ∼ a) for all a ∈ A. It is symmetric because for any a, b ∈ A, if f(a) = f(b)
(i.e. a ∼ b), then f(b) = f(a) (i.e. b ∼ a). It is transitive because for any a, b, c ∈ A, if
f(a) = f(b) (i.e. a ∼ b) and f(b) = f(c) (i.e. b ∼ c), then f(a) = f(c) (i.e. a ∼ c).

Definition 1.6. A partial order is a pair (P,≤P ) such that P is a set and ≤P is a binary
relation on P which is reflexive, antisymmetric and transitive.

Example 1.7. Consider the set F of all finite binary strings. That is,

F = {λ, 〈0〉, 〈1〉, 〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉, . . .}

where λ denotes the empty string. We typically denote arbitrary finite binary strings by σ, τ
and δ. Define a binary relation � on F by σ � τ if and only if σ is an initial segment of τ .
(This initial segment does not need to be proper.) For example,

〈1, 0〉 � 〈1, 0, 1, 1〉 and 〈0, 0, 0〉 � 〈0, 0, 0〉

The relation � is a partial order on F . It is reflexive because each string is an initial segment
of itself (i.e. σ � σ). It is antisymmetric because if σ is an initial segment of τ (i.e. σ � τ)
and τ is an initial segment of σ (i.e. τ � σ), then σ = τ . It is transitive because if σ is an
initial segment of τ and τ is an initial segment of δ, then σ is an initial segment of δ.

Later when we have introduced more set theoretic notation, we will denote F by either
{0, 1}<ω or 2<ω. It is also common in computer science or in the study of formal languages
to denote F by {0, 1}∗.

Definition 1.8. A linear order is a pair (L,≤L) such that L is a set and ≤L is a binary
relation on L which is reflexive, antisymmetric, transitive and total. (Thus, a linear order is
a partial order which is total.)

Example 1.9. The standard orders on the number usual number systems are all linear orders.
For example, (N,≤N), (Z,≤Z), (Q,≤Q) and (R,≤R) are all linear orders.

In Definition 1.8, we axiomatized a binary relation representing “less than or equal to”.
We can also describe linear orders by axiomatizing the “less than and not equal to” relation.
To distinguish these two notions, we refer to the structures axiomatized by the “less than and
not equal to” relation as strict linear orders.
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Definition 1.10. A strict linear order is a pair (L,<L) such that L is a set and <L is a
binary relation which is irreflexive, transitive and satisfies trichotomy.

Example 1.11. (N, <N), (Z, <Z), (Q, <Q) and (R, <R) are all strict linear orders.

One can pass between linear orders and strict linear orders in a natural way. If you have
not seen these definitions before, it is worth working through the following two exercises.

Exercise 1.12. Let (L,<L) be a strict linear order. Define the binary relation ≤L on L by
x ≤L y if and only if x <L y or x = y. Show that (L,≤L) is a linear order.

Exercise 1.13. Let (L,≤L) be a linear order. Define the binary relation <L on L by x <L y
if and only if x ≤L y and x 6= y. Show that (L,<L) is a strict linear order.

We will also use the following terminology for functions.

Definition 1.14. Let A and B be sets and let f : A→ B be a function between them. The
range of f is the set

range(f) = {b ∈ B | ∃a ∈ A (f(a) = b)}
We say f is one-to-one (or injective or is an injection) if f(a1) 6= f(a2) whenever a1 6= a2 ∈ A.
In other words, if b ∈ range(f), then there is a unique element a ∈ A such that f(a) = b.

We say f is onto B (or is surjective or is a surjection) if range(f) = B; that is, if for every
b ∈ B, there is an a ∈ A such that f(a) = b. We say f is a bijection if f is both injective and
surjective.

If f : A → B is one-to-one, then we can define the inverse f−1 : range(f) → A of f by
f−1(b) = a where a is the unique element of A such that f(a) = b. In particular, if f : A→ B
is a bijection, then f−1 : B → A is also a bijection.

Definition 1.15. Let f : A→ B be a function and let C ⊆ A be a subset of the domain.
We define f � C : C → B, called the restriction of f to C, by f � C (x) = f(x) for all

x ∈ C. That is, we leave the function the same except we restrict its domain to C.
We define the range of f on C, denoted, f [C] by f [C] = {b ∈ B | ∃c ∈ C (f(c) = b)}.

That is, f [C] = range(f � C). Note that f [A] = range(f).

Definition 1.16. Let A be a set. The power set of A, denoted P(A), is defined by

P(A) = {B | B ⊆ A}

Example 1.17. If A = {a, b, c}, then

P(A) = { ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }.

Definition 1.18. If A and B are sets, BA denotes the set of all functions from A into B.

Example 1.19. RN denotes the set of all functions from N to R. That is,

RN = {f | f : N→ R}.

Notice that this set is not the same as NR which is all the function f : R→ N.
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Example 1.20. It is worth thinking about the set AB when either A or B is the empty set.
Suppose B = ∅ and consider A∅. A∅ is the set of all functions f : ∅ → A. There is exactly
one such function, namely the empty function. So, A∅ = {∅} for any set A (even if A = ∅).

Consider the case when A = ∅ and B 6= ∅. In this case, ∅B is the set of all functions
f : B → ∅. Since B is not empty, there is some b ∈ B. Such a function f must be defined
on b, i.e. f(b) must be defined. But the range of f has to be contained in ∅, so there are no
possible values for f(b). Therefore, there cannot be such a function f and so ∅B = ∅ when
B 6= ∅.

For reasons that will become clear later, mathematicians sometimes use a natural number
n to denote the set of natural numbers strictly less than n. For example, 0 = ∅, 1 = {0},
2 = {0, 1} and so on. You have to rely on context to tell you what is meant, but the main
place that numbers are used to stand for sets is in the BA notation. For example, 2N denotes
the set of all functions f : N→ {0, 1}.

At various places, it will be useful to use the Axiom of Choice. We will use it in various
forms throughout the course, but we begin with the most standard form of this axiom.

Axiom 1.21 (Axiom of Choice). Let F = {Ua | a ∈ A} be a family of nonempty sets indexed
by a nonempty set A. There is a function f : A →

⋃
a∈A Ua such that for every a ∈ A,

f(a) ∈ Ua.

2 Comparing sizes of sets

Definition 2.1. We say that two sets A and B have the same size or have the same cardinality,
and write |A| = |B|, if there is a bijection f : A→ B.

Exercise 2.2. Prove that the relation of having the same size is an equivalence relation. That
is, prove that this relation is reflexive (|A| = |A|), symmetric (if |A| = |B|, then |B| = |A|)
and transitive (if |A| = |B| and |B| = |C|, then |A| = |C|).

Example 2.3. |{0, 1}| = |{3, 4}| because there is a bijection f : {0, 1} → {3, 4} given by
f(0) = 3 and f(1) = 4. Notice that this bijection is not unique.

Example 2.4. Let Even = {0, 2, 4, . . .} and Odd = {1, 3, 5, . . .}. Then |N| = |Even| by
f(x) = 2x, |N| = |Odd| by g(x) = 2x + 1 and |Even| = |Odd| by h(x) = x + 1. Notice that
having shown |N| = |Even| and |N| = |Odd|, we could immediately conclude |Even| = |Odd|
because the relation of having the same size is an equivalence relation.

Example 2.5. Let R+ = {r ∈ R | r > 0}. |R| = |R+| because of the bijection f(x) = ex.

Example 2.6. Let a, b ∈ R with a < b and let (a, b) denote the open interval

(a, b) = {r ∈ R | a < r < b}.

We have |(a, b)| = |(0, 1)| because of the function f(x) = (x − a)/(b − a). Therefore, each
nontrivial open interval in the real line has the same size. Moreover, |R| = |(−π/2, π/2)|
because of the function g(x) = tan−1(x). Because the relation of having the same size is an
equivalence relation, |R| = |(a, b)| for any a < b in R.
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Definition 2.7. A set B is called countable if |B| = |N| and is said to have size continuum
if |B| = |R|.

Example 2.8. The following sets are all countable: Even, Odd, Z and Q.

Example 2.9. The set R+ has size continuum as does any nontrivial open interval (a, b) in
R.

Exercise 2.10. Show that |P(N)| = |2N|. Recall that 2N really means {0, 1}N, i.e. the set of
functions of the form f : N→ {0, 1}.

For the examples so far, we defined our bijections explicitly. This method is unnecessarily
restrictive and it is quite useful to develop some basic tools that allow one to conclude that
sets have the same size without giving an explicit map. Here is one simple version of such a
tool which we will give in a more general form later.

Theorem 2.11. Let A be an infinite set. If there is a one-to-one function f : A → N, then
A is countable.

Proof. Let A be infinite and assume that f : A→ N is one-to-one. We can write

range(f) = {n0, n1, n2, . . .} where n0 <N n1 <N · · · .

That is, we write range(f) in increasing order. Since f is one-to-one, it has an inverse
f−1 : range(f)→ A. Notice that f−1 is onto A. That is, for every a ∈ A, there is an element
nk ∈ range(f) such that f−1(nk) = a, namely let nk = f(a).

We define a bijection g : N → A by setting g(k) = f−1(nk). To see that g is a bijection,
we have to check that it is one-to-one and onto. Since f−1 is onto, it follows that g is onto.

To see that f−1 is one-to-one, fix k 6= ` ∈ N and assume for a contradiction that g(k) =
g(`). By the definition of g, this means f−1(nk) = f−1(n`). But then f(f−1(nk)) = f(f−1(n`))
and hence nk = n`.

Let me give a couple of applications of Theorem 2.11.

Theorem 2.12. If A and B are countable, then so are A ∪B and A×B.

Proof. First, consider the case of A∪B. Since A∪B is infinite, it suffices to give a one-to-one
function f : A ∪ B → N. Because A and B are countable, we can fix bijections g : A → N
and h : B → N. Define f by

f(x) =

{
2g(x) if x ∈ A

2h(x) + 1 otherwise

That is, f maps the elements of A into the set Even ⊆ N by doubling the value of g(x). If
x 6∈ A, then f uses the function h suitably modified to land in the set Odd ⊆ N. In particular,
f is a map from A ∪B into N.

To see that f is one-to-one, consider a pair of elements x 6= y ∈ A ∪ B. If x ∈ A and
y 6∈ A, then f(x) is even and f(y) is odd, so f(x) 6= f(y). (Similarly, if x 6∈ A and y ∈ A,
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then f(x) 6= f(y).) Therefore, assume that x and y come from the same set. If x, y ∈ A,
then f(x) = 2g(x) and f(y) = 2g(y). Since g(x) 6= g(y) (because g is one-to-one), we have
2g(x) 6= 2g(y) and hence f(x) 6= f(y). The argument when x, y ∈ B is similar.

The function f is not necessarily onto N. It is well worth coming up with an example in
which the function f given here is not onto.

Second, consider the case of A×B. As above, since A×B is infinite, it suffices to give a
one-to-one function f : A× B → N. As above, fix bijections g : A→ N and h : B → N. We
define f(〈a, b〉) = 2g(a)3h(b). Notice that f maps into N as required.

To show that f is one-to-one, suppose f(〈a, b〉) = f(〈c, d〉) and we show that 〈a, b〉 = 〈c, d〉,
i.e. that a = c and b = d. Because f(〈a, b〉) = f(〈c, d〉), we have 2g(a)3h(b) = 2g(c)3h(d). Because
natural numbers have unique prime factorizations, g(a) = g(c) and h(b) = h(d). But, g and
h are one-to-one, so a = c and b = d as required.

The following theorem can be proved in many ways, but one way is to mimic the proof
above for the case of A×B. I will leave it to you to think about.

Theorem 2.13. A countable union of countable sets is countable.

Theorem 2.14. For each k ≥ 1, the set Nk is countable.

Proof. We proceed by induction on k. The base case is when k = 1 and it says that N is
countable which is clearly true.

For the induction, we assume that Nk is countable and we show that Nk+1 is countable.
By Theorem 2.12, Nk × N is countable. However, |Nk × N| = |Nk+1| by the map that sends
〈〈n1, n2, . . . , nk〉, nk+1〉 to 〈n1, n2, . . . , nk, nk+1〉.

Corollary 2.15. If A is countable, then for each k ≥ 1, Ak is countable.

Proof. Fix a bijection f : A→ N. For any k > 1, we can define a bijection gk : Ak → Nk by

gk(〈a0, a1, . . . , ak−1〉) = 〈f(a0), f(a1), . . . , f(ak−1)〉.

Therefore |Ak| = |Nk| and hence Ak is countable.

Combining Theorems 2.13 and 2.14, we have that

N<ω =
⋃
k≥1

Nk

is countable. Notice that N<ω is the set of all finite sequences of natural numbers. There is
nothing important about the fact that the base set is N rather than some other countable set.
Therefore, we have that if A is a nonempty finite or countable set, then the set of all finite
sequences of elements of A, denoted A<ω or A∗, is countable.

Hopefully these examples will have illustrated the importance of the existence of a one-
to-one function f : A→ B between two sets. We give a notation for this concept in the next
definition.
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Definition 2.16. We say that the set A is at most as big as the set B, and write |A| ≤ |B|
if there is a one-to-one function f : A→ B.

Note that this includes the case when A = ∅ for which we regard the empty map as a
one-to-one function from A into any set B. In other words, |∅| ≤ |B| for every set B.

Exercise 2.17. Show that if |A| ≤ |B| and |B| ≤ |C|, then |A| ≤ |C|.

Example 2.18. If A ⊆ B, then |A| ≤ |B| by the inclusion map f : A→ B given by f(a) = a.

Example 2.19. If A is an infinite set, then |N| ≤ |A|. We need to define a one-to-one function
f : N → A. We define this function by recursion on N. Defining functions by recursion is
analogous to induction proofs. That is, for the base case, we specify f(0). For the induction
case, we assume that we have specified f(0), . . . , f(n) and we specify f(n + 1) using our
knowledge about the values f(0), . . . , f(n).

For the base case, we set f(0) = a0 for some arbitrary element a0 ∈ A. For the induction
case, assume that we have defined the values of f(0), . . . , f(n). We need to specify f(n + 1)
and we would like to make sure that f(n+ 1) is not equal to any of f(0), . . . , f(n) so that f
has a chance to be one-to-one. To specify f(n+ 1), notice that

A \ {f(0), f(1), . . . , f(n)}

is nonempty because A is infinite and we are only removing finitely many elements. Therefore,
we can set f(n+1) to be any arbitrary element of A\{f(0), . . . , f(n)}, i.e. we pick an element
an+1 ∈ A \ {f(0), . . . , f(n)} and set f(n+ 1) = an+1.

This completes the definition of f . To see that f is one-to-one, fix n 6= m ∈ N. We need
to show that f(n) 6= f(m). We can assume without loss of generality that n <N m. Consider
the induction step in the definition of f when we define f(m). The value of f(m) is chosen
from A \ {f(0), . . . , f(n), . . . , f(m − 1)}. In particular, f(m) is specifically chosen so that
f(m) 6= f(n).

