
Math 5026: Homework 2, Due Friday February 28

Problem 1. Let A be an index set. Use the Recursion Theorem to show that A 6≤m A.

Problem 2. Let B be an infinite c.e. set. Prove there is a strictly increasing computable
function f such that range(f) ⊆ B and n < f(n) for all n.

A set A is called immune if it is infinite but doesn’t contain an infinite c.e. set. Later in
the course, we will find these sets quite useful.

Problem 3. Let A be a c.e. set such that A is immune. Prove that A is not computable.
(This proof is very short.)

Problem 4. Let M = {x | ¬(∃y < x) (ϕx = ϕy)}. That is, M consists of the least index for
each partial computable function. Note that M is infinite because there are infinitely many
different partial computable functions. Prove that M is immune.

For the next problem, recall that A ⊕ B = {2n | n ∈ A} ∪ {2n + 1 | n ∈ B}. A minor
modification of one of the problems from Homework 1 shows that if A ≤T C and B ≤T C,
then A⊕B ≤T C. In Problem 5, you show that the related least upper bound notion for the
Turing degrees is well defined.

Problem 5. Prove that if A ≡T D and B ≡T E, then A⊕B ≡T D ⊕ E. (This proof is also
very short.)

The last two problems give an example of a related operation on sets which does not
correspond to a well defined notion on the Turing degrees. Let {Ay | y ∈ ω} be a family of
sets indexed by ω. Define

⊕y∈ωAy = {〈x, y〉 | x ∈ Ay}

Problem 6 shows why ⊕y∈ωAy is called the uniform upper bound of the indexed family Ay.

Problem 6. Let C be a set and f be a computable function such that Ay = ΦC
f(y) for all

y. That is, Ay ≤T C for all y, and the computable function f gives the indices for these
reductions uniformly. Prove that ⊕y∈ωAy ≤T C. (This proof is again very short.)

Problem 7. Give an example of two families of sets Ay, y ∈ ω, and By, y ∈ ω, such that
Ay ≡T By for all y, but ⊕y∈ωAy 6≡T ⊕y∈ωBy.



Hints for Homework 2

Problem 1. Suppose that A ≤m A. Apply the Recursion Theorem to the function witnessing
this reduction.

Problem 2. Use the fact that B contains an infinite computable set A, and you can assume
without loss of generality that 0 6∈ A. (Since if 0 ∈ A, then you can remove 0 from A and still
have an infinite computable subset of B.)

Problem 3. Think about why A cannot be c.e. and why this suffices for the proof.

Problem 4. You already know M is infinite, so you only need to show M doesn’t contain
an infinite c.e. set. Suppose that M does contain an infinite c.e. set B. Use Problem 2 and
the Recursion Theorem to help you.

Problem 6. You need to described an oracle computation ΦC that on input 〈x, y〉 uses C to
determine if x ∈ Ay. You can describe this computation procedure using the things you are
given in the problem.

Problem 7. I think the simplest examples keep all the sets computable. Try letting Ay = ∅
for all y. As long as each By set is computable, you will have Ay ≡T By. So, it suffices to
describe a sequence of computable sets By such that from⊕y∈ωBy, you can compute something
non-computable. Note that while each By has to be individually computable, you do not need
to construct the sequence of sets By uniformly.


