Math 5026: Homework 2, Due Friday February 28

Problem 1. Let A be an index set. Use the Recursion Theorem to show that $A \not\leq_m \overline{A}$.

Problem 2. Let *B* be an infinite c.e. set. Prove there is a strictly increasing computable function *f* such that range(*f*) \subseteq *B* and *n* < *f*(*n*) for all *n*.

A set A is called *immune* if it is infinite but doesn't contain an infinite c.e. set. Later in the course, we will find these sets quite useful.

Problem 3. Let A be a c.e. set such that \overline{A} is immune. Prove that A is not computable. (This proof is very short.)

Problem 4. Let $M = \{x \mid \neg(\exists y < x) (\varphi_x = \varphi_y)\}$. That is, M consists of the least index for each partial computable function. Note that M is infinite because there are infinitely many different partial computable functions. Prove that M is immune.

For the next problem, recall that $A \oplus B = \{2n \mid n \in A\} \cup \{2n + 1 \mid n \in B\}$. A minor modification of one of the problems from Homework 1 shows that if $A \leq_T C$ and $B \leq_T C$, then $A \oplus B \leq_T C$. In Problem 5, you show that the related least upper bound notion for the Turing degrees is well defined.

Problem 5. Prove that if $A \equiv_T D$ and $B \equiv_T E$, then $A \oplus B \equiv_T D \oplus E$. (This proof is also very short.)

The last two problems give an example of a related operation on sets which does not correspond to a well defined notion on the Turing degrees. Let $\{A_y \mid y \in \omega\}$ be a family of sets indexed by ω . Define

$$\oplus_{y \in \omega} A_y = \{ \langle x, y \rangle \mid x \in A_y \}$$

Problem 6 shows why $\bigoplus_{y \in \omega} A_y$ is called the uniform upper bound of the indexed family A_y .

Problem 6. Let C be a set and f be a computable function such that $A_y = \Phi_{f(y)}^C$ for all y. That is, $A_y \leq_T C$ for all y, and the computable function f gives the indices for these reductions uniformly. Prove that $\bigoplus_{y \in \omega} A_y \leq_T C$. (This proof is again very short.)

Problem 7. Give an example of two families of sets $A_y, y \in \omega$, and $B_y, y \in \omega$, such that $A_y \equiv_T B_y$ for all y, but $\bigoplus_{y \in \omega} A_y \not\equiv_T \bigoplus_{y \in \omega} B_y$.

Hints for Homework 2

Problem 1. Suppose that $A \leq_m \overline{A}$. Apply the Recursion Theorem to the function witnessing this reduction.

Problem 2. Use the fact that *B* contains an infinite computable set *A*, and you can assume without loss of generality that $0 \notin A$. (Since if $0 \in A$, then you can remove 0 from *A* and still have an infinite computable subset of *B*.)

Problem 3. Think about why \overline{A} cannot be c.e. and why this suffices for the proof.

Problem 4. You already know M is infinite, so you only need to show M doesn't contain an infinite c.e. set. Suppose that M does contain an infinite c.e. set B. Use Problem 2 and the Recursion Theorem to help you.

Problem 6. You need to described an oracle computation Φ^C that on input $\langle x, y \rangle$ uses C to determine if $x \in A_y$. You can describe this computation procedure using the things you are given in the problem.

Problem 7. I think the simplest examples keep all the sets computable. Try letting $A_y = \emptyset$ for all y. As long as each B_y set is computable, you will have $A_y \equiv_T B_y$. So, it suffices to describe a sequence of computable sets B_y such that from $\bigoplus_{y \in \omega} B_y$, you can compute something non-computable. Note that while each B_y has to be individually computable, you do not need to construct the sequence of sets B_y uniformly.