We have considered the case when we have a one-to-one map f : A→ B. The next lemma
shows that we can capture the same connection in a dual manner by considering onto maps
g : B → A.

Lemma 2.20. For any nonempty sets A and B, |A| ≤ |B| if and only if there is an onto
function g : B → A.

Proof. We prove the two implications separately. For the first direction, assume that |A| ≤
|B|. By Definition 2.16, we can fix an one-to-one f : A→ B. Because A is nonempty, we can
fix an element a0 ∈ A. We define the map g : B → A as follows.

g(b) =

{
f−1(b) if b ∈ range(f)
a0 otherwise

Note that if b is in the range of f , then f−1(b) is well defined because f is injective. To see
that g is surjective, fix an arbitrary element a ∈ A. Let b = f(a). Then, since b ∈ range(f),
we have g(b) = f−1(b) = a. Therefore, g is onto A as required.
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For the second direction, assume that g : B → A is onto. We will use the Axiom of Choice
to define a one-to-one f : A→ B. For each a ∈ A, let Ua = {b ∈ B | g(b) = a} be the set of
elements of B which map to a under g. Because g is onto, the set Ua is nonempty for each
a ∈ A. Therefore, we have the following family of nonempty sets F = {Ua | a ∈ A} indexed
by A. By the Axiom of Choice, there is a function f : A→

⋃
a∈A Ua such that f(a) ∈ Ua for

each a ∈ A.
We check that f has the desired properties. First, we show that f maps A into B. Since

Ua ⊆ B for each a ∈ A, we have
⋃
a∈A Ua ⊆ B and hence f : A→ B.

Next, we show that f is one-to-one. Fix u 6= v ∈ A and we show that f(u) 6= f(v).
We claim that Uu ∩ Uv = ∅. To see why, fix an arbitrary b ∈ Uu. By the definition of Uu,
g(b) = u and hence g(b) 6= v. Therefore, by the definition of Uv, b 6∈ Uv and hence Uu∩Uv = ∅
as claimed. Since f(u) ∈ Uu, f(v) ∈ Uv and Uu ∩ Uv = ∅, it follows that f(u) 6= f(v) as
required.

Before proceeding, we should notice a curious phenomenon. Suppose that we have a set
A such that |N| ≤ |A| and |A| ≤ |N|. Because |N| ≤ |A|, we know that A is infinite. (Why?)
But, if A is infinite and |A| ≤ |N|, then A is countable and hence |A| = |N|. In other words,
|N| ≤ |A| and |A| ≤ |N| implies that |A| = |N|. The next theorem says that this property
holds for all sets and not just for countable sets. You will prove it in the homework.

Theorem 2.21 (Schroeder-Bernstein Theorem). For any sets A and B, |A| = |B| if and only
if |A| ≤ |B| and |B| ≤ |A|.

The Schroeder-Bernstein Theorem is very useful for determining cardinalities without
giving explicit bijections.

Example 2.22. Q is countable. Since N ⊆ Q, we have |N| ≤ |Q|. To prove the other
inequality, we show that |Q| ≤ |N× N|. Since |N× N| = |N|, we obtain |Q| ≤ |N| and hence
|Q| = |N| as required.

To show |Q| ≤ |N×N|, we define a one-to-one function f : Q→ N×N. Our definition of
f(q) splits into cases depending on whether q ≥ 0 or q < 0. If q ≥ 0, then we write q = m/n
in reduced form with m,n ∈ N. (Reduced form means that n and m have no divisors in
common.) Define f(q) = 〈2m,n〉. If q < 0, then we write q = −m/n in reduced form with
m,n ∈ N. Define f(q) = 〈2m+ 1, n〉.

We see that f is one-to-one, fix q 6= q′ ∈ Q. If q ≥ 0 and q′ < 0, then f(q) 6= f(q′)
because the first component of f(q) is even and the first component of f(q′) is odd. Similarly,
if q = 0 and q′ 6= 0, then f(q) 6= f(q′) because the first component of f(q) is 0 and the first
component of f(q′) is not 0. Therefore, assume without loss of generality that q and q′ are
either both positive or both negative. We consider the case when q = m/n and q′ = m′/n′ are
both positive as the case when both are negative is similar. When both are positive, either
m 6= m′ or n 6= n′. If m 6= m′, then 2m 6= 2m′ and f(q) 6= f(q′) because they differ on the
first component. If n 6= n′, then f(q) 6= f(q′) because they differ on the second component.

Example 2.23. For any a <R b in R, we have |[a, b]| = |R|. Since [a, b] ⊆ R, we have
|[a, b]| ≤ R. To show that other inequality, notice that |R| = |(a, b)| by an earlier example
and |(a, b)| ≤ |[a, b]| because (a, b) ⊆ [a, b]. Therefore, |R| ≤ |[a, b]| are required.
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Example 2.24. |R| = |2N| = |P(N)|. The second equality was an exercise above. To see the
first equality, we prove the two inequalities.

First, consider |2N| ≤ |R|. We define a one-to-one function α : 2N → R. Recall that each
element of 2N is a function f : N→ {0, 1}. For such a function f , we define

α(f) =
∞∑
n=0

2f(n)

3n+1

This map sends f into Cantor’s Middle Thirds set. You can check that it is one-to-one. (If
f 6= g, consider the least n such that f(n) 6= g(n). Assume f(n) = 0 and g(n) = 1. By
considering the tails of these infinite sums, show that even if f(k) = 1 for all k > n and
g(k) = 0 for all k > n, you still have α(f) < α(g).)

Second, consider |R| ≤ |2N|. Since |N| = |Q|, we have |2N| = |2Q| = |P(Q)|. Therefore, it
suffices to show that |R| ≤ |P(Q)|. Define f : R→ P(Q) by f(r) = {q ∈ Q | q < r}. That is,
f maps r to the Dedkind cut determined by r.

To see that f is one-to-one, fix r 6= r′ ∈ R and assume that r < r′. Because the rational
numbers are dense in R, there is a q ∈ (r, r′). By definition, q ∈ f(r′) but q 6∈ f(r), so
f(r′) 6= f(r).

Hopefully, one of the lessons that emerges from these applications of the Schroeder-
Bernstein Theorem is that it is important to pick the right inequalities to show. That is,
it is often useful to pick the correct sets to work with and this often involves changing the sets
you are given. We simplified our proof in the last example by switching in the second case
from working with 2N to working with P(Q), which we could do because we already knew
these sets had the same size.

We end this section with a final classic fundamental theorem which you will prove in the
homework.

Theorem 2.25 (Cantor’s Theorem). For every set X, |X| < |P(X)|.

3 Well orderings

For the next two sections, we want to move away from thinking about cardinality and toward
thinking about ordinal notions. The notion of cardinality concerns only the size of a set.
When we think about the number 3 in terms of cardinality, we think of it denoting a set
of size three, i.e. with three elements. To think about 3 ordinally is to think about three
elements (or three people) in a queue. That is, we want to switch from thinking about sizes
one, two, three and so on to thinking about positions in a queue such as first, second, third
and so on. We need to set some mathematical background before getting more formally to
ordinal notions.

Often in mathematics, we want to specify when two algebraic structures are essentially
the same even if they are not necessary identical. The technical term is to say the structures
are isomorphic and the definition depends on the class of structures considered. We will give
a general definition for isomorphism later in the course, but for now we restrict our attention
to the case of linear orders.

9



Definition 3.1. Let (A,≤A) and (B,≤B) be linear orders and let f : A→ B be a function.
We say f is an isomorphism between (A,≤A) and (B,≤B) if f is a bijection which preserves
the orderings in the sense that for all u, v ∈ A

u ≤A v ⇔ f(u) ≤B f(v).

We say that (A,≤A) and (B,≤B) are isomorphic, and write (A,≤A) ∼= (B,≤B), if there is an
isomorphism between them.

When discussing isomorphisms, or isomorphic structures, we often denote the structures
by their domains and drop the associated relations. That is, we write A ∼= B rather than
(A,≤A) ∼= (B,≤B) in case when the intended relations are clear.

Example 3.2. Let the linear order (A,≤A) be given by A = {0, 2, 4, . . .} with n ≤A m if and
only if n ≤N m. (A,≤A) ∼= (N,≤N) by the isomorphism f(x) = x/2.

Example 3.3. (N,≤N) 6∼= (R,≤R) because there is no bijection between N and R. That is,
R is too big for these linear orders to be isomorphic.

Example 3.4. It should seem intuitive that (N,≤N) 6∼= (Z,≤Z). To show this formally,
suppose for a contradiction that f : N→ Z is an isomorphism. Because f is order preserving,
we know that

n ≤N m ⇔ f(n) ≤Z f(m)

for all n,m ∈ N. Let z ∈ Z be such that z = f(0). To derive a contradiction, consider the
element z − 1 ∈ Z. What element n ∈ N satisfies f(n) = z − 1? Because f is onto, there
must be some n ∈ N such that f(n) = z − 1. Because f is one-to-one and f(0) = z, we know
that n 6= 0 and hence 0 <N n. However, because f preserves the order on these structures,
we must have f(0) <Z f(n) which implies that z <Z z − 1 giving the desired contradiction.

These examples lead to the following observation which will emerge later in the course.
If you want to show that two algebraic structures are isomorphic, you need to exhibit an
isomorphism between them. (This is not entirely accurate. You might prove two structures
are isomorphic by contradiction or some other nonconstructive method.) However, to show
that two structures are not isomorphic, you need to show that every possible map between
them fails to be an isomorphism. You might get lucky and have structures with domains of
different sizes. (Why does that mean they are not isomorphic?) But, generally, things will
not be that simple. Later, we will develop some tools in logic for showing that two structures
are not isomorphic – and even more interestingly, see when these tools are not sufficient.

Before getting to the main algebraic objections of this section, we need to review one more
piece of elementary mathematics. One of the standard methods of establishing properties of
the natural number is to use induction. The method of induction on N works as follows.
Given some property P (x) which you want to show holds of every natural number, you can
try to show that P (0) holds (the base case) and that for every natural number n, if P (n)
holds, then P (n+ 1) holds (the induction case). If you can do these two steps, you will have
established that P (x) holds of every natural number.
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To see why P (n) holds for all n ∈ N we proceed by contradiction. Suppose P (n) fails for
some n. Then there is a least natural number n for which P (n) fails. This number n cannot
be 0 because you proved P (0) holds. So, n > 0 and hence n− 1 is a natural number. But, if
n is the least number for which P (n) fails, then P (n − 1) holds. However, by the induction
case, if P (n−1) holds, then P (n) also holds. This contradicts the assumption that P (n) fails.

Our main algebraic structures for this section are well orders. The intuition is that well
orders are the types of orderings on which proofs by induction work. That is, they are linear
orders on which properties can be proved by induction in such a way that there cannot be
“least counterexamples”. We begin with the formal definition and develop properties of well
orders before using them to do inductive proofs.

Definition 3.5. A well order is a linear order (W,≤W ) such that every nonempty subset
X ⊆ W has a ≤W -least element. That is, if X ⊆ W is nonempty, then there is an a ∈ X
such that a ≤W x for all x ∈ X.

Before turning to examples, think of a well order W as specifying a queue of people. That
is, the elements of W are the people in a queue and the relation ≤W describes their relative
position in the sense that a <W b means person a is closer to the front of the queue that
person b. The fact that W is a well order says that if we take a nonempty collection of people
out of this queue, then there is a well defined first person among the collection of people
removed.

Example 3.6. Let (L,≤L) be a finite linear order. L is a well order because any nonempty
set X ⊆ L has only finitely many elements, so one of these elements must be the least.

Example 3.7. The canonical example of a countable well order is (N,≤N). However, this is
not the only example of a countable well order. Let ω denote something that is not a natural
number, i.e. ω 6∈ N. (It doesn’t matter what ω is, as long as it is not in N.) Consider the
linear order (N ∪ {ω},≤′) where ≤′ is defined by

0 ≤′ 1 ≤′ 2 ≤′ 3 ≤′ · · · ≤′ ω

That is, we place ω into the usual order on the natural numbers by making it the greatest
element. We claim that this is a well order. Consider a nonempty set X ⊆ N. If X = {ω},
then ω is the ≤′-least element in X. Otherwise, Y = X ∩N is nonempty. The order ≤′ on Y
is just ≤N and hence Y has a ≤′-least element.

Example 3.8. Consider the ordering ≤′′ on N given by

0 ≤′′ 2 ≤′′ 4 ≤′′ · · · ≤′′ 1 ≤′′ 3 ≤′′ 5 ≤′′ · · ·

in which we order the even in the usual way followed by the odds ordered in the usual way.
To see that this is a well order, consider a nonempty set X ⊆ N. If X contains only odd
numbers, then the ≤′′-least element of X is the ≤N-least odd number in X. On the other
hand, if X contains an even number, then let Y = X ∩ {n ∈ N | n is even}. Y is nonempty
and the ≤N-least even number in Y is the ≤′′-least element of X.
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Example 3.9. Consider the following order on N× N.

〈n,m〉 ≤lex 〈p, q〉 ⇔ n <N p or
(
n = p and m ≤N q

)
This order is called the lexicographic order on N× N. To see that this order is a well order,
fix a nonempty set X ⊆ N× N.

Let π1(X) = {n ∈ N | ∃m ∈ N (〈n,m〉 ∈ X)} be the projection of the elements of X onto
their first coordinates. Since π1(X) is a nonempty subset of N, it has a ≤N-least element a.
Note that for every 〈n,m〉 ∈ X, we know a ≤N n. Also, since a ∈ π1(X), we know that there
is some m ∈ N such that 〈a,m〉 ∈ X.

Let Y = {m ∈ N | 〈a,m〉 ∈ X}. Y is a nonempty subset of N, so it has a ≤N-least element
b. Note that 〈a, b〉 ∈ X and that for every 〈a,m〉 ∈ X, we have b ≤N m.

We claim that 〈a, b〉 is the ≤lex-least element of X. To see why, fix 〈n,m〉 ∈ X and we
show that 〈a, b〉 ≤lex 〈n,m〉. We know that a ≤N n. If a <N n, then 〈a, b〉 ≤lex 〈n,m〉 because
of the first components. Therefore, assume that n = a. In this case, we are comparing
〈a, b〉 and 〈a,m〉. However, by the previous paragraph, we know that b ≤N m and hence
〈a, b〉 ≤lex 〈a,m〉 because of their second components.

The last three examples can be generalized into three methods for building new well orders
from known well orders.

Example 3.10. Let (W,≤W ) be a well order. Fix some a 6∈ W . We can extend the well order
on W by placing a as a new greatest element. That is, the linear order given by (W ∪{a},≤′)
with

x ≤′ y ⇔
(
x, y ∈ W and x ≤W y

)
or y = a

is a well order.

Example 3.11. Let (A,≤A) and (B,≤B) be well orders. We can think of “adding” these
orders as follows. Intuitively, we want to put down a copy of A ordered by ≤A and then insert
a copy of B ordered by ≤B so that all the elements of B come after all the elements of A.
More formally, we define a well order (A× {0} ∪B × {1},�) with

〈x, y〉 � 〈u, v〉 �⇔ y <N v or
(
y = v = 0 and x ≤A u

)
or
(
y = v = 1 and x ≤B u

)
The role of the sets {0} and {1} is simply to separate the elements of A from the elements of B
(as these sets could contain elements in common) in such a way that we can easily determine
whether a element in the “sum” came from A or B. We compare the components containing
a 0 or 1 first because we want to make sure an element from B is always above an element
from A and because we want to compare a pair of elements from A using ≤A and a pair of
elements from B using ≤B.

Notice that in this example, the order in which we “added” A and B mattered. That is,
we put the copy of A first and the copy of B second. We could have “added” them in the
other order, but that would mean putting the copy of B first and the copy of A second. At
first, it might seems like this order shouldn’t matter in the end, but it does.
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Suppose A = {a} is a linear order consisting of a single element and B = (N,≤N). If we
place A first and then place the elements of B greater than A, we get

a < 0 < 1 < 2 < 3 < · · ·

which is isomorphic to (N,≤N). However, if we place B first and then place the element of A
greater than B, we get

0 < 1 < 2 < 3 < · · · < a

which is not isomorphic to (N,≤N). Thus this form of “addition” is not commutative.
We can also “multiply” two linear orders. Before giving the details of this construction,

let me motivate it with a simple example because this operation will also not be commutative.
Consider multiplying two natural numbers such as 2 × 3. Think of the numbers 2 and 3 as
representing ordinals (i.e. well order queues) rather than cardinalities (i.e. collections of 2 or
3 objects).

In the product 2× 3, the 2 (which comes first) tells us we are considering queues each of
which consists of 2 people. The 3 (which comes second) tells use that we have 3 such lines.
But, remember that we want to think of the 3 in an ordinal way rather than a cardinal way,
so we think of the 3 as telling us that we have a first line of 2 people, a second line of 2 people
and a third line of 2 people.

Now, suppose we want to form a single line. The natural thing to do is to take the people
in the first queue and place them in the new single line first (retaining their order within their
line of 2 people). Then we take the people in second queue (retaining their order) and place
them in the new single line after the people from the first queue. Finally, we take the people
from the third queue (retaining their order) and place them at the end of the new single line.

Putting this altogether, we think of 2× 3 as combining 3 queues of 2 people into a single
line by place each of the 3 queues into the new single line in order (of the queues as given by
the 3) and retaining the given order within each queue. Try to keep this picture in mind for
the next example.

Example 3.12. Let (A,≤A) and (B,≤B) be well orders. We can think of “multiplying”
these orders as follows. Intuitively, we start with a bunch of queues isomorphic to A. The
collection of these queues is ordered as described by B. We want to combine the A-queues
into a new single line. The order B on the collection of the A-queues tells us which order to
place the A-queues in the new single line.

Taking one step towards formality, think of each element b ∈ B as denoting the b-th A-
queue. When we assemble the A-queues into a single line, we want to replace b by a copy
of A (i.e. by the b-th A-queue). That is, we want to take the well order B and replace each
element of B by a copy of A. If a ∈ A and b ∈ B, we represent the person in the b-th queue
and in the a-th position within that queue by 〈b, a〉. In other words, the “address” for each
person in the new line is given by specifying which queue they came from (i.e. the b-th queue)
followed by their position within that queue (the a-th spot in that queue).

Formally, we define the linear order (B × A,≤lex) with

〈b, a〉 ≤lex 〈d, c〉 ⇔ b <B d or
(
b = d and a ≤A c

)
13



This order is called the lexicographic order on B ×A. Notice that we compare two people in
the new single line by first comparing which A-queue they originally came from and then, if
they can from the same A-queue, comparing their positions within that A-queue.

Notice that commutativity fails for this notion of multiplication. Suppose A = {a, b} with
a <A b is a well order with two elements and B = (N,≤N). If we multiply A by B, then we
have a collection of 2 person queues ordered by N. Let An = {an, bn} be the n-th queue in
this N-order of queues. When we combines the 2 person queues into a single line, we get

a0 < b0 < a1 < b1 < a2 < b2 < · · ·

which is isomorphic to (N,≤N). If we multiply B by A, then we have two queues each looking
like N. Let {0a, 1a, . . .} be the a-th N-queue and let {0b, 1b, . . .} be the b-th N-queue. When
we combine the N-queues into a single line, we get

0a < 1a < 2a < · · · < 0b < 1b < 2b < · · ·

which is not isomorphic to (N,≤N). It is not a coincidence that it is isomorphic to the well
order we get by “adding” to copies of (N,≤N). We will see this connection in detail later.

These examples of adding and multiplying will return when we consider ordinal numbers.
Next, we give a simple characterization of when a linear order is a well order.

Lemma 3.13. A linear order (L,≤L) is a well order if and only if L has no infinite descending
sequences.

Proof. We can state this lemma equivalently as a linear order is not a well order if and only
if it has an infinite descending sequence. It is easier to prove in this form.

First, suppose that L is not a well order and we construct an infinite descending sequence.
Since L is not a well order, there is a nonempty set X ⊆ L such that X has no ≤L-least
element. Define the infinite descending sequence s : N→ L as follows. Set s(0) = x0 where x0
is any element of X. Since X has no ≤L-least element, we know there is an element x1 ∈ X
such that x1 <L x0. Fix such an x1 and set s(1) = x1. Now, repeat this process. That is,
assume that s(n) = xn ∈ X has been defined. There must be an element xn+1 ∈ X such that
xn+1 <L xn. Fix such that element and set s(n + 1) = xn+1. By definition, s is an infinite
descending sequence in X and hence in L.

Second, suppose that s : N→ L is an infinite descending sequence and we show that L is
not a well order. Let X = range(s). Note that X is nonempty. To see that X has no ≤L-least
element, fix x ∈ X. By the definition of X, there is an n ∈ N such that s(n) = x. Since
s(n + 1) ∈ X and s(n + 1) <L s(n) = x, the element x is not ≤L-least in X. Therefore, X
witnesses that L is not a well order.

For the remainder of this section, we will consider some special properties of well orders
which are not generally shared by linear orders. The first special property of well orders we
will consider is the representation of initial segments in linear orders.
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Definition 3.14. Let L be a linear order. A subset I ⊆ L is an initial segment of L if it
satisfies

∀x, y
(
(x ∈ I ∧ y ≤L x)→ y ∈ I

)
In other words, I is an initial segment of L if it is closed downwards under ≤L. An initial
segment I is called proper of I 6= L.

Example 3.15. Let (L,≤L) be a linear order. L ⊆ L is an initial segment of itself and ∅ ⊆ L
is an initial segment. Unless L is empty, ∅ is a proper initial segment of L.

Definition 3.16. Let L be a linear order and a ∈ L. The initial segment generated by a is

I(a) = {x ∈ L | x <L a}.

Note the strict inequality in this definition. (You should check that I(a) is an initial segment.)

Example 3.17. Consider the linear order (Q,≤Q) and the initial segment

I = {q ∈ Q | q ≤Q 0}.

Notice that I is not generated by any element of Q. That is, to try to find a q such that
I = Iq, you would have to have 0 <Q q because 0 ∈ I. However, if 0 <Q q, then 0 <Q q/2 <Q q
and hence q/2 ∈ I(q) but q/2 6∈ I. Therefore, I 6= Iq.

For a more subtle example, consider the initial segment I ′ = {q ∈ Q | q <R
√

2}. Because√
2 6∈ Q, this initial segment is also not generated by any element of Q.

This example shows that for general linear orders, we cannot expect initial segments to be
generated by individual elements. Even worse, a linear like (Q,≤Q) has uncountably many
district initial segments (given by the Dedekind cuts) but has only countably many initial
segments generated by its elements! The next lemma shows that this behavior cannot occur
in a well order.

Lemma 3.18. Let W be a well order. I ⊆ W is a proper initial segment if and only if there
is an element a ∈ W such that I = I(a).

Proof. Since I is proper, W \ I 6= ∅. Therefore, because W is a well order, W \ I has a
≤W -least element a. We claim that I = I(a). To prove this claim, we show that I ⊆ I(a)
and I(a) ⊆ I.

To see that I ⊆ I(a), assume for a contradiction that I 6⊆ I(a). This means that there is
an element b ∈ I such that b 6∈ I(a) and hence a ≤W b. However, I is an initial segment, so
a ≤W b and b ∈ W implies that a ∈ I. This contradicts the fact that a ∈ W \ I.

To see that I(a) ⊆ I, assume for a contradiction that I(a) 6⊆ I. This means that there
is an element c ∈ I(a) such that c 6∈ I. Since c ∈ I(a), we have c <W a. Since c 6∈ I, we
have c ∈ W \ I and thus, because a is the ≤W -least element of W \ I, a ≤W c. Having shown
c <W a and a ≤W c, we have arrived at the desired contradiction.

The second property of well orders we consider corresponds to strong induction on N. We
will use this property repeatedly in the rest of the section.
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Theorem 3.19 (Transfinite Induction). Let W be a well order and let B ⊆ W . If for every
x ∈ W , we have I(x) ⊆ B ⇒ x ∈ B, then B = W .

Proof. For a contradiction, assume that B ( W but

∀x ∈ W
(
I(x) ⊆ B → x ∈ B

)
.

Since B ( W , we know that W \B 6= ∅ and thus W \B has a ≤W least element a. However,
if a is the ≤W -least element of W \ B, then I(a) ⊆ B. Therefore, by the offset equation,
a ∈ B for the desired contradiction.

Definition 3.20. Let A and B be linear orders and let f : A → B be a function between
them. We say

• f is increasing if x ≤A y implies f(x) ≤B f(y) for all x, y ∈ A, and

• f is strictly increasing if x <A y implies f(x) <B f(y) for all x, y ∈ A.

Example 3.21. Let (A,≤A) and (B,≤B) be linear orders and let f : A → B be an isomor-
phism between them. By the definition of isomorphism, for all x, y ∈ A, we have x ≤A y if
and only if f(x) ≤B f(y). Therefore, f is increasing.

In fact, if f is an isomorphism, we have the stronger property that x <A y if and only if
f(x) <B f(y) because f is one-to-one. Therefore, f is also strictly increasing.

Example 3.22. A function f : A→ B between linear orders does not have to be an isomor-
phism to be increasing or strictly increasing. For example, any constant function is increasing.
To give another example, consider f : N → N given by f(x) = 2x. Then f is increasing but
is not an isomorphism because it is not onto.

Exercise 3.23. Show that if f : A → B is strictly increasing, then f is one-to-one. We will
use this property several times below.

Theorem 3.24. Let W be a well order. If f : W → W is strictly increasing, then x ≤W f(x)
for all x ∈ W .

Before proving this theorem, notice that it is not true about linear orders in general. Let
f : Z → Z be defined by f(x) = x − 1. Then f is strictly increasing because x <Z y implies
f(x) = x− 1 <Z y − 1 = f(y). However, we have f(x) <Z x for all x ∈ Z.

We will give two proofs of Theorem 3.24 to illustrate two different ways in which proofs
by transfinite induction are commonly given.

First proof of Theorem 3.24. For this proof, we apply transfinite induction directly. Let

B = {z ∈ W | z ≤W f(z)}

We want to show that B = W . By transfinite induction, it suffices to show that for all x ∈ W ,
if I(x) ⊆ B, then x ∈ B. Fix x ∈ W and assume that I(x) ⊆ B. We will show that x ∈ B.
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We claim that
y ∈ I(x) implies that y <W f(x).

To prove this claim, fix an element y ∈ I(x). First, notice that since y ∈ I(x) and I(x) ⊆ B,
we have y ∈ B which means that y ≤W f(y). Second, notice that y ∈ I(x) implies y <W x (by
definition), which in turn implies that f(y) <W f(x) because f is strictly increasing. Putting
these inequalities together, we have that y ≤W f(y) <W f(x). This completes the proof of
the claim.

Because f(x) 6<W f(x), this claim implies that f(x) 6∈ I(x). (Substitute f(x) in for y in
the claim.) However, by the definition of the initial segment I(x), f(x) 6∈ I(x) means that
x ≤W f(x).

Second proof of Theorem 3.24. Probably the more common way in which proofs by transfinite
induction proceed is by contradiction. Assume for a contradiction that

C = {z ∈ W | f(z) <W z} 6= ∅

Since W is a well order, we can fix the ≤W -least element c ∈ C. To derive our contradiction,
we need two observations.

First, since c ∈ C, we have f(c) <W c. Applying f to both sides of this inequality, we
have f(f(c)) <W f(c) since f is strictly increasing.

Second, since c is the ≤W -least element of C and f(c) <W c, we know that f(c) 6∈ C.
Therefore, by the definition of C, we have f(f(c)) 6<W f(c). Thus, we have the desired
contradiction.

Corollary 3.25. If W is a well order and x ∈ W , then W 6∼= I(x).

Proof. Suppose for a contradiction that there is an x ∈ W and a map f : W → I(x) that is
an isomorphism. On one hand, we know that f(x) ∈ I(x) since f maps into I(x) and hence
f(x) <W x. On the other hand, f is an isomorphism between linear orders, so it is strictly
increasing by Example 3.21. Therefore, by Theorem 3.24, x ≤W f(x) giving the desired
contradiction.

Corollary 3.26. If A is a well order and x 6= y ∈ A, then I(x) 6∼= I(y).

Proof. Suppose for a contradiction that x 6= y ∈ A but I(x) ∼= I(y). Without loss of generality,
assume that x <A y. Let W = I(y) be the well order given by the initial segment determined
by y. Since x <A y, we have x ∈ W and we can consider I(x) as an initial segment of W .
Therefore, we have W ∼= I(x) where x ∈ W . This directly contradicts Corollary 3.25.

The third general property we want to consider about well orders is that isomorophisms
between them are unique. Again, this property fails badly for linear orders in general. Con-
sider Z. Every function f : Z→ Z of the form f(x) = x+ n for n ∈ Z is an isomorphism.

Theorem 3.27. Let A and B be isomorphic well orders. There is a unique isomorphism from
A to B.
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Proof. Suppose for a contradiction that there are two different isomorphisms f : A→ B and
g : A→ B. Saying that these two isomorphisms are different means that there is some x ∈ A
such that f(x) 6= g(x). In other words,

C = {x ∈ A | f(x) 6= g(x)} 6= ∅.

Since A is a well order, we can fix the ≤A-least element c ∈ C. Because c ∈ C, we know
f(c) 6= g(c) (as elements of the linear order B), so without loss of generality, we assume that
f(c) <B g(c). (That is, either f(c) <B g(c) or g(c) <B f(c), and we assume that the functions
are named so that f(c) is the smaller element in B.)

Let b = f(c). We have two important pieces of information. First, b <B g(c). Second,
for all x <A c, f(x) = g(x) because c is the ≤A-least element of C. Now, we ask the crucial
question: For which a ∈ A does g(a) = b? There must be some such a because g is an
isomorphism. There are three possibilities (either a <A c or a = c or c <A a) and we show
that none of them is actually possible.

• a <A c: In this case, g(a) = f(a) by the second piece of information above. Because
f is an isomorphism and hence is strictly increasing, a <A c implies f(a) <B f(c).
Therefore, we have g(a) = f(a) <B f(c) = b, so g(a) <B b and hence g(a) 6= b.

• a = c: In this case, g(a) = g(c) >B b (by the first piece of information) and hence
g(a) 6= b.

• c <A a: Because g is an isomorphism and hence is strictly increasing, c <A a implies
g(c) <B g(a). Therefore, b <B g(c) <B g(a), so b <B g(a) and hence g(a) 6= b.

Having analyzed these three possibilities, we conclude that there is no element a ∈ A such
that g(a) = b and hence we have contradicted the fact that g is an isomorphism.

For the final theorem of this section, it will be important to keep track of initial segments
in two different well orders. To help keep everything straight, if (A,≤A) is a linear order and
a ∈ A, we use IA(a) to denote the initial segment determined by a in A. The subscript A is
implied by the context, but it makes things somewhat more clear to denote it explicitly. The
following technical fact will be useful in our final theorem of this sections.

Lemma 3.28. Let A and B be isomorphic well orders and let f : A→ B be the isomorphism
between them. Fix a ∈ A and let b = f(a). Then IA(a) ∼= IB(b) by the function f � IA(a).

Proof. Recall that f � IA(a) is the restriction of f to IA(a). That is, the domain of f � IA(a)
is IA(a) and for each c ∈ IA(a), (f � IA(a))(c) = f(c). To prove this lemma, we verify the
required properties of f � IA(a).

First, we claim that f � IA(a) maps IA(a) into IB(b). Fix c ∈ IA(a) and we show that
(f � IA(a))(c) ∈ IB(b). Since c ∈ IA(a), we have c <A a. Because f is an isomorphism, this
inequality implies that f(c) <B f(a) = b and hence f(c) ∈ IB(b). But, (f � IA(a))(c) = f(c),
so (f � IA(a))(c) ∈ IB(b).

Second, we claim that f � IA(a) is one-to-one and order preserving. Both of these facts
follow immediately because (f � IA(a))(c) = f(c) and f is one-to-one and order preserving.
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Third, we claim that f � IA(a) is onto IB(b). Fix d ∈ IB(b). Because f is an isomorphism,
and hence is a bijection, there is an element c ∈ A such that f(c) = d. Because f is order
preserving and d <B b, we must have c <A a and hence c ∈ IA(a). But, then (f � IA(a))(c) =
f(c) = d as required.

We have shown that f � IA(a) is an order preserving bijection between IA(a) and IB(b).
Hence, by definition, it is an isomorphism between the well orders IA(a) and IB(b).

Finally, we reach the most important property of well orders. The final theorem of this
section shows that we can always compare the lengths of well orders. That is, given two well
orders, either they have the same length (i.e. are isomorphic) or one is strictly short than the
other (i.e. isomorphic to an initial segment of the other).

Theorem 3.29. Let A and B be well orders. Exactly one of the following holds.

(1) A ∼= B

(2) A ∼= I(b) for some b ∈ B

(3) B ∼= I(a) for some a ∈ A

Proof. For this proof, it is important to keep track of initial segments of A and initial segments
of B. To emphasize which well order we are working in, if a ∈ A, I will use IA(a) to indicate
that the initial segment we are looking at is in A. Similarly, if b ∈ B, I will use IB(b) to
indicate that the initial segment is in B.

We begin by showing that at least one of these conditions must hold. Define the following
set Z.

Z = {x ∈ A | ∃y ∈ B
(
IA(x) ∼= IB(y)

)
}

Our proof will follow from a series of claims.
Our first claim is that if x ∈ Z, then there is a unique y ∈ B such that IA(x) ∼= IB(y).

Suppose for a contradiction that there are y1 6= y2 ∈ B such that IA(x) ∼= IB(y1) and
IA(x) ∼= IB(y2). Then IB(y1) ∼= IB(y2) which contradicts Corollary 3.26. This proves the first
claim.

By this first claim, we can define a function f : Z → B by

f(x) = y ⇔ IA(x) ∼= IB(y).

Our second claim is that Z is an initial segment of A. To see why, fix z ∈ Z and x ∈ A
with x <A z. We need to show that x ∈ Z. That is, we need to find an element y ∈ B
such that IA(x) ∼= IB(y). Since z ∈ Z, we have IA(z) ∼= IB(f(z)) and can fix an isomorphism
h : IA(z) → IB(f(z)). Since x <A z, the element x is in the domain of h. Let y = h(x).
By Lemma 3.28, the restricted function h � IA(x) is an isomorphism from IA(x) to IB(y).
completing the proof of the second claim.

In particular, notice that in the context of the second claim, f(x) = y because IA(x) ∼=
IB(y). Since y = h(x), we have f(x) = h(x). That is, if z ∈ Z, x <A z and h : IA(z) →
IB(f(z)) is the isomorphism between IA(z) and IB(f(z)), then f(x) = h(x).
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Our third claim is that f is strictly increasing. To see why, fix x, z ∈ Z with x <A z. Since
z ∈ Z, we can fix an isomorphism h : IA(z) → IB(f(z)). By the comment in the previous
paragraph, f(x) = h(x) ∈ IB(f(z)). This means that f(x) <B f(z) as required.

Let Y ⊆ B be the image of Z under f . Notice that f : Z → Y is a function (by the first
claim) which is onto (by the definition of Y ) and which is one-to-one (because f is strictly
increasing). Therefore, f is a bijection.

Our fourth claim is that Y is an initial segment of B. To see why, fix b ∈ Y and b′ <B b.
We need to show that b′ ∈ Y . Fix a ∈ Z such that f(a) = b and fix the isomorphism
h : IA(a)→ IB(b). Since h maps IA(a) onto IB(b) and since b′ ∈ IB(b), there is an a′ ∈ IA(a)
such that h(a′) = b′. By Lemma 3.28, h � IA(a′) is an isomorphism from IA(a′) to IB(b′).
Therefore, f(a′) = b′ and b′ ∈ Y .

We have arrived at a bijection f : Z → Y between the initial segment Z of A and the
initial segment Y of B. Because f is strictly increasing, it is order preserving. Therefore, f
is an isomorphism between the initial segment (Z,≤A) of A and the initial segment (Y,≤B)
of B. We split into four cases to finish the proof.

• Suppose Z = A and Y = B. Then f : A→ B is an isomorphism between A and B.

• Suppose Z is a proper initial segment of A and Y = B. Then Z = IA(a) for some a ∈ A
and f : IA(a)→ B is an isomorphism.

• Suppose Z = A and Y is a proper initial segment of B. Then Y = IB(b) for some b ∈ B
and f : A→ IB(b) is an isomorphism.

• Suppose Z is a proper initial segment of A and Y is a proper initial segment of B. In
this case, Z = IA(a) for some a ∈ A, Y = IB(b) for some b ∈ B and f : IA(a) → IB(b)
is an isomorphism. But, then IA(a) ∼= IB(b) and hence a ∈ Z, which means a ∈ IA(a)
which is a contradiction. Therefore, this final case cannot occur.

Since the last case cannot occur, we must be in one of the first three cases which finished the
proof that at least one of the three conditions in the statement of the Theorem must hold.

It remains to show that we cannot have two of these conditions hold. If (1) and (2)
hold, then by composing the isomorphisms, we would have B ∼= IB(b) for some b ∈ B which
contradicts Corollary 3.25. Similar, we cannot have (1) and (3) hold. Finally, suppose that
(2) and (3) hold. Fix the isomorphisms f : A→ IB(b) and g : B → IA(a). Let a′ = g(b). By
Lemma 3.28, g � IB(b) is an isomorphism from IB(b) to IA(a′). Composing f and g � IB(b),
we get that A ∼= IA(a′) which again contradicts Corollary 3.25.

4 Ordinal numbers

In this section, we outline the theory of the ordinal numbers. The basic idea is to pick a
unique representative for each well order type in a canonical manner. Later in the course, we
will say something about the axioms of Zermelo-Frankel set theory with choice (ZFC) which
is the natural formal theory to develop the theory of ordinal numbers.
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There are two aspects of ZFC which are useful to keep in mind for this section in terms of
helping with the intuition. First, you should think of everything as a set. That is, the elements
of sets are other sets. Second, in ZFC, no set is allowed to be a member of itself. That is, we
never have x ∈ x. In ZFC, this property is guaranteed by the Axiom of Foundation. It is not
necessary have the Axiom of Foundation to develop ordinal numbers, but it is helpful when
you are first thinking about them. So, although we will not use it formally, it doesn’t hurt to
read this material under the working hypothesis that any set x, x 6∈ x.

Definition 4.1. A set A is transitive if for every x ∈ A, we have x ⊆ A. That is,

∀x ∀w
(
(w ∈ x ∧ x ∈ A)→ w ∈ A

)
.

Example 4.2. ∅ is a transitive set. The set {∅} is also transitive because it has one element,
namely ∅, and ∅ ⊆ {∅}.

The set A = {∅, {∅}} is also transitive. To check this, we consider each of the elements of
A in turn. First, ∅ ∈ A and ∅ ⊆ A. Second, {∅} ∈ A and {∅} ⊆ A because ∅ ∈ A.

However, the set B = {{∅}} is not transitive because {∅} ∈ B but {∅} 6⊆ B because
∅ 6∈ B.

Definition 4.3. A set α is an ordinal (or an ordinal number) if α is transitive and the
membership relation ∈ defines a strict well order on α. That is, it defines a strict linear order
which is a well order.

We tend the drop the adjective “strict” when talking about the ∈-relation on an ordinal
and just refer to the ordinal as being well ordered by the ∈-relation. However, when checking
that a given set is an ordinal, it is important to keep in mind that the axioms we need to
check are those of a strict linear order. We begin with a collection of examples that connect
ordinals with the natural numbers.

Example 4.4. The simplest ordinal is ∅ which corresponds to a well order with no elements.
For this reason, we denote this ordinal by 0.

Example 4.5. The next simplest ordinal is {∅}. We have already seen that {∅} is a transitive
set. It remains to show that the ∈-relation defines a well order on {∅}.

The set {∅} has a single element, namely ∅. Since ∅ 6∈ ∅ (because ∅ has no elements),
the ∈-relation on {∅} is irreflexive. It also satisfies transitivity and trichotomy trivially, so
defines a strict linear order on {∅}. Because this linear order has only one element, it is a well
order. Therefore, {∅} is an ordinal. Because this ordinal corresponds to a well order with one
element, so we denote it by 1. There are two important points to make about this ordinal.
First, because 0 = ∅, we have 1 = {0} and in particular 0 ∈ 1.

Second, consider whether we could have another ordinal with a single element. Suppose
A = {a} is an ordinal and A 6= 1. Then, in particular, a 6= ∅. If A is an ordinal, then A is
transitive so a ∈ A implies that a ⊆ A. Therefore, a ⊆ {a}. This means that if b ∈ a, then
b ∈ {a} and hence b = a. Therefore, a must contain an element because a 6= ∅ and the only
element it can contain is a. Therefore, a ∈ a which we have forbidden because the ∈-relation
on an ordinal satisfies the axioms of a strict linear order and hence is irrelexive. Hence 1 is
the only ordinal with one element.
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Our next example will set the pattern for examples corresponding to each of the natural
numbers.

Example 4.6. Let 2 = {0, 1}. That is, 2 = {∅, {∅}}. We have already checked that 2 is
transitive. The ∈-relation on 2 holds only for ∅ ∈ {∅} (i.e. 0 ∈ 1). Therefore, it defines a
strict linear order with two elements which is necessarily a well order because it is finite.

Notice that 0 ∈ 2 and 1 ∈ 2. I will leave it to you to check, but 2 is the only possible
ordinal with exactly two elements.

To get used to this notation and see what exactly is going on, it is worth writing down the
exact set definition of 3 = {0, 1, 2} and checking that it is transitive and that the ∈-relation
defines a well order on 3.

Example 4.7. We can now continue to define ordinals corresponding to each of the natural
numbers. Assume n = {0, 1, . . . , n− 1} has been defined with the ∈-relation holding between
i, j ∈ n if and only if i <N j. Define n+ 1 = {0, 1, . . . , n− 1, n}. Because i ∈ n for all i <N n
and n 6∈ n, the ∈-relation satisfies the axioms for a strict linear order on n + 1. Again, this
linear order is a well order because it is finite, in fact it contains exactly n+ 1 many elements.

Another way to describe the general pattern of the last example is to define n+1 = n∪{n}.
Later we will show this pattern generalizes to all ordinals by defining a successor operation
S(x) on the ordinals by S(α) = α ∪ {α} and verifying carefully that if α is an ordinal then
S(α) is also an ordinal. The process of going from α to S(α) exactly corresponds to the
process of adding a new greatest element to a well order.

Our examples so far have only generated finite ordinals. There are also infinite ordinals.

Example 4.8. Let ω = {0, 1, 2, . . .} where each n is viewed in its ordinal form (i.e. as a set
containing the strictly smaller ordinals). Based on the previous pattern, we have that for all
n,m ∈ ω, n ∈ m if and only if n <N m. Therefore, the ∈-relation defines a strict linear order
on ω such that (ω,∈) ∼= (N, <N). That is, ω is an ordinal notation for the well order N (with
its usual ordering).

Example 4.9. Let S(ω) = ω ∪ {ω} = {0, 1, 2, . . .} ∪ {ω}. If x, y ∈ S(ω), then x ∈ y if and
only if x, y ∈ ω and x <N y or y = ω. That is, we have

0 ∈ 1 ∈ 2 ∈ · · · ∈ ω

This definition should look familiar. It is exactly the process we used to add a new greatest
element to the end of a well order. Therefore, S(ω) is an ordinal corresponding to taking N
and adding a new greatest element.

Having given these motivating examples, we turn to proving basic properties about or-
dinals. Our eventual goal is to show that the ordinals give unique representatives of each
well order isomorphism type. That is, for each (strict) well order (W,<W ), there is a unique
ordinal α such that (W,<W ) ∼= (α,∈).

Before proving these facts about ordinal numbers, we should unpack the definition of an
ordinal to see exactly what we need to verify. To be an ordinal, the pair (α,∈) should satisfy
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the axioms of a strict linear order and this order should be a well order. (We will stop writing
the binary relation ∈ defining the strict linear order on α. When dealing with ordinals, the
ordering is always given by ∈.) That is, α should satisfy the following properties.

• Irreflexivity: For all x ∈ α, x 6∈ x.

• Trichotomy: For all x, y ∈ α, either x = y or x ∈ y or y ∈ x.

• Transitivity: For all x, y, z ∈ α, if z ∈ y and y ∈ x, then z ∈ x.

• Well order: If B ⊆ α is nonempty, then there is a b ∈ B such that for all x ∈ B, x 6∈ b.
In other words, there is a b ∈ B such that b ∩B = ∅.

Lemma 4.10. Let α be an ordinal. If β ∈ α, then β is an ordinal and β = Iα(β).

Proof. First, we show that β is a transitive set. Fix arbitrary x ∈ y and y ∈ β. We need to
show that x ∈ β. Since α is an ordinal and β ∈ α, we know that β ⊆ α. Therefore, y ∈ β
implies that y ∈ α. Now, we can use the fact that α is an ordinal again to conclude that
y ⊆ α and hence x ∈ α.

At this point, we know that x, y, β ∈ α with x ∈ y and y ∈ β. But, because α is an
ordinal, the ∈-relation defines a strict linear order on α. Therefore, x ∈ y and y ∈ β implies
that x ∈ β as required. This completes the proof that β is a transitive set.

Second, we show that the ∈-relation defines a well order on β. Because β ⊆ α and the
membership relation defines a well order on α, it automatically defines a well order on β. That
is, if x, y, z ∈ β, then x, y, z ∈ α and hence satisfy irreflexivity, trichotomy and transitivity as
elements of α. Similarly, if B ⊆ β is nonempty, then B is also a nonempty subset of α and
hence has a minimal element b under the ∈-relation as required.

Third, we show that β = Iα(β). By definition,

Iα(β) = {x ∈ α | x ∈ β}

Therefore, Iα(β) ⊆ β by definition. To see β ⊆ Iα(β), fix x ∈ β. Since β ⊆ α, we have x ∈ α
and hence x ∈ Iα(β) as required.

Lemma 4.11. For any ordinal α, α 6∈ α.

Proof. As mentioned at the beginning of this section, if we are working in ZFC and have
the Axiom of Foundation, then this property follows immediately because x 6∈ x for all sets
x. However, we can get by without appealing to the Axiom of Foundation. Suppose for a
contradiction that α is an ordinal and α ∈ α. Then α = β for some β ∈ α. However, if
α = β and β ∈ α, then β ∈ β by substitution. This fact contradicts the irreflexivity of the
∈-relation on α.

Lemma 4.12. If α and β are ordinals such that α ∼= β as well orderings, then α = β.
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Proof. Assume for a contradiction that α ∼= β but α 6= β. Since α 6= β, one of these sets must
contain an element not contained in the other. Without loss of generality, assume that there
is an x ∈ α such that x 6∈ β. By assumption, the set

X = {x ∈ α | x 6∈ β} ⊆ α

is not empty and hence has an ∈-least element a. That is, a ∈ α and a 6∈ β. Furthermore,
since a ∈ α and α is an ordinal, we know that a ⊆ α. Therefore, for every v ∈ a, we have
v ∈ α. Because a is the ∈-least element in X, we must have that each v ∈ a is also in β.
Therefore, a ⊆ β but a 6∈ β.

Next, notice that a = Iα(a) is an initial segment of α by Lemma 4.10. Also, by Lemma
4.10, a is an ordinal and hence is a transitive set. We claim that a ⊆ β is also an initial
segment of β under the ∈-relation. To prove this claim, we need to show that if v ∈ a
and u ∈ v, then u ∈ a. However, this property immediately holds because a is transitive.
Therefore, a ⊆ β is an initial segment of β.

Let f : α → β be the unique isomorphism between the well orders α and β and recall
how this isomorphism is built in Theorem 3.29. Because the isomorphism is unique, for any
x ∈ α and y ∈ β, we must have f(x) = y if and only if Iα(x) ∼= Iβ(y). Consider any element
v ∈ a. We know v ∈ α and v ∈ β. Therefore, by Lemma 4.10, v = Iα(v) = Iβ(v) and hence
Iα(v) ∼= Iβ(v) by the identity map. Therefore, f(v) = v for all v ∈ a.

However, we know that a 6∈ β. Therefore, f(a) ∈ β but f(a) 6∈ a because f(v) = v for all
v ∈ a. This means that a ⊆ β is a proper initial segment of β because it does not contain
f(a). By Lemma 3.18, there is an element b ∈ β such that a = Iβ(b). But, by Lemma 4.10,
b = Iβ(b) and hence a = b. Thus, a ∈ β which contradicts the fact that a ∈ X.

Lemma 4.13. If α and β are ordinals, then either α ∈ β or α = β or β ∈ α.

Proof. Fix ordinals α and β. By Theorem 3.29, we know that one of the following three cases
must hold.

• Suppose α ∼= β. By Lemma 4.12, α = β.

• Suppose α ∼= Iβ(b) for some b ∈ β. By Lemma 4.10, b is an ordinal and b = Iβ(b).
Therefore, α ∼= b and by Lemma 4.12, α = b. But, then α ∈ β because b ∈ β.

• Suppose Iα(a) ∼= β for some a ∈ α. By the same reasoning as the previous case, β ∈ α.

Lemma 4.14. If α, β and γ are ordinals with α ∈ β and β ∈ γ, then α ∈ γ.

Proof. Since γ is an ordinal, and hence is transitive, β ∈ γ implies β ⊆ γ. Therefore, α ∈ β
implies α ∈ γ.

Lemma 4.15. If C is a nonempty set (or class) of ordinals, then there is an α ∈ C such that
for all β ∈ C, either β = α or α ∈ β. That is, every nonempty set (or class) of ordinals has
an ∈-least element.
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Proof. Since C is not empty, we can fix an ordinal z ∈ C. We split into two cases. First,
suppose that z ∩ C = ∅. In this case, we let α = z. To verify that α satisfies the lemma, fix
an arbitrary β ∈ C. Since α ∩ C = ∅, we know β 6∈ α. By Lemma 4.13, the only remaining
possibilities are β = α or α ∈ β. This completes the first case.

For the second case, assume that z ∩ C 6= ∅. Let B = z ∩ C and notice that B is a
nonempty subset of the ordinal z. Therefore, there is an α ∈ B such that α ∩ B = ∅. Notice
that since α ∈ B and B ⊆ z, we have that α ∈ z.

We claim that α satisfies the lemma. To see why, fix an arbitrary β ∈ C. If β ∈ B, then
because α∩B = ∅, we know β 6∈ α and hence by Lemma 4.13 either α = β or α ∈ β. On the
other hand, if β 6∈ B, then β 6∈ z (because β ∈ C). Hence, either z = β (and hence α ∈ β
because α ∈ z) or z ∈ β (and hence α ∈ β by Lemma 4.14 because α ∈ z and z ∈ β).

At this point, we can draw some conclusions about the structure of the collection of all
ordinals. Let ON denote the collection of all ordinals. We need to be a little careful because
we will show that this collection is not a set. So, to be more accurate, consider α ∈ ON as
shorthand for the proposition “α is a transitive set such that the ∈-relation defines a well
order on α.” (Formally, this collection forms a proper class in ZFC and we will return to
exactly what that means later in the course.)

Lemma 4.16. The ∈-relation satisfies the axioms of a strict well order on ON.

Proof. On ON, the ∈-relation satisfies transitivity by Lemma 4.14, satisfies trichotomy by
Lemma 4.13, satisfies irreflexivity by Lemma 4.11 and satisfies the condition to be a well
order by Lemma 4.15.

Because the ∈-relation acts as a strict linear order on N, we often write α < β in place of
α ∈ β for α, β ∈ ON. We can also capture the nonstrict ordering relation on ON.

Lemma 4.17. The ⊆-relation satisfies the axioms of a linear order on ON.

Proof. The ⊆-relation is reflexive, antisymmetric and transitive on all sets. Therefore, we
only need to show that it is linear on ON. Fix α, β ∈ ON. We have to show that either α ⊆ β
or β ⊆ α. By Lemma 4.13, we know that either α ∈ β, α = β or β ∈ α. If α ∈ β, then
because β is a transitive set, we have α ⊆ β as required. Similarly, if β ∈ α, then β ⊆ α.
Finally, if α = β then α ⊆ β.

Because the ⊆-relation satisfies the axioms of a linear order on ON, we often write α ≤ β
in place of α ⊆ β for α, β ∈ N. Notice that the strict ordering < and the nonstrict ordering
≤ on ON are compatible in the sense that

α ≤ β ⇔ α < β or α = β

(It is worth writing down these definitions and working out why this is true.)

Theorem 4.18. The collection ON is not a set.
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Proof. Suppose for a contradiction that ON is set. We claim that the set ON is an ordinal.
Because the ∈-relation defines a strict well order on ON, we only need to check that ON is
transitive. Fix α ∈ ON and we show α ⊆ ON. By Lemma 4.10, each β ∈ α is an ordinal
and hence α ⊆ ON as required. Therefore, ON is an ordinal. But, since ON is the set of all
ordinals, we have ON ∈ ON which contradicts Lemma 4.11.

Although it might appear that the fact that ON is not a set would make it hard to work
with ON, this is in general not true. We do need to be careful at various points to remember
that α ∈ ON is really an abbreviation for “α is an ordinal” as opposed to a set collection
process, but most of the time, we can safely work with ON as though it were a set.

The next three lemmas give us two ways to construct new ordinals from old ordinals.

Lemma 4.19. Let A be a nonempty transitive set of ordinals. That is, if x ∈ A and x ⊆ A.
Then A is an ordinal.

Proof. Fix a nonempty transitive set A of ordinals and we show that A is an ordinal. By
assumption, A is a transitive set, so it remains to show that the ∈-relation defines a strict
well order on A. The ∈-relation satisfies irreflexivity by Lemma 4.11, satisfies trichotomy by
Lemma 4.13, satisfies transitivity by Lemma 4.14 and satisfies the property to be a well order
by Lemma 4.15.

Lemma 4.20. Let B be a nonempty set of ordinals. Then⋃
B =

⋃
α∈B

α

is an ordinal. This ordinal is typically denote by sup(B) and it is the least ordinal δ such that
α ≤ δ for all α ∈ B.

Proof. Fix a nonempty set B of ordinals and let sup(B) =
⋃
α∈B α. We would like to show

that sup(B) is an ordinal using Lemma 4.19. To do so, we need to show that sup(B) is a
nonempty transitive set of ordinals. However, notice that if sup(B) is empty, then sup(B) = 0
and is an ordinal as required. Therefore, we can assume sup(B) is not empty.

The set sup(B) is a set of ordinals because if β ∈ sup(B), then β ∈ α for some α ∈ B.
Since α is an ordinal and β ∈ α, β is an ordinal by Lemma 4.10.

To see that sup(B) is transitive, fix β ∈ sup(B) and γ ∈ β. We need to show that
γ ∈ sup(B). By definition, β ∈ α for some α ∈ B. Since α is an ordinal, β ∈ α implies β ⊆ α
and hence γ ∈ α. Therefore, γ ∈ α for some α ∈ B and hence γ ∈ sup(B). This completes
the proof that sup(B) is transitive. Therefore, sup(B) is a nonempty transitive set of ordinals
and hence by Lemma 4.19, sup(B) is an ordinal.

Next, we need to show that sup(B) = δ where δ is the least ordinal such that α ≤ δ
for all α ∈ B. To do this, we first claim that if β ∈ B, then β ≤ sup(B). To see why, fix
β ∈ B. Then β ⊆

⋃
α∈B α because β is one of the sets being collected in the union. Therefore,

β ⊆ sup(B) which means β ≤ sup(B).
Let C be the collection of ordinals such that γ ∈ C if and only if α ≤ γ for every α ∈ B.

By the previous paragraph, sup(B) ∈ C so C is nonempty. (To be clear, C is actually a
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proper class.) By Lemma 4.15, C has an ∈-least element δ. That is, there is a least ordinal
δ such that α ≤ δ for all α ∈ B. By the previous paragraph, we know that δ ≤ sup(B).

To show that sup(B) ≤ δ, it suffices to show that
⋃
α∈B α ⊆ δ. Fix β ∈

⋃
α∈B α, and we

show that β ∈ δ. Since β ∈
⋃
α∈B α, we can fix an α ∈ B such that β ∈ α. Since α ∈ B, the

definition of δ implies that α ≤ δ and hence α ⊆ δ. But, β ∈ α and α ⊆ δ gives us β ∈ δ as
required.

Lemma 4.21. Let α be an ordinal. Then S(α) = α ∪ {α} is also an ordinal. Furthermore,
for all ordinals β, β ∈ S(α) if and only if β = α or β ∈ α.

Proof. Since x ∈ S(α) if and only if x ∈ α or x = α, S(α) is a set of ordinals. We claim S(α)
is transitive. Fix β ∈ S(α) and γ ∈ β. We split into two cases. First, if β ∈ α, then γ ∈ α
because α is an ordinal, and hence γ ∈ S(α). Second, if β 6∈ α, then the fact that β ∈ S(α)
implies that β = α. Therefore, γ ∈ β implies that γ ∈ α, and hence γ ∈ S(α).

The ordinal S(α) is called the successor of α and we refer to the operation S(x) mapping
α to S(α) as the successor operation.

You should think of the last two lemmas as ordinal construction methods. First, if we
have an ordinal α, we can construct a longer ordinal S(α) by adding a new greatest element.
This is exactly the process that took us from the finite ordinal n to the finite ordinal n + 1.
The ordinal S(α) is often written as α + 1 because it consists of the ordinal α with one new
element placed on the end. We will see the notion of addition of ordinals defined formally
later, although we will sneak in some of the notation now.

Second, if we have a set of ordinals, we can form a new ordinal which at least as long
as each of the ordinals in this set. This is exactly the process that took us from the set of
finite ordinals to the ordinal ω. Iterating these procedures generates many new (countable)
ordinals. For example, starting with ω and applying the successor operation, we can generate

ω : 0 < 1 < 2 < · · ·
ω + 1 : 0 < 1 < 2 < · · · < ω

ω + 2 : 0 < 1 < 2 < · · · < ω < ω + 1

ω + 3 : 0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2

Collecting the set of ordinal of the form ω + n for n ∈ N using the sup operation gives us

ω + ω = sup({ω + n | n ∈ N})
0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2 < ω + 3 < · · ·

Of course, we can now start applying the successor operation again to ω+ω to obtain a longer
ordinal

ω + ω + 1 : 0 < 1 < · · · < ω < ω + 1 < · · ·ω + ω

and so on.

Theorem 4.22 (Fundamental Theorem of Ordinal Numbers). If W is a well order, then
there is a unique ordinal α such that W ∼= α.
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Proof. Let (W,≤W ) be a well order. To see that the ordinal α is unique, suppose that W ∼= α
and W ∼= β. Then, α ∼= β and hence by Lemma 4.13, α = β.

It remains to show that existence of α. If W is empty, then we let α = 0 and note that
W ∼= α because both are empty. Therefore, we can assume that W is nonempty. Define

B = {w ∈ W | IW (w) ∼= β for some ordinal β}.

Let f be the function with domain B such that for all w ∈ B, f(w) = β for the unique ordinal
β such that IW (w) ∼= β. Let A be the range of f .

First, we claim that A is a transitive set of ordinals. By definition, A is a set of ordinals.
To see that it is transitive, fix β ∈ A and γ ∈ β. Let w ∈ W be such that IW (w) ∼= β and
let f : β → IW (w) be the isomorphism. Let w′ ∈ W be such that f(γ) = w′. By Lemma
3.28, the restricted map f � Iβ(γ) is an isomorphism from Iβ(γ) to IW (w′). But, Iβ(γ) = γ
by Lemma 4.10. So, f � Iβ(γ) is an isomorphism from γ to IW (w′). Therefore, w′ ∈ B and
γ ∈ A. This completes the proof that A is transitive set of ordinals.

We would like use Lemma 4.19 to conclude that A is an ordinal. To do so, we need to
know that A is nonempty. Since W is nonempty, W has a ≤W -least element w. For this
element w, we have IW (w) = ∅ and hence IW (w) ∼= 0. Therefore, w ∈ B and 0 ∈ A. Having
shown that A is nonempty, we conclude from Lemma 4.19 that A is an ordinal. Let α = A.

Second, we claim that f : B → α is an isomorphism. By the definition of α, this map
is onto. Suppose for a contradiction that it is not one-to-one. Then there are w′ 6= w in B
such that f(w′) = f(w). But, then IW (w′) ∼= IW (w) with w 6= w′ which contradicts Corollary
3.26. Therefore, f is a bijection. Finally, to see that f is order preserving, fix w′ <W w in
B and fix β such that f(w) = β. Then, β ∼= IW (w) and since w′ ∈ IW (w), there is a γ ∈ β
such that γ ∼= IW (w′) using the appropriate restriction map. By the uniqueness of γ (which
we established at the beginning of this proof), f(w′) = γ ∈ β as required.

Third, we claim that B is an initial segment of W . Fix b ∈ B and w ∈ W such that
w <W b. We need to show that w ∈ B. Since b ∈ B, we can fix an ordinal β and an
isomorphism g : β → IW (b). Since w ∈ IW (b), there is a γ ∈ β such that g(γ) = w. The
restriction g � γ gives an isomorphism γ ∼= IW (w) witnessing that w ∈ B.

Finally, we claim that B = W . For a contradiction, suppose that W \B 6= ∅ and hence B is
a proper initial segment of W . Fix w ∈ W such that B = IW (w). Define g : B ∪{w} → S(α)
by g(b) = f(b) for all b ∈ B and g(w) = α. Because f : B → α is a bijection, g is also a
bijection. (It maps the single element w not in the domain of f to the single element α not
in the range of f .) Note that g is order preserving because w is the <W -greatest element of
B ∪ {w} and α is the ∈-greatest element of S(α). Therefore, g is an isomorphism witnessing
w ∈ B. This contradiction the fact that w ∈ W \B.

Definition 4.23. For a well order W , we refer to the unique ordinal isomorphic to W as the
order type of W and denote it by Otp(W,≤W ) or just Otp(W ). Thus, W ∼= Otp(W ).

We end this section with a description of the basic arithmetic operations on ON. Consider
the successor operation. Given an ordinal α, we defined S(α) = α ∪ {α}. Therefore, we can
think of S(x) as a function S : ON → ON. Notice that α < S(α) and that S(α) is actually
the successor of α in the ordering on ON. That is, there cannot be an ordinal β such that
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α < β < S(α). To see why, suppose there is such a β. Since α < β, we have α ( β and hence
β must contain something not in α. However, β < S(α) = α∪{α} implies that the only thing
β could contain that is not in α is α itself. That is, we must have α ∈ β. But, then

α ∪ {α} ⊆ β ⊆ S(α) = α ∪ {α}

and hence β = S(α) which contradictions β < S(α).
The successor function gives us a useful way to partition ON into those ordinals in the

range of S(x) and those ordinals not in the range of S(x).

Definition 4.24. An ordinal α is called a successor ordinal if there is an ordinal β < α such
that S(β) = α. An ordinal α is a limit ordinal if it is not a successor ordinal.

The ordinal 0 counts as a limit ordinal since it is the least ordinal and hence not the
successor of anything. The first infinite limit ordinal is ω.

Consider addition on ON. We will explain how to define addition in two different ways.
For the first method, fix α, β ∈ ON. Because α and β are well orders, we can add them as
described in the previous section. Let W = α×{0} ∪ β ×{1} and define a (strict) well order
on W by

〈u, v〉 ≺ 〈x, y〉 ⇔ v <N y or
(
v = y and u ∈ x

)
As described in the previous section, (W,≺) puts down a copy of α and then puts down a
copy of β so that all the elements of β come after the elements of α. We define the ordinal
sum α + β by

α + β = Otp(W ).

We can also define α + β by transfinite recursion. Recall that to define a function f by
recursion on N, we specify the value of f(0) and we specify the value of f(n + 1) assuming
we have already given values for f(0), . . . , f(n).

Example 4.25. To define f(n) = 2n on N by recursion we set f(0) = 1 and f(n+1) = 2·f(n).
Notice that for this recursive definition, we already need to have define the multiplication
function (or at least the doubling function). Also, if we want to check that our recursive
definition is correct, we would proceed by induction on N. For the base case, f(0) = 1 and
20 = 1, so f(0) = 20. For the induction case, assume that f(n) = 2n. Then, f(n+1) = 2 ·f(n)
by definition. But, 2f(n) = 2 · 2n by the induction hypothesis and 2 · 2n = 2n+1. Therefore,
our recursive definition defines the correct function.

We can use recursion on N to define functions of two variables f(n,m) by fixing the
first variable and giving a recursion definition on the second variable. Formally, for each n,
we recursively define a function gn(m). This process gives us a family of functions gn(m)
parameterized by n ∈ N. We collect them together (by taking a union) into a single function
f(n,m).

Example 4.26. To define f(n,m) = n + m on N by recursion, we fix the value of n and
proceed by recursion on m. We set f(n, 0) = n and f(n,m+ 1) = f(n,m) + 1. Again, notice
that for this recursive definition, we need to have defined the successor function already.
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We can define a function f : ON → ON recursively in much the same way. To do this
formally, we would need to give an appropriate theorem and proof, which we will not do in
this course. (You can find this information in an introductory set theory book and if there is
sufficient interest, I am happy to go through it with you.) However, it is worth noting that
the function f would really be a proper class object as opposed to a set of pairs.

The main difference between defining f : N→ N by recursion and defining f : ON→ ON
by recursion is that in the ON case, we have to deal with infinite limit ordinals. That is,
there are typically three cases in the definition of f(β): specifying f(0), specifying f(S(β))
assuming you know f(β), and specifying f(β) when β is an infinite limit ordinal assuming
you know f(γ) for all γ < β. (In the successor case, you can assume you know f(γ) for all
γ < S(β) but often you only use the value in f(β) in the recursive definition.)

We illustrate this process by defining α + β by recursion on β. As in the example of
definition addition on N, we fix α and set

α + 0 = α

α + S(β) = S(α + β) for the successor case

α + β = sup({α + γ | γ < β}) for a limit β

Given that we now have two definitions of ordinal addition, we could check that they are the
same by transfinite induction. Although we won’t do it in these notes, it is a good exercise
to go through.

Using ordinal addition, we can define ordinal multiplication α · β by transfinite recursion
on β.

α · 0 = 0

α · S(β) = α · β + α

α · β = sup({α · γ | γ < β}) for limit β

Then, using ordinal multiplication, we can define ordinal exponentiation αβ by transfinite
recursion on β.

α0 = 1

αS(β) = αβ · α
αβ = sup({αγ | γ < β}) for limit β

5 Cardinal numbers

In the second section of these notes, we showed how to compare the relative sizes of two sets.
That is, given two sets A and B, we defined |A| = |B| and |A| ≤ |B|. However, this notion
of relative size only allows us to compare the sizes of two sets. For finite sets, we know how
to do better than this. If a set A is finite, then we can specify uniquely what its size is. That
is, we can say that A has exactly n elements for some n ∈ N. Notice that in this context we
are thinking of n in a cardinal manner (i.e. as a size indicator) as opposed to in an ordinal
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manner (i.e. as a queue length indicator). When n is used as a size indicator, we call it a finite
cardinal number and when n is used as a queue length indicator, we call it a finite ordinal
number.

In this section, we want to extend this idea of uniquely specifying the size of a set to
handle the case when the set is infinite. That is, we want to extend the natural numbers as
size indicators (or cardinals) so that we can uniquely assign a cardinal number to each set
indicating its size. We will use the ordinal numbers to do this.

To give the idea, consider a set A = {a, b, c}. Notice that there are several ways to define
a linear order on the elements of A. For example, we might set a < b < c. Or, we might set
b < a < c, and so on. You might notice that each of these linear orders on A has the same well
order type. As long as A is finite, that will be true. However, it fails badly when A becomes
infinite. For example, consider N. We might order N in the usual way 0 < 1 < 2 < · · · .
However, we might order N in any of the following ways

1 < 2 < 3 < · · · < 0

2 < 3 < 4 < · · · < 0 < 1

0 < 2 < 4 < · · · < 1 < 3 < 5 < · · ·

We can put orders on N which are not well orders at all. For example, 0 > 1 > 2 > · · · .
In fact, let (L,≤L) be any countable linear order and fix a bijection f : N → L (which we
can do because L is countable). Define a linear order ≤′ on N by n ≤′ m if and only if
f(n) ≤L f(m). By the definition of ≤′, the bijection f is an isomorphism between (N,≤′)
and (L,≤L). Therefore, we can order N in any countable linear order type whatsoever!

The idea for uniquely specifying the size of A is to consider all the ways in which A can
be well ordered. If A is infinite, there will be many different ways to define a well ordering of
A. However, each of these well orders corresponds to a unique ordinal. The set of ordinals
obtained from the well ordering of A must have a least element. We use this least element to
uniquely specify the size of A. To do this formally, we first need to know that for any set A,
we can define a well ordering on A.

Lemma 5.1 (Well Ordering Principle). Let A be a set. There is a binary relation ≤A on A
such that (A,≤A) is well order.

The Well Ordering Principle is a version of the Axiom of Choice. More specfically, over
ZF it is equivalent to the Axioms of Choice. For now, we will put off giving a proof of this
equivalence and we will possibly return to it at the end of the course.

Using the Well Ordering Principle, we can assign to each set an ordinal which represents
the size (or cardinality) of the set. We assign this ordinal as follows. Fix a set A. By the
Well Ordering Principle, the follow set is nonempty.

O(A) = {α ∈ ON | α ∼= (A,≤A) for some well ordering ≤A of A}

Since O(A) is a nonempty set of ordinals, it contains a least element. We define the cardinality
of A by

Card(A) = the least element of O(A).
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Thus, Card(A) is an ordinal α which represents the shortest possible way to put the elements
of A is a well ordered list. Notice that there is a bijection between A and Card(A). Namely, fix
a well ordering ≤A such that (A,≤A) ∼= Card(A) and an isomorphism f : (A,≤A)→ Card(A).
Then f is a bijection between A and Card(A), so |A| = |Card(A)|.

Example 5.2. Fix n ∈ N with n > 0. Let A = {a0, a1, . . . , an−1} be a set with n elements.
Every well ordering of A is isomorphic to the ordinal n and therefore O(A) = {n}. Since the
least (in fact only) element of O(A) is n, we have Card(A) = n.

Example 5.3. Consider Card(∅). Because ∅ has no elements, the empty relation is a well
ordering of it. This well ordering is isomorphic to the ordinal 0. Therefore, O(∅) = {0} and
Card(∅) = 0.

Example 5.4. Consider Card(N). We have already shown that for every countable linear
order (L,≤L), there is a linear order ≤′ on N such that (N,≤′) ∼= (L,≤L). In particular, this
fact is true for every countable well order and hence for every countable ordinal. Therefore,
for every countable α, there is a well order ≤′ of N such that (N,≤′) ∼= α. Since every well
ordering of N is isomorphic to some countable ordinal, we have show that

O(N) = {α ∈ ON | α is countable}.

The least ordinal in this set is ω and hence Card(N) = ω.

Because Card(A) is an ordinal, we have a new way to compare the size of two sets. Given
sets A and B, we can compare Card(A) and Card(B). The next lemma shows that this
method of comparing the size of two sets corresponds exactly to the method of looking for
bijections between sets.

Lemma 5.5. For any sets A and B, |A| = |B| if and only if Card(A) = Card(B). Further-
more, |A| ≤ |B| if and only if Card(A) ≤ Card(B).

Proof. First, suppose that Card(A) = Card(B) = α. As noted above, there are bijections
between A and α and between B and α. Therefore, there is also a bijection between A and
B.

Similarly, suppose Card(A) = α, Card(B) = β and α ≤ β. Fix bijections f : A → α and
g : β → B. Since α ≤ β, there is an injective map i : α → β. Composing these maps as
g ◦ i ◦ f : A→ B gives an injection from A into B.

Second, suppose that |A| = |B| and fix a bijection h : A → B. Let Card(A) = α and
Card(B) = β. We need to show that α = β. Fix a well order ≤B and an isomorphism
f : (B,≤B) → β. Define a well order ≤A on A by x ≤A y if and only if h(x) ≤B h(y). You
should check that ≤A is a well order and that h gives an isomorphism between (A,≤A) and
(B,≤B). Since (A,≤A) ∼= (B,≤B) ∼= β, we have β ∈ O(A). Therefore, since α is the least
element of O(A), we have α ≤ β.

Switching the roles of A and B, you can use essentially the same argument to show that
β ≤ α and hence α = β as required.

32



Because of this connection between Card(A) and |A|, people typically equate |A| and
Card(A). That is, given our definitions, the notation |A| by itself is not defined, but we define
it by |A| = Card(A). Given this definition, the statement |A| = |B| becomes ambiguous. It
can mean that there is a bijection between A and B or that Card(A) = Card(B). However,
by Lemma 5.5, these concepts are equivalent, so the ambiguity causes no problems. We will
use |A| instead of Card(A) because it is shorter.

Definition 5.6. An ordinal number α is called a cardinal number if there is a set A such
that |A| = α.

By Examples 5.2 and 5.3, we know that each n ∈ ω is cardinal, and by Example 5.4, we
know that ω is a cardinal. We next give a useful characterization for when an ordinal number
is a cardinal.

Lemma 5.7. For an ordinal α, the following are equivalent.

(1) α is a cardinal

(2) |α| = α

(3) β < α implies β < |α|

(4) β < α implies |β| < |α|

(5) β < α implies |β| 6= |α|

Proof. To see (1) implies (2), fix a set A such that |A| = α. Because there is a bijection
between A and α, we have |A| = |α|. Therefore, |α| = |A| = α as required.

To see (2) implies (3), fix β < α. By (2), α = |α|, so β < α = |α| giving β < |α| as
required.

To see that (3) implies (4), notice that the identity function id : β → β is an isomorphism,
so we have |β| ≤ β. Therefore, if β < α, then β < |α| by (3). Hence |β| ≤ β < |α| which
means |β| < |α| as required.

To see that (4) implies (5), fix β < α. By (4), |β| < |α| and hence |β| 6= |α| are required.
To see that (5) implies (1), assume that (5) holds and consider what |α| could be. As

noted in the proof of (3) implies (4), we know that |α| ≤ α. However, if |α| < α, then |α| = β
for some β < α. In particular, there is a bijection between α and β which means |α| = |β|
contradicting (5).

Cardinal numbers are often denoted by the Greek letters κ, λ and µ, while ordinals are
often denoted by α, β and γ. However, since cardinal numbers are ordinals, it is important
to keep in mind that even when κ is explicitly defined as a cardinal, it can be treated as an
ordinal. Conversely, since some ordinals are cardinals, an ordinal α might be a cardinal as
well (or might switch to being viewed as a cardinal in the middle of a proof). The next lemma
is an example of this phenomenon.

Lemma 5.8. If κ is an infinite cardinal, then κ is a limit ordinal.

33



Proof. If κ is an infinite cardinal, then (as an ordinal), κ ≥ ω. Suppose for a contradiction
that κ = S(α). It suffices to define a bijection f : κ → α showing |κ| < κ which contradicts
Lemma 5.7.

Since κ = S(α) = α ∪ {α} and ω ≤ κ, an element β ∈ κ satisfies exactly one of the
following conditions: β ∈ ω or ω ≤ β < α or β = α. Define f by

f(β) =


0 if β = α

β + 1 if β ∈ ω
β if ω ≤ β < α

The definition of f is like the solution to Hilbert’s Hotel. We move each element of the initial
segment ω of κ over by one position. This movement opens up a spot for α (the greatest
element of κ) to move to 0. Then, we leave all the remaining elements of κ as they were. You
should check that f is a bijection to complete the proof.

We can use the fact that every cardinal is an ordinal in a second useful way. Fix a
cardinal κ. Let Cκ be the class of cardinals strictly greater than κ. Cκ is nonempty because
|κ| < |P(κ)| by Cantor’s Theorem. In fact, Cκ is a proper class. Because Cκ is a nonempty
class of ordinals, it has a least element and we denote this least element by κ+. That is, κ+

is the least cardinal greater than κ.
To distinguish ω as a cardinal from ω as an ordinal, set theorists often use ℵ0 to denote

ω as a cardinal. That is, ℵ0 is a notation for ω when it is explicitly being used as a cardinal.
However, you should be careful because ω is often used for this cardinal as is ω0.

Using the operation κ 7→ κ+, we can define an initial segment of the class of cardinals.

ℵ0 = ω = the least infinite cardinal

ℵ1 = ℵ+0 ℵ2 = ℵ+1 ℵ3 = ℵ+2 and so on

In fact, we can continue defining this sequence of cardinals transfinitely. We define a function
α 7→ ℵα by transfinite recursion on ON as follows.

ℵ0 = ω

ℵα+1 = ℵ+α
ℵα = sup({ℵγ | γ < α}) for limit α

We need to check that if α is an infinite limit ordinal, then ℵα is actually a cardinal. Suppose
for a contradiction that ℵα is not a cardinal. By Lemma 5.7, |ℵα| = β for some β < ℵα.
Because ℵα is defined as a supremum, β < ℵα implies that β ≤ ℵγ for some γ < α. However,
α is a limit ordinal, so γ + 1 < α. Since ℵγ+1 = ℵ+γ , we know ℵγ < ℵγ+1. Therefore, we have
shown

|ℵα| = β < ℵγ+1 ≤ ℵα
Since ℵγ+1 ≤ ℵα, we have ℵγ+1 ⊆ ℵα and hence |ℵγ+1| ≤ |ℵα|. Since |ℵα| = β, we have
|ℵγ+1| ≤ β. On the other hand, ℵγ+1 is a cardinal, so |ℵγ+1| = ℵγ+1. Since β < ℵγ+1, we have
β < |ℵγ+1|. Therefore, we have show |ℵγ+1| ≤ β and β < |ℵγ+1| for the desired contradiction.
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Putting this information together, we see that the collection of cardinal numbers is well
ordered and indexed by the ordinals. The aleph-notation makes this connection explicit and
give us an ordinal indexed list of all cardinals.

ℵ0 < ℵ1 < · · · < ℵω < ℵω+1 < · · · < ℵω+ω < · · ·

We would like to define arithmetic operations on the cardinal numbers. Before giving the
formal definitions, consider how we define arithmetic operations on the natural numbers when
they are viewed in a cardinal manner. We can think of n+m as representing the total number
of objects when we combine a set of n many objects with a disjoint set of m many objects.
That is, if |A| = n and |B| = m, the n+m = |A ∪B| as long as A and B are disjoint.

We run into one subtlety formalizing this notion. Since the cardinal numbers n and m are
really ordinals, they are sets. However, they are not disjoint sets because n = {0, 1, . . . , n−1}
and m = {0, 1, . . . ,m− 1}. Even worse, either n ⊆ m or m ⊆ n! Therefore, we would like to
have a canonical way to fix disjoint sets of size n and m. We encountered this problem before
in defining ordinal addition α+ β when we wanted to place a queue of length β after a queue
of length α. We solved the problem in the context of ordinal addition by considering α×{0}
and β × {1}. We can solve our current problem in exactly the same way.

Definition 5.9. Let κ and λ be cardinals. We define cardinal addition by

κ⊕ λ = |(κ× {0}) ∪ (λ× {1})|.

That is, κ⊕ λ is the cardinality of the disjoint union of a set of size κ and a set of size λ.

For the finite cardinals, n ⊕ m is the same as the usual addition n +N m on N and is
also the same as the ordinal addition n + m. However, when we deal with infinite cardinals,
cardinal addition is not the same as ordinal addition.

Example 5.10. Since the union of two countable is countable, we have ω⊕ω = ω. However,
in terms of ordinal addition, ω + ω 6= ω.

Unlike ordinal addition, cardinal addition is commutative. That is, κ⊕λ = λ⊕κ because
there is a bijection between (κ×{0})∪ (λ×{1}) and (λ×{0})∪ (κ×{1}) given by toggling
the second component between 0 and 1.

To motivate cardinal multiplication, we consider a finite example. Think about 2 × 3 as
taking 2 disjoint sets with 3 elements each and counting the total number of elements. We
can think of putting these objects in a 2 by 3 array and counting the total number of objects
in the array. We follow the same outline for general cardinal multiplication.

Definition 5.11. We define cardinal multiplication by

κ⊗ λ = |κ× λ|.

That is, κ⊗ λ is the cardinality of the union of κ many disjoint sets of size λ.
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Many of the same points about cardinal addition apply to cardinal multiplication. Also,
since there is a bijection between κ × λ and λ × κ given by f(〈x, y〉) = 〈y, x〉, we have
κ⊗λ = λ⊗κ. For finite ordinals, n⊗m is the same as n ·Nm in N which is the same as n ·m
as ordinals. But for infinite cardinals, cardinal multiplication and ordinal multiplication will
not be the same.

Example 5.12. Since ω×ω is countable, we have ω⊗ω = ω. However, as ordinals, ω×ω 6= ω.

Fortunately, there is an easy way to calculate κ⊕ λ and κ⊗ λ when at least one of κ and
λ is infinite. To give this formula, we first need to prove that if κ is infinite, then the union
of κ many sets of size κ has size κ, i.e. general the fact that a countable union of countable
sets is countable to larger infinite cardinal sizes.

Theorem 5.13. If κ is an infinite cardinal, then κ⊗ κ = κ.

Proof. Fix an infinite cardinal. We show by induction that on α that

ω ≤ α ≤ κ→ |α| ⊗ |α| = |α| (1)

Notice that when α = ω, this statement says that a countable union of countable sets is
countable which we know already. To proceed by induction, we fix an ordinal λ such that
ω < λ ≤ κ and assume Equation (1) holds for all infinite α < λ. We split into two case.

Our first case is when λ is not a cardinal. By Lemma 5.7, there is an α < λ such that
|α| = |λ|. We obtain Equation (1) for λ from

|λ| ⊗ |λ| = |α| ⊗ |α| = |α| = |λ|

The first and third equalities follows from |λ| = |α| and the second equality follows from
Equation (1) holding for α. This completes the first case.

The nontrivial case is when λ is a cardinal. By Lemma 5.7, |λ| = λ and so

|λ| ⊗ |λ| = λ⊗ λ = |λ× λ|.

Therefore, to show that |λ| ⊗ |λ| = |λ|, it suffices to show that λ = |λ × λ|. The inequality
λ ≤ |λ× λ| follows immediately because the function sending α 7→ 〈α, 0〉 is a one-to-one map
from λ into λ × λ. That is, this map shows that |λ| ≤ |λ × λ| and since |λ| = λ, we have
λ ≤ |λ× λ|.

What remains to show is that |λ × λ| ≤ λ. By definition, |λ × λ| is the least ordinal γ
such that there is a well ordering of λ × λ which is isomorphic to γ, i.e. has order type γ.
Therefore, to complete the proof, we need to show that there is a well ordering � of λ × λ
such that Otp(λ× λ,�) ≤ λ. The rest of the proof consists of giving this well ordering �.

The induction hypothesis is that |α| ⊗ |α| = |α| for all α < λ. Therefore, we know

|α× α| = |α| ⊗ |α| = |α| ≤ α < λ (2)

for all α < λ. You should think about why |α× α| = |α| ⊗ |α|. This fact is true about every
ordinal α. The induction hypothesis is just the fact that |α| ⊗ |α| = |α|. The important fact
from Equation (2) we will use is that if α < λ, then |α× α| < λ.
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We define a well order � on λ× λ as follows.

〈α, β〉 � 〈γ, δ〉 ⇔ max{α, β} < max{γ, δ} or
(

max{α, β} = max{γ, δ} and 〈α, β} ≤lex 〈γ, δ〉
)

Recall that 〈α, β} ≤lex 〈γ, δ〉 if and only if either α < γ or both α = γ and β ≤ δ. You should
check that � is a well order of λ× λ.

Consider an element 〈γ, δ〉 ∈ λ× λ and the initial segment I�(〈γ, δ〉) determined by 〈γ, δ〉
in the well order (λ×λ,�). We want to show that the order type of this initial segment is less
than λ. Notice that if Otp(I�(〈γ, δ〉)) < λ for every 〈γ, δ〉 ∈ λ × λ, then Otp(λ × λ,�) ≤ λ
and we are done.

Fix an element 〈γ, δ〉 ∈ λ × λ and let ε = max{γ, δ} + 1. We claim that I�(〈γ, δ〉) ⊆
ε × ε. To see why, consider an element 〈α, β〉 ∈ I�(〈γ, δ〉). Since 〈α, β〉 ≺ 〈γ, δ〉, we know
max{α, β} ≤ max{γ, δ} < ε. Hence α, β < ε and 〈α, β〉 ∈ ε× ε proving this claim.

We now know that I�(〈γ, δ〉) ⊆ ε× ε. Therefore,

|I�(〈γ, δ〉)| ≤ |ε× ε|. (3)

However, because λ is an infinite cardinal, it is a limit ordinal. Therefore, γ, δ < λ implies
γ + 1, δ + 1 < λ and so ε < λ. This means that we can apply the induction hypothesis in
Equation (2) to ε and conclude that |ε× ε| < λ. Combining this fact with Equation (3), we
have

|I�(〈γ, δ〉)| < λ. (4)

Finally, by Lemma 5.7, |I�(〈γ, δ〉)| < λ implies that Otp(I�(〈γ, δ〉)) < λ.

Theorem 5.14. Let κ and λ be cardinals such that κ, λ ≥ 2 and at least one of κ and λ is
infinite. Then κ⊕ λ = κ⊗ λ = max{κ, λ}.

Proof. Since cardinal addition and multiplication are commutative, we can assume without
loss of generality that λ ≤ κ. We show κ⊕ λ ≤ κ⊗ λ with the following calculation.

κ⊕ λ = |(κ× {0}) ∪ (λ× {1})|
≤ |(κ× {0}) ∪ (κ× {1})|
= |κ× 2|
≤ |κ× λ|
= κ⊗ λ

The first line is the definition of κ ⊕ λ. The second line follows because λ ≤ κ and so
λ×{1} ⊆ κ×{1}. The third follows because 2 = {0, 1} and hence κ×2 = (κ×{0})∪(κ×{1}).
The fourth line follows because 2 ≤ λ and the last line follows by the definition of κ⊗ λ.

Next, we show that κ⊗ λ ≤ κ with the following calculation.

κ⊗ λ = |κ× λ| ≤ |κ× κ| = κ

The first equality is the definition of κ⊗ λ. The inequality follows because λ ≤ κ and hence
κ×λ ⊆ κ×κ. The last equality follows from Theorem 5.13. Notice that κ is infinite because
λ ≤ κ and at least one of λ and κ is infinite.
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We can now combine these facts to get the desired conclusion.

κ ≤ κ⊕ λ ≤ κ⊗ λ ≤ κ

We have completely determined the values for cardinal addition and multiplication. (You
should think about this point and write out all the cases. There are a couple of trivial cases
which we have not said anything about.)

The last arithmetic operation on the cardinal numbers is exponentiation. Viewing κ and λ
as sets, κλ denotes the set of all functions from κ to λ. We define the cardinal exponential to
be the size of this set of functions. Unfortunately, we use the same notation for the cardinal
exponential and the set of functions from λ to κ and rely on the context to tell us which is
intended.

Definition 5.15. Let κ and λ be cardinals. The cardinal exponentiation κλ is defined by

κλ = |κλ|

Example 5.16. If n,m ∈ ω, then nm (in cardinal exponentiation) denotes the number of
functions from a set of size n to a set of size m. This is exactly the same as nm in the natural
numbers.

Example 5.17. If κ is an infinite cardinal, then κ2 = κ. To see why, it helps to work through
the overloaded notation. The notation κ2 has (at least) three meanings at this point. First,
we can view κ2 as the set of ordered pairs of elements from κ.

κ2 = {〈α, β〉 | α, β ∈ κ}

From this point of view, κ2 = κ× κ (the Cartesian product) and |κ2| = |κ× κ| = κ⊗ κ = κ
as long as κ is infinite.

Second, we can view κ2 as the set of functions from 2 into κ. There is a natural bijection
between κ2 as a set of functions and κ2 as a set of ordered pairs. To an ordered pair 〈α, β〉 ∈ κ2,
we associate the function f〈α,β〉 ∈ κ2 given by f〈α,β〉(0) = α and f〈α,β〉(1) = β. The map sending
〈α, β〉 to f〈α,β〉 is a bijection between these two forms of κ2.

Third, we can view κ2 as the result of cardinal exponentiation. That is, κ2 (the cardinal
operation) is equal to |κ2| (the cardinality of the set of functions from 2 into κ) which we
know is the same as |κ2| (the cardinality of the set of ordered pairs) which we know is equal
to κ when κ is infinite. Therefore, for infinite κ, we have κ2 = κ.

One can make similar comments about the interpretations of κ3, κ4 and so on. As long as
κ is infinite, we have κn = κ for each n ∈ ω with n ≥ 1. For the exponent 0, we have κ0 = 1
because κ0 gives the cardinality of the set of maps from 0 to κ. But, there is only one map
with domain 0 (i.e. with an empty domain) and that is the empty map.

At this point, it may seems that we will be able to calculate all of the cardinal exponential
values in a similar manner to the way we calculated all the cardinal addition and multiplication
facts. Unfortunately, we will show that this impression is incorrect. However, we can make
a bit more progress on calculating, or at at least collapsing, many of the remaining cases of
cardinal exponentiation.
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Lemma 5.18. For any sets A and B, |AB| = |A||B|.

Proof. To show this equality, we need to define a bijection between the set of all functions
mapping B → A and the set of all functions mapping |B| → |A|. Fix bijections g : B → |B|
and h : A → |A|. Because these functions are bijections, there inverses g−1 : |B| → B and
h−1 : |A| → A are bijections as well.

We define a function ∆ : AB → |A||B| as follows. Notice that an input to ∆ is a function
of the form f : B → A and an output ∆(f) needs to be a function ∆(f) : |B| → |A|. For a
given function f : B → A, define ∆(f) by

∆(f) : |B| → |A| with ∆(f) = h ◦ f ◦ g−1.

Since g−1 maps |B| → B, then f maps B → A and then h maps A → |A|, this composition
gives a function with the correct domain and range. Thus, ∆ : AB → |A||B|.

Rather than prove directly that ∆ is a bijection, we explicitly define the inverse ∆−1 of
∆. That is, ∆−1 : |A||B| → BA needs to satisfy ∆−1 ◦∆ : AB → AB is the identity function

on AB. An input to ∆−1 has the form f̂ : |B| → |A| and the corresponding output ∆−1(f̂)

has to be a function B → A. Given a function f̂ : |B| → |A|, we define ∆−1(f̂) by

∆−1(f̂) : B → A with ∆−1(f̂) = h−1 ◦ f̂ ◦ g.

Since g maps B → |B|, then f̂ maps |B| → |A| and then h−1 maps |A| → A, the composition
gives function with the correct domain and range. Thus, ∆−1 : |A||B| → AB.

It remains to check that ∆−1 ◦∆ : AB → AB is the identity function. Fix f : A→ B and
we calculate as follows.

(∆−1 ◦∆)(f) = ∆−1(∆(f)) = ∆−1(h ◦ f ◦ g−1) = h−1 ◦ h ◦ f ◦ g−1 ◦ g

But, h−1 ◦ h : A → A is the identity function IdA on A and g−1 ◦ g : B → B is the identity
function IdB on B. Therefore, this composition reduces to IdA ◦ f ◦ IdB which is just f .

Remember that we have reduced calculating cardinal exponentiation to the case when
2 ≤ κ, λ and one of these cardinals is infinite. The next lemma collapses all of these cases
when the exponent at least as large as the base.

Lemma 5.19. Let κ and λ be cardinals. If λ is infinite and 2 ≤ κ ≤ λ, then κλ = 2λ.

Proof. Because 2 ≤ κ ≤ λ, we have 2 ⊆ κ ⊆ λ and therefore 2λ ⊆ κλ ⊆ λλ as sets of functions.
Hence we have |2λ| ≤ |κλ| ≤ |λλ| or in other words 2λ ≤ κλ ≤ λλ as cardinal exponentiation.

An element of λλ (as a set of functions) is a function f : λ → λ. We can equate this
function f with its graph, namely the set Xf = {〈α, f(α)〉 | α < λ}. Because f maps into λ,
i.e. f(α) ∈ λ, we have that Xf ⊆ λ× λ. Therefore, each function f ∈ λλ can be viewed as a
subset of λ× λ. In other words, λλ ⊆ P(λ× λ) and hence |λλ| ≤ |P(λ× λ)|.

Putting these pieces together, we have

2λ ≤ κλ ≤ λλ ≤ |P(λ× λ)| = |2λ×λ| = |2||λ×λ| = 2λ⊗λ = 2λ

Therefore, 2λ ≤ κλ ≤ 2λ and hence 2λ = κλ.
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The next technical lemma is proved by function manipulations similar to those used in
Lemma 5.18 and I will leave you to think about the proof.

Lemma 5.20. Let κ, λ and µ be cardinals. Then

κλ⊕µ = κλ ⊗ κµ and
(
κλ
)µ

= κλ⊗µ

Before continuing to discuss our calculation of cardinal exponentiation, we give one (per-
haps surprising) application of the results so far.

Theorem 5.21. Let C(R) = {f : R → R | f is continuous}. C(R) has size continuum, that
is, |C(R)| = |R| = 2ℵ0.

Proof. Define ∆ : C(R) → RQ by ∆(f) = f � Q. In other words, ∆ takes a continuous
function on the reals as an input and then outputs the same function but with the domain
restricted to the rationals. Note that if f and g are continuous functions on the reals which
take the same values on the rationals, i.e. f � Q = g � Q, then f = g. Thus, ∆ is one-to-one
which means that |C(R)| ≤ |RQ|. We can now bound the size of |C(R)| by

|C(R)| ≤ |RQ| = |R||Q| =
(
2ℵ0
)ℵ0

= 2ℵ0⊗ℵ0 = 2ℵ0 .

The first inequality was explained above. The first equality follows from Lemma 5.18, the
second equality follows from |R| = 2ℵ0 , the third equality follows from Lemma 5.20 and the
last equality follows from Theorem 5.13.

On the other hand, for each r ∈ R, the constant function fr(x) = r is continuous. There-
fore, |R| ≤ |C(R)| and hence 2ℵ0 ≤ |C(R)|. Having shown both inequalities, we can conclude
that 2ℵ0 = |C(R)|.

To finish our discussion of cardinal exponentiation, we need one more set theoretic tool.

Definition 5.22. Let α, β ∈ ON. A function f : β → α is cofinal if range(f) is unbounded
in α. That is, for every γ < α, there is a δ < β such that γ ≤ f(δ).

Example 5.23. The identity function Idα : α → α is always cofinal. For some nontrivial
examples, the functions f : ω → ω + ω given by f(n) = ω + n and g : ω → ω · ω given by
g(n) = ω · n are each cofinal.

We will be most interested in cofinal maps of the form f : α → κ where κ is a cardinal.
Our next examples illustrate two different types of behavior.

Example 5.24. The function f : ω → ℵω defined by f(n) = ℵn is cofinal. To see this, fix
γ < ℵω. We need to find δ ∈ ω such that γ ≤ f(δ). Recall that ℵω = sup({ℵn | n ∈ ω})
and hence ℵω is the least ordinal greater than each ℵn. Since γ < ℵω, there must be some
n ∈ ω such that γ ≤ ℵn. We fix such an n and set δ = n. Then f(n) = ℵn and we have
γ ≤ ℵn = f(n).
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Example 5.25. There is no cofinal map f : n→ ω for any n < ω. To see why, fix n < ω and
f : n → ω. If n = 0, then f is the empty function which can never be cofinal. So, assume
n > 0. Since n is finite, we have range(f) ⊆ ω is finite and therefore has a greatest element.
Since ω does not have a greatest element, range(f) is not unbounded in ω and hence f is not
cofinal.

Example 5.26. There is no cofinal map f : α→ ℵ1 for any countable ordinal α. To see why,
suppose for a contradiction that there is a countable α and a cofinal map f : α → ℵ1. We
claim that

ℵ1 =
⋃
β<α

f(β)

We prove this claim by showing each side of this equation is a subset of the other side. For
each β < α, since f(β) ∈ ℵ1, we have f(β) ⊆ ℵ1. Therefore,

⋃
β<α f(β) ⊆ ℵ1. On the other

hand, if γ < ℵ1, then γ + 1 ∈ ℵ1 because ℵ1 is a limit ordinal. By the cofinality of f , there is
a β < α such that γ + 1 ≤ f(β) and hence γ < f(β). Therefore, for every γ < ℵ1, there is a
β < α such that γ ∈ f(β). It follows that ℵ1 ⊆

⋃
β<α f(β). This proves the claim.

For each β < α, f(β) ∈ ℵ1 and hence f(β) is countable because ℵ1 is the least uncountable
ordinal. Since α is countable, the union

⋃
β<α f(β) is a countable union of countable sets.

Therefore, the displayed equation proved in the claim says that ℵ1 is a countable union of
countable sets. But, we know a countable union of countable sets is countable, whereas ℵ1 is
uncountable. This gives the desired contradiction.

Definition 5.27. Let α ∈ ON. The cofinality of α, denoted cf(α), is the least ordinal β such
that there is a cofinal map f : β → α.

We will typically be concerned with calculating cofinalities of cardinals. Because the
identity function Idκ : κ→ κ is cofinal, we have cf(κ) ≤ κ. By Example 5.25, cf(ℵ0) = ℵ0 and
by Example 5.26, cf(ℵ1) = ℵ1. However, by Example 5.24, cf(ℵω) = ω. (The example shows
cf(ℵω) ≤ ω. But, cf(ℵω) cannot be finite because ℵω does not have a greatest element.)

Definition 5.28. An infinit cardinal κ is called regular if cf(κ) = κ. Otherwise, κ is called
singular.

Example 5.29. ℵ0 and ℵ1 are regular cardinals while ℵω is a singular cardinal.

Theorem 5.30 (König’s Theorem). For every infinite cardinal κ, we have κcf(κ) > κ.

Proof. Since cf(κ) ≥ ω because κ is a limit ordinal, we have κcf(κ) ≥ κ. To show this inequality
is strict, we need to show that there is no bijection from κ to κcf(κ). To do this, we show that
every one-to-one map from κ into κcf(κ) is not onto.

Fix an arbitrary one-to-one function G : κ→ κcf(κ). The function G takes an ordinal β < κ
as an input and the output G(β) is a function from cf(κ) to κ. That is, G(β) : cf(κ)→ κ, and
so we can apply G(β) to any ordinal α < cf(κ) to get G(β)(α) ∈ κ. At the cost of possible
overemphasis, note that G(β)(α) is formed by plugging β < κ into G to obtain the function
G(β) : cf(κ)→ κ and then plugging α < cf(κ) into this function G(β) to obtain G(β)(α) ∈ κ.
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To show that G is not onto, we need to give an element of κcf(κ) which is not in the range
of G. That is, we need to specify a function h : cf(κ) → κ such that h is not in the range
of G. Unraveling one step further, to show that h is not in the range of G means that for
every β < κ, we have h 6= G(β) as functions. In other words, there is an α < cf(κ) such
that h(α) 6= G(β)(α). Summarizing, having fixed G : κ→ κcf(κ), we need to define a function
h : cf(κ)→ κ such that for every β < κ, there is an α < cf(κ) such that h(α) 6= G(β)(α).

To define h, we fix a cofinal map f : cf(κ)→ κ. Define h : cf(κ)→ κ by

h(α) = min(κ \ {G(β)(α) | β < f(α)}).

We need to check that this definition makes sense. Because κ is a cardinal, and hence an
ordinal, it is well ordered. So, there is a minimal element of κ \ {G(β)(α) | β < f(α)}
as long as this set is not empty. To see that this set is nonempty, it suffices to show that
|{G(β)(α) | β < f(α)}| < κ.

To see this inequality, consider the map g : f(α) → {G(β)(α) | β < f(α)} given by
g(β) = G(β)(α). By definition, g is onto and hence |{G(β)(α) | β < f(α)}| ≤ |f(α)|. But,
f(α) ∈ κ and κ is a cardinal, so |f(α)| < κ. Therefore, |{G(β)(α) | β < f(α)}| < κ as
required to show that the function h is defined.

Finally, we need to show that h is not in the range of G. Suppose for a contradiction that
h is in the range of G. Then h = G(β) for some β < κ. This means that h(α) = G(β)(α)
for all α < cf(κ). To arrive at a contradiction, notice that since f : cf(κ) → κ is cofinal,
there is some α < cf(κ) such that β < f(α). Consider the value of G(β)(α). By definition,
h(α) 6= G(γ)(α) for all γ < f(α). But, β < f(α) and hence h(α) 6= G(β)(α). This contradicts
the fact noted above that h(α) = G(β)(α) for all α < cf(κ).

Corollary 5.31. The cofinality of 2ℵ0 satisfies cf(2ℵ0) > ℵ0.

Proof. Assume for a contradiction that cf(ℵ0) = ℵ0. Consider the following calculation.(
2ℵ0
)cf(2ℵ0 )

=
(
2ℵ0
)ℵ0

= 2ℵ0⊗ℵ0 = 2ℵ0

The first equality follows from our assumption, the second equality follows from Lemma 5.20
and the third equality follows from Theorem 5.13. By this calculation,(

2ℵ0
)cf(2ℵ0 )

= 2ℵ0

which directly contradicts König’s Theorem.

Finally, let us return to what we can say about the values of cardinal exponentiation κλ.
The simplest case we have not determined is 2ℵ0 . By Cantor’s Theorem, we know 2ℵ0 > ℵ0
and König’s Theorem, we know cf(2ℵ0) > ℵ0. Unfortunately, this is essentially all that we
can say about the value of 2ℵ0 . For any cardinal κ such that κ > ℵ0 and cf(κ) > ℵ0, one can
use Cohen’s method of forcing to construct a model of ZFC in which 2ℵ0 = κ. Giving such a
forcing construction is beyond the scope of this course, but it is worth mentioning that you
now understand all the constraints on the value of 2ℵ0 within our best mathematical model
of set theory.
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More generally, using Cantor’s Theorem, we can define the following hierarchy of infinite
cardinals indexed by the ordinals.

i0 = ω

iα+1 = 2iα

iα = sup({iβ | β < α}) for limit α

We know that ℵ0 = i0, but after that we are left in limbo. The statement that ℵ1 = i1,
i.e. that 2ℵ0 = α1 or equivalently that |R| = ℵ1, is called the continuum hypothesis and is
abbreviated CH. Gödel proved that CH was consistent with ZFC and Cohen proved that ¬CH
was consistent with ZFC.

The more general statement that iα = ℵα for all ordinals α is called the generalized
continuum hypothesis and abbreviated GCH. Gödel proved that GCH is consistent with ZFC,
but obviously since ¬CH is consistent with ZFC, so is ¬GCH.
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